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Abstract This master thesis investigates the possibility of using machine learning methods
to predict patient length of stay at the time of admission to a clinical ward from the emergency
department. The main aim of this thesis is to provide a comparative analysis of different algorithms
and to suggest a suitable model that can be used in a hospital prediction software. The results
show that it is possible to achieve a balanced accuracy of 0.72 at the time of admission and of 0.75
at a later stage in the process. The suggested algorithm was Random Forest which combines good
accuracy with effective training time, making it suitable for on-line use in a hospital. The study
shows that there is a clear potential for the use of machine learning methods for predicting length
of stay, but that further improvements have to be made before adaption into the healthcare.

Sammanfattning Detta masterexamensarbete utforskar mdjligheten att anvénda maskin-
inldrning for att forutspa vardtiden for en patient d&a denne skrivs in pa en vardavdelning fran
akutvards-avdelningen vid ett sjukhus. Huvudmalet for arbetet ar att tillhandahalla en jamforelse
av olika maskininlérnings-algoritmer och foresla en algoritm som &r lamplig att integrera i en mjuk-
vara pa sjukhuset. Resultaten visar att det &r mdjligt att na en balanced accuracy pa 0.72 vid
inskrivningstillfallet samt 0.75 vid en senare tidpunkt i vardprocessen. Den foreslagna algoritmen
var Random Forest som kombinerade bra prestanda med effektiv tréningstid, ndgot som gor den
lamplig for att koras pa sjukhuset. Projektet visar att det finns en tydlig potential for att anvénda
maskininlarning for att prediktera vardtid men att forbattringar kriavs innan det kan na hela vagen
in i sjukhuset.
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2 Introduction

The healthcare sector is facing ever increasing challenges. Increased life expectancy means the
percentage of retired, elderly people is predicted to increase significantly the coming years. In a
forecast of the Swedish population growth published by SCB, an increase of roughly 200 000 indi-
viduals in the age group 80+ is expected between 2020 and 2030 [1]. Even though other age groups
are predicted to grow slightly as well, the result is that the working population needs to support
an increasingly larger elderly population. Combined with economical challenges, lack of expertise,
staff and hospital beds, it is clear that the healthcare will have to battle enormous challenges in
the years to come.

In order to face these challenges, hospitals need to be equipped with administrative planning tools
that can allow them to allocate the available resources in an efficient manner. Many different
methods have been implemented and explored for these purposes. Hospitals have tried to stream-
line and standardize clinical procedures and patient flows in order to allow a higher throughput of
patients. Bottlenecks have been identified and restructured and new ways of patient interaction
have been tested by using for example mobile apps.

There is, however, a new area of interest that could bring new tools to the hospitals’ administrative
toolbox, namely machine learning (ML). Machine learning has been on the rise in several fields for
the last decade following improved computational power, availability of data and improved algo-
rithms. It has excelled in tasks such as image segmentation and classification, machine translation
and recommender systems. In medicine, machine learning has shown promise in segmenting and
classifying radiology images [2], diagnosing and identifying high-risk patients [3] and the topic of
this project: predicting length of stay (LoS).

Patient length of stay is most commonly defined as the total hospitalization time, i.e. from admis-
sion to discharge. LoS predictions can be used in many different ways and serve as a very valuable
method for resource planning. Not only could it provide an overview of future bed capacity, but
it could also be used as a precautionary warning that extra measures should be taken given that a
patient’s LoS might be longer than usual, such as social planning or extra medical attention. Ad-
ditionally, certain ML methods can potentially provide valuable insights into what features affect
LoS and hence be used as a way to evaluate procedures in order to more efficiently treat patients
and reduce unnecessary workload.

The aim of this thesis is to provide a comparative analysis of different, commonly used ML-
algorithms applied to the LoS prediction task and to answer if it is actually possible to achieve
sufficiently good predictive performance. Additionally, different aspects of applying ML methods
in the actual healthcare setting are discussed and used to evaluate the algorithms with the final
aim of suggesting a suitable model for the task.

Furthermore, a key aspect of this project is that the dataset covers a wide range of patient types
in terms of diseases, something that is not commonly used in previous LoS research. Typically, the
dataset is limited to a certain disease or patient type. By exploring the possibilities of predicting
LoS for a wide variety of patients, this project contributes to the challenge of applying ML methods
at a more generalized level in the healthcare process which is an important step in the process of
bringing these types of solutions into the healthcare setting.
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3 Method

3.1 Dataset

The dataset used in this study was collected from a Swedish hospital over a two-year period be-
tween 2017 and 2019. More specifically, the dataset consisted of patients admitted to a specific
ward of the hospital from the emergency room (ER).

Collected parameters included vital parameters, chemistry tests, priority marking, radiology pro-
cedures, suspected diagnosis, planned surgeries, previous medical history along with general infor-
mation such as age, sex and marital status.

In order to protect patient integrity, the dataset was available only at the hospital’s servers and
all patient-specific data was encoded using UUID-codes. Using this method, patient privacy re-
mained intact while still allowing for systematic analysis of the different codes, data pre-processing
and application of machine learning algorithms. Using only categorical and numerical data also
meant that the structure of the data was easier to handle as input to the algorithms compared to
for example including free-text journal data which is harder to process and might risk exposing
personal and vital patient information.
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Figure 1: Distribution of LoS for patients arriving through the ER. Excluding patients with a LoS
longer of 15 days.

3.2 Pre-processing

This project chose to focus only on those patients that arrived through the ER and then went on
to be admitted to the clinic instead of also including elective patients which were available in the
base data. The first reason was that from a clinical viewpoint, patients arriving from the ER were
of higher interest due to their unscheduled nature and varying characteristics.

The second reason was that the data collection process in the ER was standardized which meant
that missing values were uncommon. This resulted in that patients that lacked values in one of the
vital parameters could be dropped from the dataset completely instead of imputed without losing
a large amount of training samples. The reason for not imputing vital parameter measurements is
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Figure 2: The feature set used in this project. The overlapping IA Stage means that at this stage
data collected from both the ER and the ward is included in the dataset (as separate feature

groups).

discussed further in section 3.3.2.

Finally, patients with a LoS longer than 15 days were removed because they were considered
outliers. These patients occurred very rarely and while still being clinically important, their
circumstances were usually too unique to be included in any sort of pattern. The final dataset
consisted of 12076 contacts. The word contact is used here instead of patient because the same
patient could visit the hospital twice and each entry is therefore not regarded as a unique patient,
but rather a single contact with the hospital.

3.3 Feature Engineering

The dataset included a lot of time-series data as well as categorical data in form of diagnoses,
prescriptions and radiology investigations. This meant that an extensive part of this project was
put into building a feature extraction pipeline in which manual features were extracted from the
time-series data. In the following sections, specific details about extracted features are explained.
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3.3.1 Vital Parameters

One of the most abundant data in this dataset consisted of vital parameters measurements both
from the ER department and the clinic. The vital parameters included measurements of blood
pressure, temperature, pulse, respiration, oximetry and BMI. Furthermore, an alertness ranking
called AVPU (Alert, Voice, Pain, Unresponsive) was included as well as the patient’s NEWS (Na-
tional Early Warning Score). The vital parameters therefore consisted of both numerical and
categorical data.

For the time-series data, a standard set of features were extracted for each specific parameter.
These included start- and end values, mean, variance and the number of measurements made.
Start- and end values were extracted in order to give a notion of the trend. For example, an ad-
mitted patient could have abnormal start blood pressure values but after treatment with medicine
at the ER these values could stabilize and so the end value would be normal.

Variance was extracted in order to represent how stable a vital parameter was during the stay. A
high variance in for example pulse or respiration could indicate that the patient has some serious
underlying issue but a high variance could also indicate that the patient has recovered from earlier
abnormal values.

For certain parameters such as oximetry, special indicators were included. If the patient has a
oxygen saturation lower than 90 % at any time during the ER or ward stay, a binary indicator
feature for hypoxia was set to one. This way, a higher resolution of features could be presented to
the algorithm even if it meant that redundant features were introduced into the feature set.

3.3.2 Chemistry Tests

The other large feature group was chemistry tests. In contrast to vital parameters, there were
several hundred different chemistry tests available in the data and in order to keep the number of
features down only the top 15 most common chemistry tests were included. These tests also had
enough support such that not more than 50 % of contacts needed to have a value imputed.

In comparison to vital parameters, chemistry tests were considered to be of a less dynamic nature
and hence more reasonable to impute. While vital parameters can change over the course of hours
or even minutes with the use of for example medication, chemistry values change less rapidly and
can be stable over several days or weeks. Taking this into consideration along with the fact that
vital parameter trends are one of the most important considerations clinically [4], it was decided
to impute chemistry values while dropping patients with missing vital parameter measurements.

3.3.3 Diagnoses, Medication And Other Categoricals

Other information both collected during and before the patient stay consisted of diagnoses, med-
ication, procedures and radiology investigations. This data consisted of many unique codes for
each specific medicine or diagnosis. Most codes were uncommon with a few 100 contacts each and
including every code would have resulted in a very sparse feature set and therefore it was important
to filter out the most relevant data. A too high-dimensional dataset would mean that the risk of
including noise increases and could have a negative impact on the classification accuracy.

For diagnoses and procedures, the top 100 most common codes were included as separate, binary
features as the support for these were substantial enough to provide additional information com-
pared to diagnosis codes outside the top 100. For medication, the ATC (Anatomic Therapeutic
Chemical) coding system was used to avoid including too many features. ATC is a hierarchical
coding system with 14 main groups that shows where or how the medicine is working in the body.
The first letter in the ATC coding was extracted (and encoded to keep patient privacy protected)
and used as a feature. This meant that medication could be represented using 11 features (out of
the 14 main groups) compared to the several thousands of different medication codes available if
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a lower level of the ATC system was chosen. Only medication received in the last year from the
contact start time was included.

Radiology was treated similarly to diagnoses by extracting the top 25 most common investigations.
In addition, the number of different diagnoses, medications, procedures and radiology investiga-
tions each patient had undergone was also extracted as separate features.

Other categorical features included in this data set were age group, weekday admitted, sex, mar-
ital status and emergency marking/priority and these were encoded using one-hot encoding. For
marital status, emergency marking and priority, missing values were filled in by the most common
value. Table 2 shows the feature set included.

Testing Set
20%
Each Feature ‘ Flat Table .CSV
Type as .CSV Training Set

80 %

Cross

Validation &
Optimal - GridSearch at
- Parameters ER Stage
Testing Set

Evaluation

Figure 3: Overview of the workflow used in this project starting with separate, raw .CSV-files for
each data type, construction of a flat table with one row per patient contact and then the process
of obtaining optimal hyperparameter settings.

3.4 Problem Formulation
3.4.1 Classification Structure

In consultation with a physician from the clinic it was decided to tackle the prediction problem as
a classification task with two classes. There were three main reasons for this. First of all, it was
decided that regression would give more information than necessary. From a clinical perspective it
could result in doubt and mistrust in the system from the healthcare staff if the given prediction
was too precise meaning that a potential adoption of a prediction system would be more difficult.
The second reason was that it was necessary to simplify the task as much as possible. It would
be better to start from the simplest scenario of a binary classification task and in line with the
project’s research aim ask if it was simply possible to do such a prediction given the available data.
This approach was also similar to how earlier studies had approached the problem.

The last reason was that the information provided by a binary task would be enough for the clinic
to get an indication whether or not the patient would be in the risk zone of deviating from the
mean LoS. This would then give the clinicians a hint that the algorithm recognizes something
potentially problematic with the patient, requiring further investigation and action from the staff.
On the basis of this, the final task was set as a binary classification with a split between the classes
of three days. The mean LoS of the data was 2.59 days and a split of three days would therefore
give an indication whether or not the patient would be above or below the mean.
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This split was also necessary due to class imbalance. As can be seen in fig. 1, the number of long-
staying contacts drastically decreases after the mean LoS. This meant that splitting at around
the mean would result in good balance between the two classes. Even though the split was set to
slightly longer than the mean, the resulting imbalance was still large which meant that splitting
even further away from the mean would yield an almost empty long class. The class imbalance
can be seen in fig. 4.

LoS Class Counts ER Stage 10000 LosS Class Counts IA Stage
10000

8000 - 8000 4

6000 | 6000 4

4000 - 4000 -

2000 A 2000 1

Short Long Short Long

Figure 4: The counts for each class at both stages. The heavy imbalance between the two classes
is a problem for many ML algorithms but can be combatted with different sampling schemes.

3.4.2 ER vs. In-Admission Stage

In order to utilize all available data, two different approaches were defined for when the prediction
would be made. The first approach, in this project called the Emergency Room (ER) Stage,
consisted of all the data collected from the ER up until the moment the patient was admitted to
the ward. Complemented by the patients’ earlier medical history, this data provided a good basis
for an early prediction and warning when the patient arrive to the clinic. The dataset for this
stage consisted of 12076 contacts and 380 features.

The second stage was named the In-Admission Stage. The idea behind this approach was that
while it would be of high value for the clinic to receive the prediction at admission time, it could
be possible to wait a certain amount of time if the prediction given at a later time could be more
precise. The reason was that a lot of new information was collected about the patient at the
ward. For example, a suspected diagnosis and planned surgery was set quite early in the process,
resulting in more patient-specific information being made available the further into the admission
the prediction is made.

The main information complementing the the ER stage was more vital and chemistry tests, more
radiology investigations and added surgery information. When setting the prediction time to 12
hours into the admission, the total number of contacts was reduced to 10674 and the total number
of features was increased to about 500. The contacts missing between the ER and In-Admission
stage mostly lacked certain vital parameter measurements and was therefore, in line with the
imputation strategy explained above, dropped.
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3.4.3 Evaluation

In order to evaluate each algorithm, several evaluation criteria were used. These criteria were
identified as interesting from both a machine learning and healthcare perspective, as the aim of
evaluation was that the algorithm should both perform well but also be suitable to adopt at the
clinic.

To evaluate the performance, the main metric was set to balanced accuracy. Balanced accuracy is
defined as the average of the obtained recall for each class. Balanced accuracy reflects the accuracy
better when the class imbalance is high, which is the case for the dataset used in this study. In
addition to balanced accuracy, precision and recall were also used. The definitions of these metrics
are presented in section A.5.3.

From the hospital perspective, the training time, prediction time and interpretability were also
used as evaluation criteria when discussing the algorithms.

3.5 Machine Learning Algorithms

As the aim of this thesis was to investigate and compare different machine learning algorithms
performance on the task of predicting LoS, a set of models had to be chosen to investigate. Mainly,
algorithms that had proven to perform well in earlier LoS research were selected, as it would be
interesting to see how these types of algorithms could handle a broader range of patients. A big
consideration in picking the algorithm was that it should provide a high degree of interpretability.
In this project, interpretability was said to constitute two things. First of all, an algorithm can
be interpretable in the sense that a broader audience can understand how the algorithm works in
terms of optimization and prediction. In the healthcare sector, this is an important factor because
medical staff has to know the basis of every medical decision. Secondly, interpretability can be to
what degree the algorithm provide tools and possibilities to visualize what features are important
for the model, for example feature importance. This could be important when incorporating the
model into software.

The final algorithms chosen to be investigated in this project was Decision Trees (DT), Random
Forest (RF), Gradient Boosted Trees (GB), Support Vector Machine (SVM), AdaBoosted DT,
AdaBoosted RF and finally neural network in the form of a Multi-Layer Perceptron (MLP). Both
DT and RF provide a very high degree of interpretability and has been proved to perform well
on the task. Gradient Boosting and AdaBoost were picked to see if boosting could improve the
performance of the base models as this has been a common method to improve accuracy using
weak learners. Finally, SVM and MLP were picked partly due to earlier performance in research,
but also because they are generally strong algorithms that have been applied successfully for other
tasks. More details on the specifics of each algorithm are presented in section A.6.

3.6 Training, Testing And Subsampling

The two datasets were split with 80 % as training data and 20 % as testing data. As mentioned
before, there was a heavy imbalance between the two classes which caused problems when training
the algorithms. Commonly, this results in a prediction bias towards the majority class. Many
different resampling strategies are available such as random oversampling, random undersampling
and more sophisticated techniques such as SMOTE. The main strategy used in this project was
random undersampling in which the majority class is undersampled down to the same size as the
minority class. This meant that the effective training size was reduced to 4482 contacts at the ER
stage and 4038 contacts at the TA stage. The final number of contacts included in the training set
are shown in table 1.
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ER stage | TA stage
Short class contacts 2241 2019
Long class contacts 2241 2019
’ Total contacts \ 4482 \ 4038 ‘

Table 1: The number of contacts in each class, at each stage, after the undersampling step which
made up the training data in all experiments except the subsampling experiment.

3.7 Grid Search

In order to achieve the best performance it was necessary to find the best hyper-parameters for
each algorithm. A grid-search was conducted to find the best parameters for each model at the ER
stage, which was then also used at the IA stage. A grid-search combines all possible combinations
in a parameter grid where one defines the possible values for each hyper-parameter. In other words,
it provides an exhaustive method to evaluate combinations of hyper-parameters.

To evaluate the model performance, grid-search uses cross-validation combined with scoring param-
eters that can be defined by the user. In this project, the scoring parameter was set to balanced
accuracy due to the imbalance between the short and long class. The best possible parameter
settings found using grid search for each algorithm are presented in tables 2 and 3.

DT RF SVM MLP
Criterion: Entropy # of estimators: 173 | Kernel: RBF | Activation function: ReLu
Max depth: 10 Max depth: 20 Gamma: 0.001 Solver: SGD
Splitter: Best Max features: Auto C:1 Alpha: 0.001
Max Features: log2 Criterion: Entropy Learning rate: Adaptive
Min Samples Leaf: 4 Bootstrap: True Layer Sizes: {90, 30}
Min Samples Split 10 | Min Samples Split: 5
Min samples leaf: 1

Table 2: The hyperparameter settings used for each base algorithm as a result of a grid search.

AdaBoost DT AdaBoost RF GradientBoost
# of estimators: 2000 | # of estimators: 70 | # of estimators: 200
Learning Rate: 1 Learning Rate: 1 Learning Rate: 0.1

Criterion: MSE
Min Samples Leaf: 2
Min Samples Split: 5

Table 3: The hyperparameter settings used for each boosting algorithm as a result of a grid search.

3.8 Experiments

In this project, three experiments were defined in order to answer the research question and explore
different approaches to the task of predicting LoS. The three experiments were conducted both on
the ER Stage and the IA Stage.

The first experiment investigated the possibility of predicting LoS on the given dataset using the
selected algorithms. The dataset was used in its full format and no additional pre-processing other
than the one described above was applied. Each algorithm was trained and then tested on the test
set. The results from this experiment are presented in table 4 and table 5 for the two stages.
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In the second experiment, an exploration of different feature subspaces was conducted. By applying
feature selection and incrementing the number of included features, the optimal number of features
yielding the best performance could be found. For each algorithm, the hyper-parameters found
from the grid-search were used as baseline model. The method for selecting the most relevant
features was set to mutual information, which measures the mutual dependency between two
variables.

For the algorithms chosen that supported feature weight or ranking in Scikit-Learn, Recursive
Feature Elimination (RFE) was done to find the most optimal feature subspace and the most
important features. RFE recursively removes the features with lowest feature importance in order
to find the most optimal feature subspace. The results from the MI and RFE are presented in
section 4.2.

Finally, the aim of the last experiment was to analyze how the subsampling ratio between the
two classes affected the precision and recall for the long-staying class. In the experiments above,
the ratio between the classes was one to one in all training cases. In this case, the subsampling
of the short-staying class was incremented in the range 1400 contacts to 6000 contacts while the
long-staying class was fixed. For each increment, the algorithm was trained on the training set
and evaluated on the testing set.
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4 Results

4.1 Experiment 1 - Base Dataset Performance

In the first experiment setting, each algorithm was trained at the two stages and evaluated on the
testing set for each case. Evaluated metrics were balanced accuracy, precision for each class as well
as training and prediction times.

At the ER stage, balanced accuracy ranged from 0.61 to 0.72 where Decision Trees had the lowest
performance and SVM the highest. Precision for the long class ranged from 0.33 to 0.44 and for
the short class from 0.84 to 0.89. Overall, SVM had the highest accuracy and precision in all
categories. In terms of training time, AdaBoosted DT took the longest time at 25.7 seconds due
to the large number of estimators. The fastest algorithm was Decision Tree. SVM had the longest
prediction time.

At the TA stage, the predictive performance increased slightly compared to the ER stage. The
balanced accuracy ranged from 0.65 to 0.75 with Decision Trees once again as the worst algorithm.
Precision for the long class increased to a range of 0.4 to 0.48. The best algorithm for this stage
was Gradient Boosted Trees which reached a balanced accuracy of 0.75, a long precision of 0.48
and a short precision of 0.91. Training time increased for SVM, Adaboosted DT and RF as well
as Gradient Boosted Trees due to the higher number of features included.

4.1.1 ER Stage

Algorithm ‘ Bal. Accuracy ‘ Precision Long ‘ Precision Short H Training Time (s) ‘ Prediction Time (s) ‘
Decision Tree 0.61 0.33 0.84 0.02 0.02
Random Forest 0.70 0.43 0.88 3.27 0.13
SVM 0.72 0.44 0.89 7.61 3.67
MLP 0.7 0.42 0.88 11.5 0.02
AdaBoosted DT 0.70 0.43 0.88 25.7 2.75
AdaBoosted RF 0.71 0.43 0.89 10.8 0.33
GradientBoosted Trees 0.71 0.44 0.89 14.9 0.02

Table 4: Accuracy, precision, train and test times in the first experiment setting using ER Stage
data. Evaluation was made on the testing set.

4.1.2 In-Admission Stage

Algorithm \ Bal. Accuracy \ Precision Long \ Precision Short H Training Time (s) \ Prediction Time (s) ‘
Decision Tree 0.65 0.4 0.85 0.02 0

Random Forest 0.74 0.46 0.91 2.69 0.09
SVM 0.74 0.46 0.91 8.09 3.78

MLP 0.71 0.43 0.89 7.33 0.02
AdaBoosted DT 0.73 0.46 0.89 28.33 2.83
AdaBoosted RF 0.74 0.46 0.91 12.38 0.3
GradientBoosted Trees 0.75 0.48 0.91 19.3 0.02

Table 5: Accuracy, precision, train and test times in the IA Stage setting. Evaluation was made
on the testing set.
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4.2 Experiment 2 - Feature Subspace Selection

Experiment 2 investigated how the performance was affected by the number of features included
in the feature set. Two approaches were evaluated for both stages.

The first method was based on selecting features with Mutual Information and incrementing the
number of included features. The results were that a drastic increase in performance could be seen
for the first 75 features. After 75 features, no performance gain could be seen. For the boosting
and ensembles methods, the performance remained at the same level for feature sets including
more than 75 features. However, for SVM and MLP, a slight decrease in performance could be
seen as the feature set continued to grow. MLP peaked at around 120 features and SVM at 130
features. Decision Tree had no clear pattern with increased number of features.

In the second approach, Recursive Feature Elimination was used to strip away unnecessary fea-
tures until the optimal number of features was found. This method was only available for certain
algorithms in scikit-learn. Similar evolution of the performance compared to the mutual infor-
mation feature selection could be seen here as well. Gradient Boosted Trees and Random Forest
quickly reached a maximum accuracy of 0.71 for the ER stage and 0.72 for the TA stage which
then remained quite stable for increasingly larger feature sets.
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4.2.1 Feature Selection at ER Stage
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Figure 5: Mean cross validation score plotted over varying number of features selected using Mutual
Information at the ER Stage. At each iteration, the K best features are selected and evaluated on.
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4.2.2 Feature Selection at IA Stage
Stage 1A
0.80 Stage 1A 0.80
—— DT —+ P
—}— GradientBoost —— FRF
0.75 0.75 A
: et A :
A @
2 0.70 5 070
S o
] 5
3 2
s o
>
2 065 7 0651
g 2
¥ (=]
0.60 0.60
0.55 : , . . . 0.55 T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
Number of Features Number of Features
Stage IA Stage 1A
0.80 0.80
—— svc —}— AdaBoostDT
—— BaggingDT
0.75 | 0.75 A
] o
g g
g 070 2 0.70 1
2 o
g g
K T
2 0.65 = e
a
2 o
S S
0.60 0.60 4
0.55 T T T T v 0.55 T T T T T
0 100 200 300 400 500 0 100 200 300 400 500

Number of Features

Number of Features

Figure 6: Mean cross validation score plotted over varying number of features selected using Mutual
Information at the IA Stage. At each iteration, the K best features are selected and evaluated on.

4.2.3 Top Mutual Information Features

Top 20 MI Features

ER Chemistry Test 0

ER Chemistry Test 150

ER Chemistry Test 197

ER Chemistry Test 25

ER Chemistry Test 83

TA Chemistry Test 5

TA Last Pulse Measure

IA Mean Oxygen Saturation

Mean Previous LoS

Median Previous LoS

Most Recent LoS

Number of Diagnosis

Number of Prescriptions

Number of Previous Admissions

Shortest Previous LoS

Total Previous LoS

ER Chemistry Test 4

Longest Previous LoS

Number of Earlier Procedures

Admission Reason 672938

Table 6: The top 20 features extracted using mutual information, not in ordered fashion. Note
that the feature naming is in accordance with the anonymization method used in this project and
hence the specific names of tests are not available.
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4.2.4 Recursive Feature Elimination

RFECV ER Stage RFECV IA Stage

0.72 4 0.72
7 g
£ 070 5 0.70
g g
4 <
o 0.68 4 E 0.68
g 2
5 o
3 T 0.66 1
T 0.66 - %
c
i 8 064
2 0.64 A =
c c
s % 0.62 1
£ 062 g
=
>
é 0.60 | or : —
Y —— GradientBoost 55 ,I SradiertBsos@

0.58 RF \ RF

T T T T T T T T 0-56 =
0 50 100 150 200 250 300 350 400 o 100 200 300 400 500
Number of features Number of features

Figure 7: Mean cross validation score plotted over varying numbers of features when running
the RFE. Note that despite AdaBoost supporting RFE, there were memory issues with these
algorithms resulting in them missing from this analysis.
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4.3 Experiment 3 - Subsampling Ratio Tuning

The last experiment investigated how the precision and recall changed with the number of included
samples from the short class in the dataset. For each algorithm at both stages it could clearly
be seen that a trade off between recall and precision for the long class was possible to achieve
with increased number of short-staying contacts. As the number of short samples increased, the
precision in the long class increased slightly while the recall dropped more drastically.

The confusion matrices in fig. 10 and fig. 11 shows three different points in the subsampling
process at each stage.
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Figure 8: Precision and recall for the long-staying class evaluated on the testing set plotted over
number of short-staying contacts included in the training set.
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4.3.2 TA Stage
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Figure 9: Precision and recall for the long-staying class evaluated on the testing set plotted over
number of short-staying contacts included in the training set.
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4.3.3
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Figure 10: Confusion matrices from the test set evaluation with larger portion of short-staying

contacts when subsampling. The algorithm was Random Forest.

4.3.4 Confusion Matrices - IA Stage
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Figure 11: Confusion matrices from the test set evaluation with larger portion of short-staying

contacts when subsampling. The algorithm was Random Forest.
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5 Discussion

5.1 Model Comparison

The main aim of this project was to investigate if it is feasible to predict LoS using machine
leaning and secondly, to investigate and compare different ML models for the task. From the
results presented in section 4.1, it can be concluded that it does in fact seem possible to predict
patient length of stay at time of admission to the ward from the ER.

It can be seen in table 5 that by delaying the prediction somewhat into the admission time, a
better prediction can be made. This result is in line with the hypothesis that complementing the
data from the ER with the data collected at the ward would increase performance. Important
features such as suspected diagnosis and planned surgery are added at this stage and this type of
specific information can be valuable, especially when combined with all the lab parameter values.
All models seem to perform roughly equally well except stand-alone decision tree. For the ER
stage, the balanced accuracy ranges from 0.7 to 0.72 excluding DT and for the TA stage this range
is 0.74 to 0.75. These results were in line with the ones obtained in previous LoS studies.

The fact that the patient group used in this dataset was quite broad shows that there is a potential
for these ML algorithms to be used in more generalized settings in hospitals. Earlier research have
usually very specific limitations on patient type, such as diabetes or brain-surgery patients, while
this project focused on a certain hospital clinic.

One of the limiting factors was the low precision for the long-staying class (i.e. patient contacts
staying longer than 3 days). At the ER stage, this value ranged from 0.33 to 0.44 and for the
IA stage it ranged from 0.4 to 0.48. Such a low precision would make it troublesome to use the
prediction in a real system. Ideally, a precision over 50 % would be sufficient and judging from the
improved results at the TA stage, a valid method would either be to delay the prediction further
or add more data.

It is difficult to draw any conclusions about why the long-staying class has such a low precision, but
manual investigation using plots of combinations of numerical features (vital parameters, chemistry
values etc.) showed that it seemed hard to find a good representation in which the two classes were
easily separable. For certain categorical variables such as specific diagnosis or arrival reasons, it
was easier to see a clear separability in LoS. The problem for this type of data was that there was
usually a lack of patient contacts with that specific code, making it hard to draw any conclusion
from it about the whole population. As a result, it seemed that even though the algorithm could
be able to predict long-staying patients well (i.e. most true long-staying patients were actually
predicted as such), there would always be an overlap with certain short-staying patients which
resulted in poor precision.

5.2 Feature Selection, Important Features And Subsampling Ratio

From the two methods of feature subspace exploration, it could be concluded that reducing the
feature subspace did not necessarily increase the performance. However, it could be seen that a
smaller subspace than the one provided in experiment 1 could be used and still reach an equally
good performance.

These findings indicated that there was a substantial part of the dataset that did not provide new,
meaningful information to the algorithm. From looking at the graphs from figure 6, it could be
seen that using around 50 features almost resulted in the same performance as 300+ features.
Upon further inspection of what these top 50 features consisted of when filtering with MI, it was
seen that essentially all these features were numerical ones with a few categorical features such as
prescriptions, marital status and age interval. This is partly presented in table 6.

This result was interesting because it meant that a large part of the dataset that consisted of
very specific information such as earlier diagnosis and procedures was excluded or redundant. One
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possible reason for this could be that each specific code for diagnosis and procedure had a very
small support in the dataset, i.e. only a few patient contacts had the code, resulting in that no
conclusions could be drawn regarding LoS if a patient had the code or not.

One way to bring up the information content in diagnosis and procedure codes would be to in-
vestigate different coding systems. In the case of medications, it was not feasible to include each
specific code available as explained in section 3.3.3 but instead, a higher grouping with the help
of the ATC encoding was used. A similar approach could be made with the diagnosis codes us-
ing for example the ICD (International Statistical Classification of Disecases and Related Health
Problems) encoding or the KVA (Klassifikation av vardatgirder) encoding in order to leverage the
information content in these features better.

From the third experiment one can see that by varying the subsampling in the short-staying class
it is possible to tune the trade-off between precision and recall for the long-staying class. Naturally,
including a larger part of the dataset should mean that the algorithm performs better.
Considering that the precision for the long-staying class was so low from experiment 1, this method
provides a way to actually increase the precision and therefore also the usability of the algorithm.
This type of tuning could be offered to the physician when selecting an algorithm for implemen-
tation in order to let him or her adjust the trade-off and select a model that suits their needs
best.

5.3 Usability in Healthcare

The usability of an ML algorithm is first of all usually based on its performance. The limiting
factor for the models investigated in this project in terms of performance was, as discussed above,
the low precision. Despite this, there is a large potential for a model to be used on the data that
was available in this project given that the restrictions on the dataset were very strict.

One of the main limitations in this project was the heavy data anonymization applied to the
dataset. In a real hospital setting, running the algorithm on-premise, there would be more free-
dom experimenting and manipulating the data meaning that the performance could potentially be
improved further. A few ways that could be explored in an un-anonymized setting would be more
extensive use of dates and time stamps (in this thesis, only the admission weekday was included)
as well as more specific analysis of the different codes. One could for example include codes that
the physicians might think have a large impact on LoS, instead of just selecting the ones with the
largest support as was done in this project.

From the aspects considered in table 7, it could be argued that the models used in this project
are suitable for integrating into the healthcare workflow. In terms of timings, both training time
and prediction time are fairly quick. Most models used here, with the exception of AdaBoost with
a large number of estimators, could be trained quickly with limited resources. This means that
running the algorithm on-premise on for example a local server could be a valid option, allowing
for flexible implementation and cost-efficient deployment.

A key factor would be the interpretability of the model. When running and comparing ML models
in an experimental setting, interpretability is not as crucial. However, when aiming for a solution
in the healthcare setting, the algorithm would be exposed to non-technical staff in the form of
physicians and nurses. In order to motivate why the ML model can perform as it does, the algo-
rithm should be easy to understand and transparent.

The models investigated in this project are not the simplest ones available, especially not in terms
of how the algorithms work and in the relationships they try to model. They do however support
useful tools such as feature importances and prediction probabilities, meaning that a solid frame-
work of presenting why a prediction was made as it was could be developed. Decision Tree, which
is a very intuitive model and could be considered one of the most interpretable models used in
this project, performed fairly poorly compared to the rest of the algorithms. Judging from table
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4, the most suitable algorithm for prediction at the ER stage would be Random Forest. Even
though SVM performs slightly better, the prediction time is longer. This could be problematic
if many real-time predictions need to be made close in time. Another issue is that SVM with
the RBF kernel does not provide any sort of explainability, reducing the interpretability of this
model severely. RF provides good performance while quick to train and predict. It is also more
intuitive to understand than SVM and also provides the necessary features from an interpretability
perspective, i.e. feature importances.

6 Future Work And Limitations

There was, as mentioned in the method, large amounts of anonymization applied to the dataset
which also was one of the biggest limitations in this project. Without knowing the names of
chemistry tests and diagnoses, it was hard to do any sort of clinical analysis and to use suspected
correlations to make the feature engineering easier.

Furthermore, the dataset available in this project contained a lot of information that was not
included in the training and testing data due to the amounts of feature engineering it would have
required. As the whole pipeline from raw data to polished flat-table format had to be implemented,
not all possible information could be extracted due to time limitations.

This is one of the most interesting points to explore in similar projects in the future. The dataset
contained copious amounts of time-series data of different lab tests and it would be very interesting
to develop more features connected to trends present in these types of data. Only static features
were used in this project, but if features could be extracted that reflect how for example a vital
parameter has varied over time, this could prove very valuable to the ML models as trends are very
important when clinicians evaluate patients. It would therefore be interesting to more extensively
explore the feature engineering aspects of this dataset, not only for the time-series data.

The number of models evaluated in this project was also limited and selected on the basis of
earlier research. There are other possible models to explore and one interesting method could be
to investigate how deep learning performs on the available data. Deep learning networks can also
be used in other ways than for prediction. For example, it could be interesting to investigate how
so called partial variational autoencoders (partial VAE) could be used to handle missing data.
This type of autoencoder transforms incomplete data representations into another one that an ML
model still can use, efficiently recovering missing information [5].

Finally, an interesting method of evaluation used in [6] could be investigated. Along with evaluating
against the actual outcome, this paper included physicians predictions and evaluated how the
ML algorithm performed against these man-made predictions. As hospitals use these manual
predictions already, it would be of interest to see if the algorithm performs better. If that is the
case, then an ML tool could still prove more useful than the existing method and could be worth
implementing despite the precision issues found in this project.
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7 Conclusions

This project has investigated the possibility of predicting length of stay for patients admitted
from the emergency room to a hospital ward at a Swedish hospital. The prediction problem was
formulated as a binary classification with classes shorter or longer LoS than 3 days. The results
showed that it was possible to achieve a balanced accuracy of of 72 % on the testing set when
predicting at the time of admission from the ER. One problem was the low precision for the longer
class. However, it was shown that this could be tuned by varying the amount of subsampling in
the short-staying class that was heavily over-represented in order to achieve a better precision.
The final, recommended algorithm was Random Forest. This model provided reasonable accuracy,
quick training and testing speed and high interpretability which would allow for a light-weight
implementation using limited hospital resources.
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A State of The Art Analysis
A.1 Length of Stay

Length of stay (LoS) is a term used to describe the duration of a patients hospitalization. It
is commonly defined as the difference between the admission date and the discharge date of the
patient to and from the hospital. However, some definitions do not count discharge to another
hospital or ward as the end of the LoS. LoS is used as a qualitative measure for several purposes. It
can be important from both a clinical and administrative perspective. For clinical use, LoS can be
interesting to measure in order to evaluate if patients receive the right care and if longer hospital
stays can affect their rehabilitation. Such an approach has been studied in [7] where it was shown
that a decrease in LoS for geriatric patients did not affect the activity and mobility of the elderly
patient after discharge. Another study showed that by correlating certain features, such as patient
treatment or medication received during the stay, with LoS it was possible to identify the most
effective medicine for pneumonia treatment as well as other factors highly correlated with LoS [8].
Those factors can then be included in the optimization and re-evaluation of hospital routines and
patient flows.

More typically, LoS is studied from an administrative perspective and often in correlation with
hospital costs. Hospitals have limited resources in terms of both staff and beds which means that
patients with longer LoS can have serious implications for the hospital in different ways. It can
not utilize its full capacity, extra resources may have to be focused on the long-staying patient
and other procedures for other patients are hindered due to the lack of beds. Hence, LoS can be
a valuable tool for administrative reasons in both bed planning and cost savings because it allows
the staff to plan ahead and where to coordinate extra resources.

Several studies have been done on LoS and its effects on patient costs. Such a study is presented in
[9] in which a multilevel modeling approach is made to examine patient costs and how they relate
to both patient and hospital features. The results show that a reduced LoS considerably reduced
the hospital costs.

Another study showed that an increased LoS was one of the main drivers of increased costs for
patients that had undergone craniotomy for tumor resection [10]. This report also discusses that
the emphasis of LoS reduction should not be focused on general patients, but rather to identify
the cases that result in a long LoS but where the patient comorbidities are not justified for such an
outcome. It is important to keep this aspect in mind when studying LoS. The care of the patient
must not suffer when actions are implemented to reduce the overall LoS.

A.2 Predicting LoS

Because of its popularity as an evaluation metric for hospitals there has been an increased interest
in predicting the LoS for patients being admitted to a ward or clinic. Clearly, hospitals are under
increasing pressure as the population increases while the available resources such as staff, money
and space are reduced. If a reliable prediction of LoS could be made at admission time, it could
serve as a valuable tool for nurses, doctors and administrative personnel at the ward. It could for
example allow doctors to more efficiently schedule surgeries as they could have an estimate on when
certain patients will be discharged or how long they potentially will occupy a bed. Furthermore,
a prediction could serve as a clinical indicator that a patient should receive more thorough care or
special treatment if his or her earlier medical history indicates a long LoS.

A.3 Statistical Modeling of LoS

The first approach to model and predict LoS is to use statistical modelling and find correlating
factors that significantly contribute to an increased LoS. These type of models can give hints about
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what potential factors might need to be monitored in order to identify long-staying patients, but
they might also produce their own predictions.

In [11], a statistical analysis is presented in which several factors were studied using t-test, analysis
of variance (ANOVA) and other statistical tests in order to find whether or not they had a sig-
nificant correlation with longer LoS. Some of the factors identified were if a patient was admitted
from an outpatient setting such as nursing home or if they had low systolic blood pressure at ad-
mission time. One interesting aspect of this study is that the authors present suggested actions for
the three main contributing factors that can be applied proactively. By presenting such proactive
interventions to the hospital, this type of statistical study can be of high value when re-structuring
hospital routines.

More complex statistical modelling of LoS can be done using for example Markov chains. Such an
approach is presented in [12] which tries to model the average LoS in an intensive care unit (ICU)
using Markov chains. The results presented are quite vague and the estimations from the Markov
chain are not particularly good. The strong points are that the model can give estimates about to
which specific part of the ICU the patient will transfer to and an estimate of the discharge time.
The problem using such complex modelling methods are that physicians might not understand
the processes that makes the model valid and hence doubts the estimates given. This is a major
factor to consider when trying to take the step from research environment to an actual healthcare
setting.

A.4 Machine Learning Approaches to LoS

The other approach and the main topic of this thesis is to use machine learning (ML) to predict
patient LoS. Machine learning methods have received an increased interest since improved pro-
cessing power, access to data and readily available machine learning libraries such as scikit-learn
has made these type of methods easily accessible. This development has of course been seen in the
area of LoS prediction as well and has shown promising results.

ML algorithms can help identify factors much like the statistical methods presented above but
also predict the LoS for a given patient by using data available at the admission time. This is
done by training such a model on previous seen cases and for each iteration update the algorithms
parameters in order to minimize a loss function or some other optimization criteria. This process
is usually one of two types. Supervised learning in which the correct answers (for example the
actual LoS in this case) is known or unsupervised learning in which no correct answer is known
and the task is to find some correlation or pattern to group the data.

A.5 Problem Formulation

This section focuses on how the problem of predicting LoS can be formulated along with how earlier
studies have approached the problem. Working with healthcare data poses many challenges. How
should missing data be treated, how do one handle inconsistency within the data and should
certain medical features be treated differently? By clearly structuring a data processing pipeline
and machine learning workflow, one can avoid these problems.

A.5.1 Classification And Regression

Prediction of LoS is mostly tackled as a task for supervised learning and can be approached as two
different types of problems. The first approach can be to try and classify patients into categories
such as LoS shorter or longer than a certain amount of days. This is called a classification task
because the aim of the algorithm is to predict a new, unseen sample into a specific class. The other
approach is to predict a continuous value which could for example be to predict an exact LoS in
terms of hours or days. This type of prediction is called regression.
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What approach is most suitable depends on the problem setting. In a hospital it might be seen
as to precise to regard the LoS as a regression problem and any information that can be given
by a classification algorithm suffices for efficient resource management. In other cases it can be
useful to know if a patient will potentially be discharged in the morning or afternoon. Hence, most
research evaluate both types of approaches as there might be differences in performance, training
time and needed computation power which are also important to consider if the algorithm is to be
used in a healthcare setting. A more exhaustive table of important evaluation criteria that have
been presented in earlier research along with other common criteria is presented in table 7.

One aspect if classification is the chosen method is the splitting of data into classes. Because LoS
is typically distributed with a large majority of patients having a shorter LoS then followed by
a long, smaller tail, picking suitable classes can be difficult. In [13], the authors split the data
into two classes: shorter-than-three-days and longer-than-three-days. They motivate this split just
because the LoS distribution changes significantly after two days and that this would indicate that
the patients with longer LoS than that could require more extensive planning.

A.5.2 Data And Feature Pre-processing

A large part of machine learning consists of processing available data and extracting relevant fea-
tures that help the algorithm perform better. This part is especially important when handling
medical and patient data. If free-text data is included in the dataset, potential private information
regarding the patient might be disclosed resulting in serious loss of privacy for the individual and
violation of laws such as GDPR.

Most studies focus heavily on one patient type or category. For example, in [14] the authors focus
on cardiology patients, in [13] the focus is on diabetic patients and in [15] the patients have all un-
dergone brain tumor surgery. By limiting the patient type, the data pre-processing becomes easier
as the data collection and structure is more standardized for that specific ward. Also, generalizing
an ML model to several wards or even hospitals would require enormous amounts of data. These
databases are usually highly protected for privacy reasons or available in the US only.
Imputation of medical data is also something that has to be done carefully. Any eventual impu-
tation of missing data has to be very well motivated from a clinical viewpoint. An interesting
example of imputation consideration is presented in [16]. The approach for imputing data was
that any feature with more than 50 % missing data was removed and considered not effective for
analysis. If a feature had less than 12 % missing data, the value was replaced either with mean or
mode depending on feature type. For features with more than 10 % missing data, an interesting
approach of fitting a decision tree to that feature was implemented in order to fill in the missing
value with predictions from the tree.

A.5.3 Evaluation Methods

Evaluation of algorithm performance is a very important aspect. In the case of classification,
most common metrics are accuracy, precision and recall. Accuracy is the most straight-forward
measurement but can be misleading if classes are not equally large. In those cases, it is better to
consider recall/precision for each class instead. They are defined as.

# of correctly classi fied

A = 1
ceuracy # of total samples (1)

t
Precision = ; —ff (2)

p p

tp
Recall = ——— 3
eca i n (3)
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Evaluation Criteria

Stakeholder

Comment

Accuracy/Error

Physicians, Nurses,

Data Scientist

One of the main evaluation metrics used for eval-
uating the performance of an ML algorithm along
with similar measures. Must be one of the main
consideration when applying the algorithm in the
hospital.

Sensitivity & Specificity

Data Scientist,
cians, Nurses

Physi-

It is important to evaluate how the algorithm
handles false positives/negatives. What impact
does a misclassification have on the patient and
the hospital organization?

Interpretability

Physicians, Nurses

How easy is the algorithm to understand? Is it
easy to understand the reasoning behind a predic-
tion? Especially important in healthcare where
important clinical decisions are made and always
needs to be well motivated.

Training time & Re- | Data  Scientist, IT- | An algorithm must be feasible to train in an
sources administrator healthcare setting. Deep learning solutions re-
quiring heavy GPU clusters and long training
time might not be practical to employ.
Prediction time & Re- | Data  Scientist, IT- | Prediction with the algorithm must be fast
sources administrator enough to provide almost real-time updates. A

ML algorithm must not interrupt the workflow
at the clinic or ward.

Dataset Data Scientist Amount of training data needed for the algorithm
to perform well. Algorithms requiring too much
data might not be possible to use.

Robustness Data Scientist ML algorithms are usually trained for ward-

specific solutions. Different patient flows, coun-
tries, patient types and other factors make gen-
eralization of an ML algorithm hard.

Table 7: Important evaluation criteria and their specific meaning for the healthcare setting as well
as what potential actors in the process they can be of use for.

If regression is the method of choice, the distance between the predicted and true value is the
measure of error. Two common ways are Mean Absolute Error (MAE) and Mean Squared Error
(MSE), defined below. MSE penalizes larger errors more and considerations have to be made
before picking a suitable regression error metric.

1 n

MAE =~ ; |(Yerue,i = Ypred,i)| @
1 n

MSE =~ zi::l (Yirue.i — Ypred.i)? (5)

A.6 Machine Learning Algorithms

Research on LoS prediction using machine learning have been using a multitude of different ap-
proaches and different algorithms. The aim of this section is to provide an overview of the most
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commonly used algorithms which appear in most papers and have been proved to perform well.

A.6.1 Linear & Logistic Regression

Linear regression is a method that can be used to describe the linear relationship between one
dependent variable (the outcome variable) and one or more independent variables (features). The
relationship should be linear for the model to work and gives a continuous output [17]. A linear
regression model can be, given features x1, x5 fitted with coefficients by, b1, b, represented as

Yy =bo + b1y + baw (6)

Logistic regression is similar to linear regression in many aspects. The main difference is that in
logistic regression the aim is to estimate a probability of a sample belonging to one of two classes.
Logistic regression produces a logistic curve based on a set of estimated coefficients. If there are
two features 1, xo, the logistic function can be described by the fitted coefficients by, by, by using

1
1+ exp(by + biz1 + bowo)

(7)

In which p is the probability that the sample belongs to the class or not [18]. Logistic regression
is used for binary classification problems.
Both linear and logistic regression are mostly used as baseline models which is the case in [6].
In this study, the aim was to predict if a patient will be discharged the same day and logistic
regression was used as a baseline comparison. The performance was a sensitivity of 65.9 % and a
specificity of 52.8 %. Another study used linear regression to develop a predictive model for the
prediction of LoS in burn victims [19]. This model managed to reach a R?-score of 0.2 which the
authors deemed good.
Besides its important role as a baseline model, linear and logistic regression can prove to be valuable
in other aspects as well. The estimated coefficients in linear regression serve as an easy-to-interpret
representation as the final linear formula can be understood by most professions. The drawback
is that most relationships are complex and when applied to big datasets with many features the
linear regression might not catch important non-linear patterns.

p

A.6.2 Decision Trees

One of the most traditional approaches to LoS prediction is to use a decision tree. A decision tree
can be seen as a tree-like structure which at each node splits the dataset by looking at a certain
feature or features. For example, a split in can be made by looking if the age is above or below
some threshold. The aim of the tree is to traverse the nodes, looking at a feature and making
splits and ultimately end up at a leaf-node in which a classification or prediction is made.

When building the decision tree, these splits are not simply done at random. When attempting a
split, the decision tree tries to optimize the split in regards to some optimization criteria. Usually,
this criteria is set as an impurity measurement of the feature. If a feature can take on one certain
value with probability 1, then that feature has no impurity. On the other hand, if the possible
values for a feature each have the same probability, the impurity is maximized. A measure of
impurity that is commonly used is entropy which is defined as

Entropy = — Zpiloggpi (8)

?

In which p; is the probability of class i and we sum over all the possible classes. This measure-
ment is used in what is called the information gain which is defined as
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Gain(i, X) = Entropy(i) — Entropy(i, X) (9)

In which i is the class and X is the feature to make the split for. Information gain is one of the

most common splitting criteria used, but other types of criteria are available as well [20], [21].
Not many papers apply the decision tree as a stand-alone model. More commonly, it is used in
an ensemble method which is explained later on. One study that does apply a single decision tree
is presented in [16]. In this study, a dataset of 3266 patients with 36 features each was available
and the aim was to classify each patient into three categories of LoS. These categories were LoS
between 0-5 days, 6-9 days and longer than 10 days. The decision tree resulted in a classification
accuracy of 83.5 %. Compared to the other methods evaluated in this paper, SVM and ensemble
methods which both achieved over 95 % accuracy, this performance was not very good but the
authors still motivates its use by the easy interpretability of the graphical representation of the
tree.
The grouping of LoS into three different classes is a useful approach. It provides the healthcare
staff with the right amount of information while reducing the ML problem to a somewhat simpler
problem. Usually, this sort of approach is also good due to the skewness of LoS data. LoS data
is typically skewed towards the shorter side, something that proves problematic for many ML
algorithms, and splitting the dataset into roughly equal classes can help leverage this problem [22]
as mentioned in section A.5.1.

A.6.3 Support Vector Machine

The support vector machine (SVM) is an algorithm that regards each data sample as a point in
a high dimensional space in which each feature is regarded as an axis or dimension in this space.
The aim of the SVM is to fit a hyperplane that best separates all the input points in the space
into two different classes. This task is done by solving an optimization problem.

Commonly, SVM uses a transformation called the kernel trick. The kernel trick is used to project
the input points into a higher dimensional space in which they might be easier to separate than
in the low-dimensional space the data is originally represented in. The advantage of the kernel
trick is that it is not necessary to compute the transformation to the higher dimensional space for
each point, but only to compute the inner product between the points in that space which saves
a considerable amount of computations. This trick allows the SVM to model very complex and
non-linear relationships [23], [24].

In LoS prediction, SVM is used both for classification and regression. In a study of 29 different
ML algorithms that were to be evaluated and combined into an ensemble predictor it was found
that a SVM was in the top three best performing algorithms [15]. A variant of the SVM was also
the top performing algorithm in [13] with an accuracy of 0.68.

With its ability to capture non-linear, complex patterns the SVM makes for a strong algorithm.
The basis of the SVM is intuitive to understand to a certain degree but in terms of interpretability
it is certainly more limited than the decision tree. On the other hand, choosing the right kernel
requires expertise and the parameter tuning might prove difficult.

A.6.4 Artificial Neural Networks

Artifical neural networks (ANN) have received increased interest in many fields over the last years.
These types of networks tries to mimic the neurons in the brain to a certain degree. By inter-
connecting layers of neurons where each neuron has a weight and a bias as well as an activation
function, the neural network can estimate non-linear decision boundaries very well.

Neural networks have excelled in several tasks. One specially interesting variant of neural network
is what is called a deep neural network. The deep neural networks is essentially a regular network
that consists of considerably many more layers of neurons than the regular ones. Deep learning
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have been successfully used in segmenting urban driving environments, various semantic segmen-
tation tasks and medical image segmentation [25], [26].

Artificial neural networks have been used in predicting length of stay with mixed success. In [14]
prediction of LoS for three different types of diagnoses using ANN was investigated. A model was
trained for each separate diagnosis and also for two cases, one using all clinical data available from
the hospitalization called predischarge stage and one using only prior data called preadmission
stage. 21 features were available for 2377 patients. The results were than no significant difference
in performance could be seen between the preadmission and predischarge stages. For one of the
diagnoses, a mean absolute error (MAE) of 1.031.07 was achieved, while for the other two the
MAE was about 3.87. For the latter two diagnoses, the linear regression outperformed the ANN
in both stages.

The authors reason that more features, such as lab values and vital signs, would need to be in-
cluded to improve performance but also that a categorization of patients into risk groups might
have been more meaningful.

Perhaps one of the more ambitious studies is conducted in [27]. This study applied deep learn-
ing onto a dataset of 216 000 hospitalizations in order to predict LoS, risk of mortality, risk of
readmission and also inference of discharge diagnosis. The evaluation metric was area under the
receiver operating characteristic curve (AUROC) and the model performed 0.86 for one hospital
and 0.85 for another. This outperforms most other models previously presented. This was possible
due to extensive utilization of the electronic health record (EHR) and all the features and free-text
information available in it. While a main concern for neural networks is the lack of explainability,
the authors present a way to show relevant free-text sections that contribute to the prediction
which allows physicians to judge if it is credible or not.

The drawback of this ambitious study is the need for immense computer power. Training deep
learning models require both large amounts of training data but also massive GPU resources which
makes it both difficult and expensive to develop these models. While the performance of the model
is outstanding, these factors limits the possibility for hospitals to develop and deploy such algo-
rithms themselves. Another critical point is the use of free-text EHR information, something strict
privacy regulations such as GDPR limit and can prove hard to get access to.

A.6.5 Ensemble methods

All the algorithms presented so far perform as a single model. In order to improve model per-
formance it is common to combine many algorithms into what is called an ensemble. There are
different ways and examples of doing this and usually such a ensemble algorithm is called a meta-
algorithm. The first method is to use bagging. In bagging, subsets of training data are generated
by randomly sampling the dataset and used to train a single model. The trained models are then
combined and the output is given as an average of all predictors [28]. This reduces the variance of
the predictor and gives a more robust model.

An extension of bagging is Random Forest (RF). RF uses decision trees trained not only on random
subsets of data, but also random subsets of features in that data. RF is a popular algorithm for
LoS prediction and has been used in [6] for regression and end-of-day discharge. It was shown that
RF could perform with a sensitivity of 60% and specificity of 66%. In that study, an interesting
comparison with physicians predictions was made as well. In terms of predicting end-of-day dis-
charge at 2 p.m. the same day, the physician predicted 485 cases correct while the model managed
to predict 1781 cases correct.

RF is also the preferred model in [29] due to its interpretability and its capability to capture non-
linearity. It was trained on 44 000 hospitalizations and performed on the test set a mean squared
error of 2.26.

Another meta-algorithm is called boosting. In contrast to bagging, which is based on parallel
learning of several different models, boosting fits models sequentially. It begins by fitting a model
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to the original data and based on the misclassification of that model, weights are assigned to
hard-to-classify samples which are then used in the training of the next model. At the end, an
ensemble of weak learners is achieved that performs well using the weighted average based on the
weak learner performance [30].
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ML Algorithm

Advantages

Drawbacks

Earlier results

Linear Regression

Very easy to interpret.

Baseline model.

Only fits a linear model.

Not good with large
feature space.

For predicting end-of-day
discharge: Sensitivity 65.9% and
specificity 52.8% [6].

Predicting LoS for thrombectomy:
RMSE of 8.764 [31].

Decision Tree

Very interpretable and
intuitive.

Easy to train.

Can easily overfit.

Accuracy of 83.5% [16].

Predicting LoS for burn patients:
MAE of 7.192 [32].

Non-linear. Prediction of LoS in colorectal
cancer: accuracy of 72.32% [33].
Random Forest Non-linear. Several Predicting end-of-day discharge:

Easy to interpret.

Ensemble method
reduces variance and
overfit.

hyper-parameters to
tune in order to perform
well.

Slightly slower to train
than D-tree.

Sensitivity 60% and specificity
66%.

Predicting LoS for diabetic
patients: Accuracy of 65% [13].

SVM Good ability to capture | Hard to find good Prediction of LoS in colorectal
non-linear, complex hyper-parameters. cancer: Accuracy of 73% [33].
relationships.

Kernel selection Predicting LoS for diabetic
requires expertise. patients: Accuracy of 68% [13].
Slow to train.

ANN Good ability to capture | Low interpretability. Prediction of LoS in colorectal

non-linear, complex

cancer: Accuracy of 71.2% [33].

relationships. Lots of training data.
Deep Learning Proved very good Requires computational | Predicting LoS: AUROC of 0.81
performance. power. [27].

Same advantages as
ANNs

Hard to interpret.

Lots of training data.

Table 8: Summary of the most commonly used ML algorithms for the LoS prediction task, their
advantages and disadvantages in broad terms as well as previous performance.
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