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Deep Learning for Electromyographic Hand Gesture
Signal Classification Using Transfer Learning

Ulysse Côté-Allard, Cheikh Latyr Fall, Alexandre Drouin,
Alexandre Campeau-Lecours, Clément Gosselin, Kyrre Glette, François Laviolette†, and Benoit Gosselin†

Abstract—In recent years, deep learning algorithms have
become increasingly more prominent for their unparalleled
ability to automatically learn discriminant features from large
amounts of data. However, within the field of electromyography-
based gesture recognition, deep learning algorithms are seldom
employed as they require an unreasonable amount of effort from
a single person, to generate tens of thousands of examples.

This work’s hypothesis is that general, informative features can
be learned from the large amounts of data generated by aggre-
gating the signals of multiple users, thus reducing the recording
burden while enhancing gesture recognition. Consequently, this
paper proposes applying transfer learning on aggregated data
from multiple users, while leveraging the capacity of deep learn-
ing algorithms to learn discriminant features from large datasets.
Two datasets comprised of 19 and 17 able-bodied participants
respectively (the first one is employed for pre-training) were
recorded for this work, using the Myo Armband. A third Myo
Armband dataset was taken from the NinaPro database and
is comprised of 10 able-bodied participants. Three different
deep learning networks employing three different modalities
as input (raw EMG, Spectrograms and Continuous Wavelet
Transform (CWT)) are tested on the second and third dataset.
The proposed transfer learning scheme is shown to systematically
and significantly enhance the performance for all three networks
on the two datasets, achieving an offline accuracy of 98.31%
for 7 gestures over 17 participants for the CWT-based ConvNet
and 68.98% for 18 gestures over 10 participants for the raw
EMG-based ConvNet. Finally, a use-case study employing eight
able-bodied participants suggests that real-time feedback allows
users to adapt their muscle activation strategy which reduces the
degradation in accuracy normally experienced over time.

Index Terms—[h] Surface Electromyography, EMG, Transfer
Learning, Domain Adaptation, Deep Learning, Convolutional
Networks, Hand Gesture Recognition

I. INTRODUCTION

Robotics and artificial intelligence can be leveraged to
increase the autonomy of people living with disabilities. This is
accomplished, in part, by enabling users to seamlessly interact
with robots to complete their daily tasks with increased inde-
pendence. In the context of hand prosthetic control, muscle
activity provides an intuitive interface on which to perform
hand gesture recognition [1]. This activity can be recorded by
surface electromyography (sEMG), a non-invasive technique
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widely adopted both in research and clinical settings. The
sEMG signals, which are non-stationary, represent the sum
of subcutaneous motor action potentials generated through
muscular contraction [1]. Artificial intelligence can then be
leveraged as the bridge between sEMG signals and the pros-
thetic behavior.

The literature on sEMG-based gesture recognition primarily
focuses on feature engineering, with the goal of characterizing
sEMG signals in a discriminative way [1], [2], [3]. Recently,
researchers have proposed deep learning approaches [4], [5],
[6], shifting the paradigm from feature engineering to feature
learning. Regardless of the method employed, the end-goal
remains the improvement of the classifier’s robustness. One
of the main factors for accurate predictions, especially when
working with deep learning algorithms, is the amount of
training data available. Hand gesture recognition creates a
peculiar context where a single user cannot realistically be
expected to generate tens of thousands of examples in a
single sitting. Large amounts of data can however be obtained
by aggregating the recordings of multiple participants, thus
fostering the conditions necessary to learn a general mapping
of users’ sEMG signal. This mapping might then facilitate
the hand gestures’ discrimination task with new subjects.
Consequently, deep learning offers a particularly attractive
context from which to develop a Transfer Learning (TL)
algorithm to leverage inter-user data by pre-training a model
on multiple subjects before training it on a new participant.

As such, the main contribution of this work is to present a
new TL scheme employing a convolutional network (ConvNet)
to leverage inter-user data within the context of sEMG-
based gesture recognition. A previous work [7] has already
shown that learning simultaneously from multiple subjects
significantly enhances the ConvNet’s performance whilst re-
ducing the size of the required training dataset typically seen
with deep learning algorithms. This paper expands upon the
aforementioned conference paper’s work, improving the TL
algorithm to reduce its computational load and improving
its performance. Additionally, three new ConvNet architec-
tures, employing three different input modalities, specifically
designed for the robust and efficient classification of sEMG
signals are presented. The raw signal, short-time Fourier
transform-based spectrogram and Continuous Wavelet Trans-
form (CWT) are considered for the characterization of the
sEMG signals to be fed to these ConvNets. To the best of
the authors’ knowledge, this is the first time that CWTs are
employed as features for the classification of sEMG-based
hand gesture recognition (although they have been proposed
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for the analysis of myoelectric signals [8]). Another major
contribution of this article is the publication of a new sEMG-
based gesture classification dataset comprised of 36 able-
bodied participants. This dataset and the implementation of
the ConvNets along with their TL augmented version are
made readily available1. Finally, this paper further expands
the aforementioned conference paper by proposing a use-case
experiment on the effect of real-time feedback on the online
performance of a classifier without recalibration over a period
of fourteen days. Note that, due to the stochastic nature of the
algorithms presented in this paper, unless stated otherwise, all
experiments are reported as an average of 20 runs.

This paper is organized as follows. An overview of the
related work in hand gesture recognition through deep learning
and transfer learning/domain adaptation is given in Sec. II.
Sec. III presents the proposed new hand gesture recognition
dataset, with data acquisition and processing details alongside
an overview of the NinaPro DB5 dataset. A presentation
of the different state-of-the-art feature sets employed in this
work is given in Sec. IV. Sec. V thoroughly describes the
proposed networks’ architectures, while Sec. VI presents the
TL algorithm used to augment said architecture. Moreover,
comparisons with the state-of-the-art in gesture recognition
are given in Sec. VII. A real-time use-case experiment on the
ability of users to counteract signal drift from sEMG signals is
presented in Sec. VIII. Finally, results are discussed in Sec. IX.

II. RELATED WORK

sEMG signals can vary significantly between subjects,
even when precisely controlling for electrode placement [9].
Regardless, classifiers trained from a user can be applied
to new participants achieving slightly better than random
performances [9] and high accuracy (85% over 6 gestures)
when augmented with TL on never before seen subjects [10].
As such, sophisticated techniques have been proposed to
leverage inter-user information. For example, research has
been done to find a projection of the feature space that bridges
the gap between an original subject and a new user [11],
[12]. Several works have also proposed leveraging a pre-
trained model removing the need to simultaneously work with
data from multiple users [13], [14], [15]. These non-deep
learning TL approaches showed important performance gains
compared to their non-augmented versions. Although, some of
these gains might be due to the baseline’s poorly optimized
hyperparameters [16].

Short-Time Fourier Transform (STFT) have been sparsely
employed in the last decades for the classification of sEMG
data [17], [18]. A possible reason for this limited interest in
STFT is that much of the research on sEMG-based gesture
recognition focuses on designing feature ensembles [2]. Be-
cause STFT on its own generates large amounts of features
and are relatively computationally expensive, they can be
challenging to integrate with other feature types. Addition-
ally, STFTs have also been shown to be less accurate than
Wavelet Transforms [17] on their own for the classification of
sEMG data. Recently however, STFT features, in the form of

1https://github.com/Giguelingueling/MyoArmbandDataset

spectrograms, have been applied as input feature space for the
classification of sEMG data by leveraging ConvNets [4], [6].

CWT features have been employed for electrocardiogram
analysis [19], electroencephalography [20] and EMG signal
analysis, but mainly for lower limbs [21], [22]. Wavelet-
based features have been used in the past for sEMG-based
hand gesture recognition [23]. The features employed however,
are based on the Discrete Wavelet Transform [24] and the
Wavelet Packet Transform (WPT) [17] instead of the CWT.
This preference might be due to the fact that both DWT
and WPT are less computationally expensive than the CWT
and are thus better suited to be integrated into an ensemble
of features. Similarly to spectrograms however, CWT offers
an attractive image-like representation to leverage ConvNets
for sEMG signal classification and can now be efficiently
implemented on embedded systems (see Appendix C). To the
best of the authors’ knowledge, this is the first time that CWT
is utilized for sEMG-based hand gesture recognition.

Recently, ConvNets have started to be employed for hand
gesture recognition using single array [4], [5] and matrix [25]
of electrodes. Additionally, other authors applied deep learning
in conjunction with domain adaptation techniques [6] but
for inter-session classification as opposed to the inter-subject
context of this paper. A thorough overview of deep learning
techniques applied to EMG classification is given in [26]. To
the best of our knowledge, this paper, which is an extension
of [7], is the first time inter-user data is leveraged through TL
for training deep learning algorithms on sEMG data.

III. SEMG DATASETS

A. Myo Dataset

One of the major contributions of this article is to provide a
new, publicly available, sEMG-based hand gesture recognition
dataset, referred to as the Myo Dataset. This dataset contains
two distinct sub-datasets with the first one serving as the pre-
training dataset and the second as the evaluation dataset. The
former, which is comprised of 19 able-bodied participants,
should be employed to build, validate and optimize classi-
fication techniques. The latter, comprised of 17 able-bodied
participants, is utilized only for the final testing. To the best
of our knowledge, this is the largest dataset published utilizing
the commercially available Myo Armband (Thalmic Labs) and
it is our hope that it will become a useful tool for the sEMG-
based hand gesture classification community.

The data acquisition protocol was approved by the Comités
d’Éthique de la Recherche avec des êtres humains de
l’Université Laval (approbation number: 2017-026/21-02-
2016) and informed consent was obtained from all participants.

1) sEMG Recording Hardware: The electromyographic
activity of each subject’s forearm was recorded with the
Myo Armband; an 8-channel, dry-electrode, low-sampling rate
(200Hz), low-cost consumer-grade sEMG armband.

The Myo is non-intrusive, as the dry-electrodes allow
users to simply slip the bracelet on without any preparation.
Comparatively, gel-based electrodes require the shaving and
washing of the skin to obtain optimal contact between the
subject’s skin and electrodes. Unfortunately, the convenience
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of the Myo Armband comes with limitations regarding the
quality and quantity of the sEMG signals that are collected.
Indeed, dry electrodes, such as the ones employed in the
Myo, are less accurate and robust to motion artifact than
gel-based ones [27]. Additionally, while the recommended
frequency range of sEMG signals is 5-500Hz [28] requiring
a sampling frequency greater or equal to 1000Hz, the Myo
Armband is limited to 200Hz. This information loss was shown
to significantly impact the ability of various classifiers to
differentiate between hand gestures [29]. As such, robust and
adequate classification techniques are needed to process the
collected signals accurately.

2) Time-Window Length: For real-time control in a closed
loop, input latency is an important factor to consider. A
maximum latency of 300ms was first recommended in [30].
Even though more recent studies suggest that the latency
should optimally be kept between 100-250ms [31], [32],
the performance of the classifier should take priority over
speed [31], [33]. As is the case in [7], a window size of
260ms was selected to achieve a reasonable number of samples
between each prediction due to the low frequency of the Myo.

3) Labeled Data Acquisition Protocol: The seven
hand/wrist gestures considered in this work are depicted in
Fig. 1. For both sub-datasets, the labeled data was created
by requiring the user to hold each gesture for five seconds.
The data recording was manually started by a researcher
only once the participant correctly held the requested gesture.
Generally, five seconds was given to the user between each
gesture. This rest period was not recorded and as a result,
the final dataset is balanced for all classes. The recording of
the full seven gestures for five seconds is referred to as a
cycle, with four cycles forming a round. In the case of the
pre-training dataset, a single round is available per subject.
For the evaluation dataset three rounds are available with the
first round utilized for training (i.e. 140s per participant) and
the last two for testing (i.e. 240s per participant).

Fig. 1. The 7 hand/wrist gestures considered in the Myo Dataset.

During recording, participants were instructed to stand up
and have their forearm parallel to the floor and supported by
themselves. For each of them, the armband was systematically
tightened to its maximum and slid up the user’s forearm, until
the circumference of the armband matched that of the forearm.
This was done in an effort to reduce bias from the researchers,
and to emulate the wide variety of armband positions that end-
users without prior knowledge of optimal electrode placement
might use (see Fig. 2). While the electrode placement was not
controlled for, the orientation of the armband was always such

that the blue light bar on the Myo was facing towards the hand
of the subject. Note that this is the case for both left and right
handed subjects. The raw sEMG data of the Myo is what is
made available with this dataset.

Fig. 2. Examples of the range of armband placements on the subjects’ forearm

Signal processing must be applied to efficiently train a
classifier on the data recorded by the Myo armband. The data
is first separated by applying sliding windows of 52 samples
(260ms) with an overlap of 235ms (i.e. 7x190 samples for
one cycle (5s of data)). Employing windows of 260ms allows
40ms for the pre-processing and classification process, while
still staying within the 300ms target [30]. Note that utilizing
sliding windows is viewed as a form of data augmentation in
the present context (see Appendix B). This is done for each
gesture in each cycle on each of the eight channels. As such,
in the dataset, an example corresponds to the eight windows
associated with their respective eight channels. From there, the
processing depends on the classification techniques employed
which will be detailed in Sec. IV and V.

B. NinaPro DB5

The NinaPro DB5 is a dataset built to benchmark sEMG-
based gesture recognition algorithms [34]. This dataset, which
was recorded with the Myo Armband, contains data from
10 able-bodied participants performing a total of 53 different
movements (including neutral) divided into three exercise sets.
The second exercise set, which contains 17 gestures + neutral
gesture, is of particular interest, as it includes all the gestures
considered so far in this work. The 11 additional gestures
which are presented in [35] include wrist pronation, wrist
supination and diverse finger extension amongst others. While
this particular dataset was recorded with two Myo Armband,
only the lower armband is considered as to allow direct
comparison to the preceding dataset.

1) Data Acquisition and Processing: Each participant was
asked to hold a gesture for five seconds followed by three
seconds of neutral gesture and to repeat this action five more
times (total of six repetitions). This procedure was repeated
for all the movements contained within the dataset. The first
four repetitions serve as the training set (20s per gesture) and
the last two (10s per gesture) as the test set for each gesture.
Note that the rest movement (i.e. neutral gesture) was treated
identically as the other gestures (i.e. first four repetitions for
training (12s) and the next two for testing (6s)).

All data processing (e.g. window size, window overlap) are
exactly as described in the previous sections.

IV. CLASSIC SEMG CLASSIFICATION

Traditionally, one of the most researched aspects of sEMG-
based gesture recognition comes from feature engineering
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(i.e. manually finding a representation for sEMG signals that
allows easy differentiation between gestures). Over the years,
several efficient combinations of features both in the time and
frequency domain have been proposed [36], [37], [38], [39].
This section presents the feature sets used in this work. See
Appendix D for a description of each feature.

A. Feature Sets

As this paper’s main purpose is to present a deep learning-
based TL approach to the problem of sEMG hand gesture
recognition, contextualizing the performance of the proposed
algorithms within the current state-of-the-art is essential. As
such, four different feature sets were taken from the litera-
ture to serve as a comparison basis. The four feature sets
will be tested on five of the most common classifiers em-
ployed for sEMG pattern recognition: Support Vector Machine
(SVM) [38], Artificial Neural Networks (ANN) [40], Ran-
dom Forest (RF) [38], K-Nearest Neighbors (KNN) [38] and
Linear Discriminant Analysis (LDA) [39]. Hyperparameters
for each classifier were selected by employing three fold
cross-validation alongside random search, testing 50 different
combinations of hyperparameters for each participant’s dataset
for each classifier. The hyperparameters considered for each
classifier are presented in Appendix E.

As is often the case, dimensionality reduction is applied [1],
[3], [41]. LDA was chosen to perform feature projection as
it is computationally inexpensive, devoid of hyperparameters
and was shown to allow for robust classification accuracy
for sEMG-based gesture recognition [39], [42]. A comparison
of the accuracy obtained with and without dimensionality
reduction on the Myo Dataset is given in Appendix F. This
comparison shows that in the vast majority of cases, the
dimensionality reduction both reduced the computational load
and enhanced the average performances of the feature sets.

The implementation employed for all the classifiers comes
from the scikit-learn (v.1.13.1) Python package [43]. The four
feature sets employed for comparison purposes are:

1) Time Domain Features (TD) [37]: This set of features,
which is probably the most commonly employed in the litera-
ture [29], often serves as the basis for bigger feature sets [1],
[39], [34]. As such, TD is particularly well suited to serve as
a baseline comparison for new classification techniques. The
four features are: Mean Absolute Value (MAV), Zero Crossing
(ZC), Slope Sign Changes (SSC) and Waveform Length (WL).

2) Enhanced TD [39]: This set of features includes the TD
features in combination with Skewness, Root Mean Square
(RMS), Integrated EMG (IEMG), Autoregression Coefficients
(AR) (P=11) and the Hjorth Parameters. It was shown to
achieve excellent performances on a setup similar to the one
employed in this article.

3) Nina Pro Features [38], [34]: This set of features was
selected as it was found to perform the best in the article
introducing the NinaPro dataset. The set consists of the the
following features: RMS, Marginal Discrete Wavelet Trans-
form (mDWT) (wavelet=db7, S=3), EMG Histogram (HIST)
(bins=20, threshold=3σ) and the TD features.

4) SampEn Pipeline [36]: This last feature combination
was selected among fifty features that were evaluated and
ranked to find the most discriminating ones. The SampEn
feature was ranked first amongst all the others. The best multi-
features set found was composed of: SampEn(m=2, r=0.2σ),
Cepstral Coefficient (order=4), RMS and WL.

V. DEEP LEARNING CLASSIFIERS OVERVIEW

ConvNets tend to be computationally expensive and thus
ill-suited for embedded systems, such as those required when
guiding a prosthetic. However, in recent years, algorithmic
improvements and new hardware architectures have allowed
for complex networks to run on very low power systems
(see Appendix C). As previously mentioned, the inherent
limitations of sEMG-based gesture recognition force the pro-
posed ConvNets to contend with a limited amount of data
from any single individual. To address the over-fitting issue,
Monte Carlo Dropout (MC Dropout) [44], Batch Normaliza-
tion (BN) [45], and early stopping are employed.

A. Batch Normalization

BN is a technique that accelerates training and provides
some form of regularization with the aims of maintaining a
standard distribution of hidden layer activation values through-
out training [45]. BN accomplishes this by normalizing the
mean and variance of each dimension of a batch of examples.
To achieve this, a linear transformation based on two learned
parameters is applied to each dimension. This process is done
independently for each layer of the network. Once training is
completed, the whole dataset is fed through the network one
last time to compute the final normalization parameters in a
layer-wise fashion. At test time, these parameters are applied
to normalize the layer activations. BN was shown to yield
faster training times whilst allowing better generalization.

B. Proposed Convolutional Network Architectures

Videos are a representation of how spatial information
(images) change through time. Previous works have combined
this representation with ConvNets to address classification
tasks [46], [47]. One such successful algorithm is the slow-
fusion model [47] (see Fig. 3).

Fig. 3. Typical slow-fusion ConvNet architecture [47]. In this graph, the input
(represented by grey rectangles) is a video (i.e. a sequence of images). The
model separates the temporal part of the examples into disconnected parallel
layers, which are then slowly fused together throughout the network.

When calculating the spectrogram of a signal, the informa-
tion is structured in a Time x Frequency fashion (Time x Scale
for CWT). When the signal comes from an array of electrodes,
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these examples can naturally be structured as Time x Spa-
tial x Frequency (Time x Spatial x Scale for CWT). As such,
the motivation for using a slow-fusion architecture based Con-
vNet in this work is due to the similarities between videos data
and the proposed characterization of sEMG signals, as both
representations have analogous structures (i.e. Time x Spa-
tial x Spatial for videos) and can describe non-stationary
information. Additionally, the proposed architectures inspired
by the slow-fusion model were by far the most successful of
the ones tried on the pre-training dataset.

1) ConvNet for Spectrograms: The spectrograms, which are
fed to the ConvNet, were calculated with Hann windows of
length 28 and an overlap of 20 yielding a matrix of 4x15. The
first frequency band was removed in an effort to reduce base-
line drift and motion artifact. As the armband features eight
channels, eight such spectrograms were calculated, yielding a
final matrix of 4x8x14 (Time x Channel x Frequency).

The implementation of the spectrogram ConvNet architec-
ture (see Appendix A, Fig. 8) was created with Theano [48]
and Lasagne [49]. As usual in deep learning, the architecture
was created in a trial and error process taking inspiration from
previous architectures (primarily [4], [6], [47], [7]). The non-
linear activation functions employed are the parametric expo-
nential linear unit (PELU) [50] and PReLU [51]. ADAM [52]
is utilized for the optimization of the ConvNet (learning
rate=0.00681292). The deactivation rate for MC Dropout is
set at 0.5 and the batch size at 128. Finally, to further reduce
overfitting, early stopping is employed by randomly removing
10% of the data from the training and using it as a validation
set at the beginning of the optimization process. Note that
learning rate annealing is applied with a factor of 5 when
the validation loss stops improving. The training stops when
two consecutive decays occurs with no network performance
amelioration on the validation set. All hyperparameter values
were found by a random search on the pre-training dataset.

2) ConvNet for Continuous Wavelet Transforms: The archi-
tecture for the CWT ConvNet, (Appendix A, Fig. 9), was built
in a similar fashion as the spectrogram ConvNet one. Both the
Morlet and Mexican Hat wavelet were considered for this work
due to their previous application in EMG-related work [53],
[54]. In the end, the Mexican Hat wavelet was selected, as it
was the best performing during cross-validation on the pre-
training dataset. The CWTs were calculated with 32 scales
yielding a 32x52 matrix. Downsampling is then applied at a
factor of 0.25 employing spline interpolation of order 0 to
reduce the computational load of the ConvNet during training
and inference. Following downsampling, similarly to the spec-
trogram, the last row of the calculated CWT was removed as to
reduce baseline drift and motion artifact. Additionally, the last
column of the calculated CWT was also removed as to provide
an even number of time-columns from which to perform the
slow-fusion process. The final matrix shape is thus 12x8x7 (i.e.
Time x Channel x Scale). The MC Dropout deactivation rate,
batch size, optimization algorithm, and activation functions
remained unchanged. The learning rate was set at 0.0879923
(found by cross-validation).

3) ConvNet for raw EMG: A third ConvNet architecture
taking the raw EMG signal as input is also considered. This

network will help assess if employing time-frequency features
lead to sufficient gains in accuracy performance to justify the
increase in computational cost. As the raw EMG represents
a completely different modality, a new type of architecture
must be employed. To reduce bias from the authors as much
as possible, the architecture considered is the one presented
in [55]. The raw ConvNet architecture can be seen in Ap-
pendix A, Fig. 10. This architecture was selected as it was
also designed to classify a hand gesture dataset employing the
Myo Armband. The architecture implementation (in PyTorch
v.0.4.1) is exactly as described in [55] except for the learning
rate (=1.1288378916846883e− 5) which was found by cross-
validation (tested 20 uniformly distributed values between
1e−6 to 1e−1 on a logarithm scale) and extending the length
of the window size as to match with the rest of this manuscript.
The raw ConvNet is further enhanced by introducing a second
convolutional and pooling layer as well as adding dropout,
BN, replacing RELU activation function with PReLU and
using ADAM (learning rate=0.002335721469090121) as the
optimizer. The enhanced raw ConvNet’s architecture, which
is shown in Appendix A, Fig. 11, achieves an average accu-
racy of 97.88% compared to 94.85% for the raw ConvNet.
Consequently, all experiments using raw emg as input will
employ the raw enhanced ConvNet.

VI. TRANSFER LEARNING

One of the main advantages of deep learning comes from
its ability to leverage large amounts of data for learning. As
it would be too time-consuming for a single individual to
record tens of thousands of examples, this work proposes to
aggregate the data of multiple individuals. The main challenge
thus becomes to find a way to leverage data from multiple
users, with the objective of achieving higher accuracy with less
data. TL techniques are well suited for such a task, allowing
the ConvNets to generate more general and robust features
that can be applied to a new subject’s sEMG activity.

As the data recording was purposefully as unconstrained
as possible, the armband’s orientation from one subject to
another can vary widely. As such, to allow for the use of TL,
automatic alignment is a necessary first step. The alignment
for each subject was made by identifying the most active
channel (calculated using the IEMG feature) for each gesture
on the first subject. On subsequent subjects, the channels were
then circularly shifted until their activation for each gesture
matched those of the first subject as closely as possible.

A. Progressive Neural Networks

Fine-tuning is the most prevalent TL technique in deep
learning [56], [57]. It consists of training a model on a
source domain (abundance of labeled data) and using the
trained weights as a starting point when presented with a
new task. However, fine-tuning can suffer from catastrophic
forgetting [58], where relevant and important features learned
during pre-training are lost on the target domain (i.e. new
task). Moreover, by design, fine-tuning is ill-suited when
significant differences exist between the source and the target,
as it can bias the network into poorly adapted features for



6

the task at hand. Progressive Neural Networks (PNN) [58]
attempt to address these issues by pre-training a model on
the source domain and freezing its weights. When a new task
appears, a new network, with random initialization, is created
and connected in a layer-wise fashion to the original network.
This connection is done via non-linear lateral connections
(See [58] for details).

B. Adaptive Batch Normalization

In opposition to the PNN architecture, which uses a different
network for the source and the target, AdaBatch employs the
same network for both tasks. The TL occurs by freezing all the
network’s weights (learned during pre-training) when training
on the target, except for the parameters associated with BN.
The hypothesis behind this technique is that the label-related
information (i.e. gestures) rests in the network model weights
whereas the domain-related information (i.e. subjects) is stored
in their BN statistic. In the present context, this idea can be
generalized by applying a multi-stream AdaBatch scheme [6].
Instead of employing one Source Network per subject during
pre-training, a single network is shared across all participants.
However, the BN statistics from each subject are calculated
independently from one another, allowing the ConvNet to
extract more general and robust features across all participants.
As such, when training the source network, the data from all
subjects are aggregated and fed to the network together. It is
important to note that each training batch is comprised solely
of examples that belong to a single participant. This allows
the update of the participant’s corresponding BN statistic.

C. Proposed Transfer Learning Architecture

The main tenet behind TL is that similar tasks can be com-
pleted in similar ways. The difficulty in this paper’s context is
then to learn a mapping between the source and target task as
to leverage information learned during pre-training. Training
one network per source-task (i.e. per participant) for the PNN
is not scalable in the present context. However, by training
a Source Network (presented in Sec. V) shared across all
participants of the pre-training dataset with the multi-stream
AdaBatch and adding only a second network for the target
task using the PNN architecture, the scaling problem in the
current context vanishes. This second network will hereafter
be referred to as the Second Network. The architecture of the
Second Network is almost identical to the Source Network.
The difference being in the activation functions employed.
The Source Network leveraged a combination of PReLU and
PELU, whereas the Second Network only employed PELU.
This architecture choice was made through trial and error and
cross-validation on the pre-training dataset. Additionally, the
weights of both networks are trained and initialized indepen-
dently. During pre-training, only the Source Network is trained
to represent the information of all the participants in the pre-
training dataset. The parameters of the Source Network are
then frozen once pre-training is completed, except for the BN
parameters as they represent the domain-related information
and thus must retain the ability to adapt to new users.

Due to the application of the multi-stream AdaBatch
scheme, the source task in the present context is to learn the
general mapping between muscle activity and gestures. One
can see the problem of learning such mapping between the tar-
get and the source task as learning a residual of the source task.
For this reason, the Source Network shares information with
the Second Network through an element-wise summation in a
layer-by-layer fashion (see Fig. 4). The idea behind the merg-
ing of information through element-wise summation is two-
fold. First, compared to concatenating the features maps (as in
[7]) or employing non-linear lateral connections (like in [58]),
element-wise summation minimizes the computational impact
of connecting the Source Network and the Second Network
together. Second, this provides a mechanism that fosters resid-
ual learning as inspired by Residual Networks [59]. Thus, the
Second Network only needs to learn weights that express the
difference between the new target and source task. All outputs
from the Source Network layers to the Second Network are
multiplied by learnable coefficients before the sum-connection.
This scalar layer provides an easy mechanism to neuter the
Source Network’s influence on a layer-wise level. This is
particularly useful if the new target task is so different that for
some layers the information from the Source Network actually
hinders learning. Note that a single-stream scheme (i.e. all
subjects share statistics and BN parameters are also frozen on
the Source Network) was also tried. As expected, this scheme’s
performances started to rapidly worsen as the number of
source participants augmented, lending more credence to the
initial AdaBatch hypothesis.

The combination of the Source Network and Second Net-
work will hereafter be referred to as the Target Network.
An overview of the final proposed architecture is presented
in Fig. 4. During training of the Source Network (i.e. pre-
training), MC Dropout rate is set at 35% and when train-
ing the Target Network the rate is set at 50%. Note that
different architecture choices for the Source Network and
Second Network were required to augment the performance
of the system as a whole. This seems to indicate that the two
tasks (i.e. learning a general mapping of hand gestures and
learning a specific mapping), might be different enough that
even greater differentiation through specialization of the two
networks might increase the performance further.

Fig. 4. The PNN-inspired architecture. This figure represents the case with the
spectrogram ConvNet. Note that the TL behavior is the same for the Raw-
based or CWT-based ConvNet. C1,2,3 and F.C.4,5 correspond to the three
stages of convolutions and two stages of fully connected layers respectively.
The Si (i=1..5) boxes represent a layer that scales its inputs by learned
coefficients. The number of learned coefficients in one layer is the number of
channels or the number of neurons for the convolutional and fully connected
layers respectively. For clarity’s sake, the slow fusion aspect is omitted from
the representation although they are present for both the spectrogram and
CWT-based ConvNet). The + boxes represent the merging through an element-
wise summation of the ConvNets’ corresponding layers.
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VII. CLASSIFIER COMPARISON

A. Myo Dataset

All pre-trainings in this section were done on the pre-
training dataset and all training (including for the traditional
machine learning algorithms) were done on the first round of
the evaluation dataset.

1) Comparison with Transfer Learning: Considering each
participant as a separate dataset allows for the application
of the one-tail Wilcoxon signed-rank test [60] (n = 17).
Appendix A, Table I shows a comparison of each ConvNet
with their TL augmented version. Accuracies are given for
one, two, three and four cycles of training.

2) Comparison with State of the art: A comparison be-
tween the proposed CWT-based ConvNet and a variety of
classifiers trained on the features sets presented in Sec. IV-A
is given in Appendix A, Table II.

As suggested in [61], a two-step procedure is employed to
compare the deep learning algorithms with the current state-
of-the-art. First, Friedman’s test ranks the algorithms amongst
each other. Then, Holm’s post-hoc test is applied (n = 17)
using the best ranked method as a comparison basis.

B. NinaPro Dataset

1) Comparison with Transfer Learning: Performance of the
proposed ConvNet architecture alongside their TL augmented
versions are investigated on the NinaPro DB5. As no specific
pre-training dataset is available for the NinaPro DB5, the pre-
training for each participant is done employing the training
sets of the remaining nine participants. Appendix A, Table III
shows the average accuracy over the 10 participants of the Ni-
naPro DB5 for one to four cycles. Similarly to Sec. VII-A1,
the one-tail Wilcoxon Signed rank test is performed for each
cycle between each ConvNet and their TL augmented version.

2) Comparison with State of the art: Similarly to
Sec. VII-A2, a comparison between the TL-augmented Con-
vNet and the traditional classifier trained on the state-of-the-art
feature set is given in Appendix A, Table IV. The accuracies
are given for one, two, three and four cycles of training. A
two-step statistical test with the Friedman test as the first step
and Holm post-hoc as the second step is again employed.

3) Out-of-Sample Gestures: A final test involving the Ni-
naPro DB5 was conducted to evaluate the impact on the
proposed TL algorithm when the target is comprised solely
of out-of-sample gestures (i.e. never-seen-before gestures). To
do so, the proposed CWT ConvNet was trained and evaluated
on the training and test set of the NinaPro DB5 as described
before, but considering only the gestures that were absent
from the pre-training dataset (11 total). The CWT ConvNet
was then compared to its TL augmented version which was
pre-trained on the pre-training dataset. Fig. 5 presents the
accuracies obtained for the classifiers with different number of
repetitions employed for training. The difference in accuracy
is considered statistically significant by the one-tail Wilcoxon
Signed rank test for all cycles of training. Note that, similar,
statistically significant results were obtained for the raw-based
and spectrogram-based ConvNets.

Fig. 5. Classification accuracy of the CWT-based ConvNets on the NinaPro
DB5 with respect to the number of repetitions employed during training. The
pre-training was done using the pre-training dataset. Training and testing
only considered the 11 gestures from the NinaPro DB5 not included in the
pre-training. The error bars correspond to the STD across all ten participants.

VIII. REAL-TIME CLASSIFICATION AND MEDIUM TERM
PERFORMANCES (CASE STUDY)

This last experiment section proposes a use-case study of
the online (i.e. real-time) performance of the classifier over a
period of 14 days for eight able-bodied participants. In previ-
ous literature, it has been shown that, when no re-calibration
occur, the performance of a classifier degrades over time due
to the non-stationary property of sEMG signals [62]. The main
goal of this use-case experiment is to evaluate if users are able
to self-adapt and improve the way they perform gestures based
on visual feedback from complex classifiers (e.g. CWT+TL),
thus reducing the expected classification degradation.

To achieve this, each participant recorded a training set as
described in Sec. III. Then, over the next fourteen days, a daily
session was recorded based on the participant’s availability. A
session consisted of holding a set of 30 randomly selected
gestures (among the seven shown in Fig. 1) for ten seconds
each, resulting in five minutes of continuous sEMG data. Note
that to be more realistic, the participants began by placing
the armband themselves, leading to slight armband position
variations between sessions.

The eight participants were randomly separated into two
equal groups. The first group, referred to as the Feedback
group, received real-time feedback on the gesture predicted
by the classifier in the form of text displayed on a computer
screen. The second group, referred to as the Without Feed-
back group, did not receive classifier feedback. The classifier
employed in this experiment is the CWT+TL, as it was the
best performing classifier tested on the Evaluation Dataset.
Because the transitions are computer-specified, there is a
latency between a new requested gesture and the participant’s
reaction. To reduce the impact of this phenomenon, the data
from the first second after a new requested gesture is ignored
from this section results. The number of data points generated
by a single participant varies between 10 and 16 depending
on the participant’s availability during the experiment period.

As it can be observed in Fig. 6, while the Without Feed-
back group did experience accuracy degradation over the 14
days, the Feedback group was seemingly able to counteract
this degradation. Note that, the average accuracy across all
participants for the first recording session was 95.42%.

Many participants reported experiencing muscular fatigue
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Fig. 6. Average accuracy over 14 days without recalibration of the CWT+TL
ConvNet The blue circles represent data from the Feedback group whereas
the orange triangles represent data from the Without Feedback group. The
translucent bands around the linear regressions represent the confidence
interval (95%) estimated by bootstrap.

during the recording of both this experiment and the evaluation
dataset. As such, in an effort to quantify the impact of
muscle fatigue on the classifier’s performance, the average
accuracy of the eight participants over the five minute session
is computed as a function of time. As can be observed from
the positive slope of the linear regression presented in Fig. 7,
muscle fatigue, does not seem to negatively affect the proposed
ConvNet’s accuracy.

Fig. 7. The average accuracy of the eight participants over all the five minute
sessions recorded to evaluate the effect of muscle fatigue on the classifier
performance. During each session of the experiment, participants were asked
to hold a total of 30 random gestures for ten seconds each. As such, a dot
represents the average accuracy across all participants over one of the ten
second periods. The translucent bands around the linear regression represent
the confidence intervals (95%) estimated by bootstrap.

IX. DISCUSSION

Table I and Table III show that, in all cases the TL
augmented ConvNets significantly outperformed their non-
augmented versions, regardless of the number of training
cycles. As expected, reducing the amount of training cycles
systematically degraded the performances of all tested meth-
ods (see Table I, II, III, IV and Fig. 5), with the non-TL
ConvNets being the most affected on the Myo Dataset. This is
likely due to overfitting that stems from the small size of the
dataset. However, it is worth noting that, when using a single
cycle of training, augmenting the ConvNets with the proposed
TL scheme significantly improves their accuracies. In fact,
with this addition, the accuracies of the ConvNets become
the highest of all methods on both tested datasets. Overall,
the proposed TL-augmented ConvNets were competitive with

the current state-of-the-art, with the TL augmented CWT-
based ConvNet achieving a higher average accuracy than the
traditional sEMG classification technique on both datasets for
all training cycles. It is also noteworthy that while the raw+TL
ConvNet was the worst amongst the TL augmented ConvNet
on the Myo Dataset, it achieved the highest accuracy on the
NinaPro DB5. Furthermore, the TL method outperformed the
non-augmented ConvNets on the out-of-sample experiment.
The difference in accuracy of the two methods was deemed
significant by the Wilcoxon Signed Rank Test (p < 0.05)
for all training repetitions. This suggests that the proposed
TL algorithm enables the network to learn features that can
generalize not only across participants but also for never-seen-
before gestures. As such, the weights learned from the pre-
training dataset can easily be re-used for other work that
employs the Myo Armband with different gestures.

While in this paper, the proposed source and second net-
work were almost identical they are performing different
tasks (see Sec. VI-C). As such further differentiation of both
networks might lead to increased performance. At first glance,
the element-wise summation between the source and second
network might seem to impose a strong constraint on the
architecture of the two networks. However, one could replace
the learned scalar layers in the target network by convolutions
or fully connected layers to bridge the dimensionality gap be-
tween potentially vastly different source and second networks.

Additionally, a difference in the average accuracy between
the real-time experiment (Sec. VIII) and the Evaluation
Dataset (Sec. VII-A2) was observed (95.42% vs 98.31%
respectively). This is likely due to the reaction delay of the
participants, but more importantly to the transition between
gestures. These transitions are not part of the training dataset,
because they are too time consuming to record as the number
of possible transitions equals n2−n where n is the number of
gestures. Consequently, it is expected that the classifiers pre-
dictive power on transition data is poor in these circumstances.
As such, being able to accurately detect such transitions in an
unsupervised way might have a greater impact on the system’s
responsiveness than simply reducing the window size. This and
the aforementioned point will be investigated in future works.

The main limitation of this study is the absence of tests
with amputees. Additionally, the issue of electrode shifts has
not been explicitly studied and the variability introduced by
various limb positions was not considered when recording the
dataset. A limitation of the proposed TL scheme is its difficulty
to adapt when the new user cannot wear the same amount of
electrodes as the group used for pre-training. This is because
changing the number of channels changes the representation
of the phenomena (i.e. muscle contraction) being fed to the
algorithm. The most straightforward way of addressing this
would be to numerically remove the relevant channels from the
dataset used for pre-training. Then re-running the proposed TL
algorithm on an architecture adapted to the new representation
fed as input. Another solution is to consider the EMG channels
in a similar way as color channels in image. This type of
architecture seems, however, to perform worse than the ones
presented in this paper (see Appendix G).
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X. CONCLUSION

This paper presents three novel ConvNet architectures that
were shown to be competitive with current sEMG-based classi-
fiers. Moreover, this work presents a new TL scheme that sys-
tematically and significantly enhances the performances of the
tested ConvNets. On the newly proposed evaluation dataset,
the TL augmented ConvNet achieves an average accuracy of
98.31% over 17 participants. Furthermore, on the NinaPro
DB5 dataset (18 hand/wrist gestures), the proposed classifier
achieved an average accuracy of 68.98% over 10 participants
on a single Myo Armband. This dataset showed that the
proposed TL algorithm learns sufficiently general features to
significantly enhance the performance of ConvNets on out-of-
sample gestures. Showing that deep learning algorithms can
be efficiently trained, within the inherent constraints of sEMG-
based hand gesture recognition, offers exciting new research
avenues for this field.

Future works will focus on adapting and testing the pro-
posed TL algorithm on upper-extremity amputees. This will
provide additional challenges due to the greater muscle vari-
ability across amputees and the decrease in classification accu-
racy compared to able-bodied participants [35]. Additionally,
tests for the application of the proposed TL algorithm for
inter-session classification will be conducted as to be able to
leverage labeled information for long-term classification.
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Fig. 8. The proposed spectrogram ConvNet architecture to leverage spectrogram examples employing 67 179 learnable parameters. To allow the slow fusion
process, the input is first separated equally into two parts with respect to the time axis. The two branches are then fused together by element-wise summing
the feature maps together. In this figure, Conv refer to Convolution and F.C. to Fully Connected layers.

Fig. 9. The proposed CWT ConvNet architecture to leverage CWT examples using 30 219 learnable parameters. To allow the slow fusion process, the input
is first separated equally into four parts with respect to the time axis. The four branches are then slowly fused together by element-wise summing the feature
maps together. In this figure, Conv refers to Convolution and F.C. to Fully Connected layers.

Fig. 10. The raw ConvNet architecture to leverage raw EMG signals. In this figure, Conv refers to Convolution and F.C. to Fully Connected layers.

Fig. 11. The enhanced raw ConvNet architecture using 549 091 learnable parameters. In this figure, Conv refers to Convolution and F.C. to Fully Connected
layers.
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TABLE I
CLASSIFICATION ACCURACY OF THE CONVNETS ON THE Evaluation Dataset WITH RESPECT TO THE NUMBER OF TRAINING CYCLES PERFORMED.

Raw Raw + TL Spectrogram Spectrogram + TL CWT CWT + TL
4 Cycles 97.08% 97.39% 97.14% 97.85% 97.95% 98.31%

STD 4.94% 4.07% 2.85% 2.45% 2.49% 2.16%
H0 (p-value) 0 (0.02187) - 0 (0.00030) - 0 (0.00647) -

3 Cycles 96.22% 96.95% 96.33% 97.40% 97.22% 97.82%
STD 6.49% 4.88% 3.49% 2.91% 3.46% 2.41%

H0 (p-value) 0 (0.00155) - 0 (0.00018) - 0 (0.00113) -
2 Cycles 94.53% 95.49% 94.19% 96.05% 95.17% 96.63%

STD 9.63% 7.26% 5.95% 6.00% 5.77% 4.54%
H0 (p-value) 0 (0.00430) - 0 (0.00015) - 0 (0.00030) -

1 Cycle 89.04% 92.46% 88.51% 93.93% 89.02% 94.69%
STD 10.63% 7.79% 8.37% 6.56% 10.24% 5.58%

H0 (p-value) 0 (0.00018) - 0 (0.00015) - 0 (0.00015) -
* The one-tail Wilcoxon signed rank test is applied to compare the ConvNet enhanced with the proposed TL algorithm to their non-augmented counterpart.

Null hypothesis is rejected when H0 = 0 (p < 0.05).
**The STD represents the pooled standard variation in accuracy for the 20 runs over the 17 participants.

TABLE II
CLASSIFIERS COMPARISON ON THE Evaluation Dataset WITH RESPECT TO THE NUMBER OF TRAINING CYCLES PERFORMED.

TD Enhanced TD Nina Pro SampEn Pipeline CWT CWT + TL
4 Cycles 97.61% (LDA) 98.14% (LDA) 97.59% (LDA) 97.72% (LDA) 97.95% 98.31%

STD 2.63% 2.21% 2.74% 1.98% 2.49% 2.16%
Friedman Rank 3.94 2.71 4.29 3.47 3.94 2.65

H0 1 1 1 1 1 -
3 Cycles 96.33% (KNN) 97.33% (LDA) 96.76% (KNN) 96.87% (KNN) 97.22% 97.82%

STD 6.11% 3.24% 3.85% 5.06% 3.46% 2.41%
Friedman Rank 4.41 2.77 4.05 3.53 3.94 2.29

H0 0 (0.00483) 1 0 (0.02383) 1 0 (0.03080) -
2 Cycles 94.12% (KNN) 94.79% (LDA) 94.23% (KNN) 94.68% (KNN) 95.17% 96.63%

STD 9.08% 7.82% 7.49% 8.31% 5.77% 4.54%
Friedman Rank 4.41 3.24 4.41 3.29 3.65 2.00

H0 (adjusted p-value) 0 (0.00085) 1 0 (0.00085) 1 0 (0.03080) -
1 Cycle 90,77% (KNN) 91.25% (LDA) 90.21% (LDA) 91.66% (KNN) 89.02% 94.69%

STD 9.04% 9.44% 7.73% 8.74% 10.24% 5.58%
Friedman Rank 3.71 3.41 4.41 3.05 4.88 1.53

H0 (adjusted p-value) 0 (0.00208) 0 (0.00670) 0 (0.00003) 0 (0.01715) 0 (<0.00001) -
*For brevity’s sake, only the best performing classifier for each feature set in each cycle is reported (indicated in parenthesis).

**The STD represents the pooled standard variation in accuracy for the 20 runs over the 17 participants.
***The Friedman Ranking Test followed by the Holm’s post-hoc test is performed.
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TABLE III
CLASSIFICATION ACCURACY OF THE CONVNETS ON THE NinaPro DB5 WITH RESPECT TO THE NUMBER OF TRAINING CYCLES PERFORMED.

Raw Raw + TL Spectrogram Spectrogram + TL CWT CWT + TL
4 Repetitions 66.32% 68.98% 63.60% 65.10% 61.89% 65.57%

STD 3.94% 4.46% 3.94% 3.99% 4.12% 3.68%
H0 (p-value) 0 (0.00253) - 0 (0.00253) - 0 (0.00253) -
3 Repetitions 61.91% 65.16% 60.09% 61.70% 58.37% 62.21%

STD 3.94% 4.46% 4.03% 4.29% 4.19% 3.93%
H0 (p-value) 0 (0.00253) - 0 (0.00253) - 0 (0.00253) -
2 Repetitions 55.67% 60.12% 55.35% 57.19% 53.32% 57.53%

STD 4.38% 4.79% 4.50% 4.71% 3.72% 3.69%
H0 (p-value) 0 (0.00253) - 0 (0.00253) - 0 (0.00253) -
1 Repetitions 46.06% 49.41% 45.59% 47.39% 42.47% 48.33%

STD 6.09% 5.82% 5.58% 5.30% 7.04% 5.07%
H0 (p-value) 0 (0.00467) - 0 (0.00467) - 0 (0.00253) -

* The Wilcoxon signed rank test is applied to compare the ConvNet enhanced with the proposed TL algorithm to their non-augmented counterpart. Null
hypothesis is rejected when H0 = 0 (p < 0.05).

**The STD represents the pooled standard variation in accuracy for the 20 runs over the 17 participants.

TABLE IV
CLASSIFIERS COMPARISON ON THE NinaPro DB5 WITH RESPECT TO THE NUMBER OF REPETITIONS USED DURING TRAINING.

TD Enhanced TD Nina Pro SampEn Pipeline Raw Raw + TL
4 Repetitions 59.91% (RF) 59.57% (RF) 56.72% (RF) 62.30% (RF) 66.32% 68.98%

STD 3.50% 4.43% 4.01% 3.94% 3.77% 4.09%
Friedman Rank 4.30 4.60 6.00 3.00 2.10 1.00

H0 (Adjusted p-value) 0 (0.00024) 0 (0.00007) 0 (<0.00001) 0 (0.03365) 1 -
3 Repetitions 55.73% (RF) 55.32% (RF) 52.33% (RF) 58.24% (RF) 61.91% 65.16%

STD 3.75% 4.48% 4.63% 4.22% 3.94% 4.46%
Friedman Rank 4.40 4.60 6.00 3.00 2.00 1.00

H0 (Adjusted p-value) 0 (0.00014) 0 (0.00007) 0 (<0.00001) 0 (0.03365) 1 -
2 Repetitions 50.85% (RF) 50.08% (LDA) 46.85% (LDA) 53.00% (RF) 55.65% 60.12%

STD 4.29% 4.63% 4.81% 3.85% 4.38% 4.79%
Friedman Rank 4.20 4.60 6.00 3.10 2.10 1.00

H0 (Adjusted p-value) 0 (0.00039) 0 (0.00007) 0 (<0.00001) 0 (0.02415) 1 -
1 Repetitions 40.70% (RF) 40.86% (LDA) 37.60% (LDA) 42.26% (LDA) 46.06% 49.41%

STD 5.84% 6.91% 6.67% 5.78% 6.09% 5.82%
Friedman Rank 4.30 4.30 5.80 3.50 2.00 1.10

H0 (Adjusted p-value) 0 (0.00052) 0 (0.00052) 0 (<0.00001) 0 (0.00825) 1 -
*For brevity’s sake, only the best performing classifier for each feature set is reported (indicated in parenthesis).

**The STD represents the pooled standard variation in accuracy for the 20 runs over the 17 participants.
***The Friedman Ranking Test followed by the Holm’s post-hoc test is performed.
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APPENDIX B
DATA AUGMENTATION

The idea behind data augmentation is to augment the size
of the training set, with the objective of achieving better gen-
eralization. This is generally accomplished by adding realistic
noise to the training data, which tends to induce a robustness
to noise into the learned model. In many cases, this has been
shown to lead to better generalization [63], [64]. In this paper’s
context, data augmentation techniques can thus be viewed as
part of the solution to reduce the overfitting from training a
ConvNet on a small dataset. When adding noise to the data,
it is important to ensure that the noise does not change the
label of the examples. Hence, for image datasets, the most
common and often successful techniques have relied on affine
transformations [64].

Unfortunately, for sEMG signals, most of these techniques
are unsuitable and cannot be applied directly. As such, specific
data augmentation techniques must be employed. In this work,
five data augmentation techniques are tested on the pre-
training dataset as they are part of the architecture building
process. Note that this comparison was made with the ConvNet
architecture presented in [7], which takes as input a set of eight
spectrograms (one for each channel of the Myo Armband).

Examples are constructed by applying non-overlapping win-
dows of 260ms. This non-augmented dataset is referred to as
the Baseline. Consequently, an intuitive way of augmenting
sEMG data is to apply overlapping windows (i.e. temporal
translation) when building the examples. A major advantage
of this technique within the context of sEMG signals - and
time signals in general - is that it does not create any synthetic
examples in the dataset compared to the affine transformation
employed with images. Furthermore, with careful construction
of the dataset, no new mislabeling occurs. In this work, this
technique will be referred to as Sliding Window augmentation.

Second, the effect of muscle fatigue on the frequency
response of muscles fibers [65] can be emulated, by altering
the calculated spectrogram. The idea is to reduce the median
frequency of a channel with a certain probability, by system-
atically redistributing part of the power of a frequency bin to
an adjacent lower frequency one and so on. This was done
in order to approximate the effect of muscle fatigue on the
frequency response of muscle fibers [65]. In this work, this
technique will be referred to as Muscle Fatigue augmentation.

The third data augmentation technique employed aims at
emulating electrode displacement on the skin. This is of
particular interest, as the dataset was recorded with a dry
electrode armband, for which this kind of noise is to be
expected. The data augmentation technique consists of shifting
part of the power spectrum magnitude from one channel to
the next. In other words, part of the signal energy from each
channel is sent to an adjacent channel emulating electrode
displacement on the skin. In this work, this approach will be
referred to as Electrode Displacement augmentation.

For completeness, a fourth data augmentation technique
which was proposed in a paper [5] employing a ConvNet for
sEMG gestures classification is also considered. The approach
consists of adding a white Gaussian noise to the signal, with

a signal-to-noise ratio of 25. This technique will be referred
to as Gaussian Noise augmentation.

Finally, the application of all these data augmentation meth-
ods simultaneously is referred to as the Aggregated Augmen-
tation technique.

Data from these augmentation techniques will be generated
from the pre-training dataset. The data will be generated on
the first two cycles, which will serve as the training set. The
third cycle will be the validation set and the test set will be the
fourth cycle. All augmentation techniques will generate double
the amount of training examples compared to the baseline
dataset.

Table V reports the average test set accuracy for the
19 participants over 20 runs. In this appendix, the one-
tail Wilcoxon signed rank test with Bonferroni correction is
applied to compare the data augmentation methods with the
baseline. The results of the statistical test are summarized
in Table V. The only techniques that produce significantly
different results from the Baseline is the Sliding Window
(improves accuracy). As such, as described in Sec. III-A3 the
only data augmentation technique employed in this work is
the sliding windows.

APPENDIX C
DEEP LEARNING ON EMBEDDED SYSTEMS AND

REAL-TIME CLASSIFICATION

Within the context of sEMG-based gesture recognition,
an important consideration is the feasibility of implementing
the proposed ConvNets on embedded systems. As such, im-
portant efforts were deployed when designing the ConvNets
architecture to ensure attainable implementation on currently
available embedded systems. With the recent advent of deep
learning, hardware systems particularly well suited for neural
networks training/inference have been made commercially
available. Graphics processing units (GPUs) such as the
Nvidia Volta GV100 from Nvidia (50 GFLOPs/s/W) [66],
field programmable gate arrays (FPGAs) such as the Stratix
10 from Altera (80 GFLOPs/s/W) [67] and mobile system-
on-chips (SoCs) such as the Nvidia Tegra from Nvidia (100
GFLOPs/s/W) [68], are commercially available platforms that
target the need for portable, computationally efficient and
low-power systems for deep learning inference. Additionally,
dedicated Application-Specific Integrated Circuits (ASICs)
have arisen from research projects capable of processing
ConvNet orders of magnitudes bigger than the ones proposed
in this paper at a throughput of 35 frames/s at 278mW [69].
Pruning and quantizing network architectures are further ways
to reduce the computational cost when performing inference
with minimal impact on accuracy [70], [71].

Efficient CWT implementation employing the Mexican
Hat wavelet has already been explored for embedded plat-
forms [72]. These implementations are able to compute
the CWT of larger input sizes than those required in this
work in less than 1ms. Similarly, in [73], a robust time-
frequency distribution estimation suitable for fast and accurate
spectrogram computation is proposed. To generate a clas-
sification, the proposed CNN-Spectrogram and CNN-CWT
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TABLE V
COMPARISON OF THE FIVE DATA AUGMENTATION TECHNIQUES PROPOSED.

Baseline Gaussian Noise Muscle Fatigue Electrode Displacement Sliding Window Aggregated Augmentation

Accuracy 95.62% 93.33% 95.75% 95.80% 96.14% 95.37%
STD 5.18% 7.12% 5.07% 4.91% 4.93% 5.27%
Rank 4 6 3 2 1 5

H0 (p-value) - 1 1 1 0 (0.00542) 1
The values reported are the average accuracies for the 19 participants over 20 runs.

The Wilcoxon signed rank test is applied to compare the training of the ConvNet with and without one of the five data augmentation
techniques. The null hypothesis is accepted when H0 = 1 and rejected when H0 = 0 (with p = 0.05). As the Baseline is employed to

perform multiple comparison, Bonferroni correction is applied. As such, to obtain a global p-value of 0.05, a per-comparison p-value of
0.00833 is employed.

architectures (including the TL scheme proposed in Sec. VI)
require approximately 14 728 000 and 2 274 000 floating
point operations (FLOPs) respectively. Considering a 40ms
inference processing delay, hardware platforms of 3.5 and
0.5 GFLOPs/s/W will be suitable to implement a 100mW
embedded system for sEMG classification. As such, adopting
hardware-implementation approaches, along with state-of-the-
art network compression techniques will lead to a power-
consumption lower than 100mW for the proposed architec-
tures, suitable for wearable applications.

Note that currently, without optimization, it takes 21.42ms
to calculate the CWT and classify one example with the
CWT-based ConvNet compared to 2.94ms and 3.70ms for the
spectrogram and raw EMG Convnet respectively. Applying
the proposed TL algorithm add an additional 0.57ms, 0.90ms
and 0.14ms to the computation for the CWT, spectrogram and
raw EMG-based ConvNet respectively. These timing results
were obtained by averaging the pre-processing and classifying
time of the same 5309 examples across all methods. The gpu
employed was a GeForce GTX 980M.

APPENDIX D
FEATURE ENGINEERING

This section presents the features employed in this work.
Features can be regrouped into different types, mainly: time,
frequency and time-frequency domains. Unless specified oth-
erwise, features are calculated by dividing the signal x into
overlapping windows of length L. The kth element of the ith
window then corresponds to xi,k.

A. Time Domain Features

1) Mean Absolute Value (MAV): [37]: A feature returning
the mean of a fully-rectified signal.

MAV(xi) =
1

L

L∑
k=1

|xi,k| (1)

2) Slope Sign Changes (SSC) [37]: A feature that measures
the frequency at which the sign of the signal slope changes.
Given three consecutive samples xi,k−1, xi,k, xi,k+1, the value
of SSC is incremented by one if:

(xi,k − xi,k−1) ∗ (xi,k − xi,k+1) ≥ ε (2)

Where ε ≥ 0, is employed as a threshold to reduce the
impact of noise on this feature.

3) Zero Crossing (ZC) [37]: A feature that counts the
frequency at which the signal passes through zero. A threshold
ε ≥ 0 is utilized to lessen the impact of noise. The value of
this feature is incremented by one whenever the following
condition is satisfied:

(|xi,k − xi,k+1| ≥ ε) ∧ (sgn(xi,k, xi,k+1)⇔ False) (3)

Where sgn(a, b) returns true if a and b (two real numbers)
have the same sign and false otherwise. Note that depending
on the slope of the signal and the selected ε, the zero crossing
point might not be detected.

4) Waveform Length (WL) [37]: A feature that offers a sim-
ple characterization of the signal’s waveform. It is calculated
as follows:

WL(xi) =
L∑

k=1

|xi,k − xi,k−1| (4)

5) Skewness: The Skewness is the third central moment
of a distribution which measures the overall asymmetry of a
distribution. It is calculated as follows:

Skewness(xi) =
1

L

L∑
k=1

(
xi,k − xi

σ

)3

(5)

Where σ is the standard deviation:
6) Root Mean Square (RMS) [2]: This feature, also known

as the quadratic mean, is closely related to the standard
deviation as both are equal when the mean of the signal is
zero. RMS is calculated as follows:

RMS(xi) =

√√√√ 1

L

L∑
k=1

x2i,k (6)

7) Hjorth Parameters [74]: Hjorth parameters are a set
of three features originally developed for characterizing elec-
troencephalography signals and then successfully applied to
sEMG signal recognition [75], [39]. Hjorth Activity Parameter
can be thought of as the surface of the power spectrum in the
frequency domain and corresponds to the variance of the signal
calculated as follows:

Activity(xi) =
1

L

L∑
k=1

(xi,k − xi)2 (7)
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Where xi is the mean of the signal for the ith window. Hjorth
Mobility Parameter is a representation of the mean frequency
of the signal and is calculated as follows:

Mobility(xi) =

√
Activity(x′

i)

Activity(xi)
(8)

Where x
′

i is the first derivative in respect to time of the
signal for the ith window. Similarly, the Hjorth Complexity
Parameter, which represents the change in frequency, is cal-
culated as follows:

Complexity(xi) =
Mobility(x

′

i)

Mobility(xi)
(9)

8) Integrated EMG (IEMG): [2]: A feature returning the
sum of the fully-rectified signal.

IEMG(xi) =

L∑
k=1

|xi,k| (10)

9) Autoregression Coefficient (AR): [3] An autoregressive
model tries to predict future data, based on a weighted average
of the previous data. This model characterizes each sample of
the signal as a linear combination of the previous sample with
an added white noise. The number of coefficients calculated is
a trade-off between computational complexity and predictive
power. The model is defined as follows:

xi,k =

P∑
j=1

ρjxi,k−j + εt (11)

Where P is the model order, ρj is the jth coefficient of the
model and εt is the residual white noise.

10) Sample Entropy (SampEn): [76] Entropy measures
the complexity and randomness of a system. Sample Entropy
is a method which allows entropy estimation.

SampEn(xi,m, r) = − ln

(
Am(r)

Bm(r)

)
(12)

11) EMG Histogram (HIST) [77]: When a muscle is in
contraction, the EMG signal deviates from its baseline. The
idea behind HIST is to quantify the frequency at which
this deviation occurs for different amplitude levels. HIST
is calculated by determining a symmetric amplitude range
centered around the baseline. This range is then separated into
n bins of equal length (n is a hyperparameter). The HIST is
obtained by counting how often the amplitude of the signal
falls within each bin’s boundaries.

B. Frequency Domain Features

1) Cepstral Coefficient [78], [3]: The cepstrum of a signal
is the inverse Fourier transform of the log power spectrum
magnitude of the signal. Like the AR, the coefficients of the
cepstral coefficients are employed as features. They can be
directly derived from AR as follows:

c1 = −a1 (13)

ci = −ai −
i−1∑
n=1

(1− n

i
)anci−n ,with 1 < i≤ P (14)

2) Marginal Discrete Wavelet Transform (mDWT) [79]:
The mDWT is a feature that removes the time-information
from the discrete wavelet transform to be insensitive to wavelet
time instants. The feature instead calculates the cumulative
energy of each level of the decomposition. The computation of
the mDWT for each channel is implemented as follow in [34]
(See Algorithm 1).

Algorithm 1 mDWT pseudo-code
1: procedure MDWT
2: wav ← db7
3: level← 3
4: coefficients← wavDec(x, level, wav)
5: N ← length(coefficients)
6: SMax← log2(N)
7: Mxk ← []
8: for s=1,...,SMax do
9: CMax← N

2S
− 1

10: val←
∑CMax

u=0 |coefficients[u]|
11: Mxk.append(val)

return Mxk

Where x is the 1-d signal from which to calculate
the mDWT and wavDec is a function that calculates the
wavelet decomposition of a vector at level n using the
wavelet wav. The coefficients are returned in a 1-d vector
with the Approximation Coefficients(AC) placed first fol-
lowed by the Detail Coefficients(DC) (i.e. coefficients =
[CA,CD3, CD2, CD1], where 3, 2, 1 are the level of de-
composition of the DC).

Note that due to the choice of the level (3) of the wavelet
decomposition in conjunction with the length of x (52) in this
paper, the mDWT will be affected by boundaries effects. This
choice was made to be as close as possible to the mDWT
features calculated in [34] which employed the same wavelet
and level on a smaller x length (40).

C. Time-Frequency Domain Features

1) Short Term Fourier Transform based Spectrogram (Spec-
trogram): The Fourier transform allows for a frequency-based
analysis of the signal as opposed to a time-based analysis.
However, by its nature, this technique cannot detect if a
signal is non-stationary. As sEMG are non-stationary [41], an
analysis of these signals employing the Fourier transform is of
limited use. An intuitive technique to address this problem is
the STFT, which consists of separating the signal into smaller
segments by applying a sliding window where the Fourier
transform is computed for each segment. In this context, a
window is a function utilized to reduce frequency leakage
and delimits the segment’s width (i.e. zero-valued outside
of the specified segment). The spectrogram is calculated by
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computing the squared magnitude of the STFT of the signal.
In other words, given a signal s(t) and a window of width w,
the spectrogram is then:

spectrogram(s(t), w) = |STFT (s(t), w)|2 (15)

2) Continuous Wavelet Transform (CWT): The Gabor limit
states that a high resolution both in the frequency and time-
domain cannot be achieved [80]. Thus, for the STFT, choosing
a wider window yields better frequency resolution to the
detriment of time resolution for all frequencies and vice versa.

Depending on the frequency, the relevance of the different
signal’s attributes change. Low-frequency signals have to be
well resolved in the frequency band, as signals a few Hz apart
can have dramatically different origins (e.g. Theta brain waves
(4 to 8Hz) and Alpha brain waves (8 to 13Hz) [81]). On the
other hand, for high-frequency signals, the relative difference
between a few or hundreds Hz is often irrelevant compared to
its resolution in time for the characterization of a phenomenon.

Fig. 12. A visual comparison between the CWT and the STFT. Note that
due to its nature, the frequency of the CWT is, in fact, a pseudo-frequency.

As illustrated in Fig. 12, this behavior can be obtained by
employing wavelets. A wavelet is a signal with a limited
duration, varying frequency and a mean of zero [82]. The
mother wavelet is an arbitrarily defined wavelet that is utilized
to generate different wavelets. The idea behind the wavelets
transform is to analyze a signal at different scales of the mother
wavelet [83]. For this, a set of wavelet functions are generated
from the mother wavelet (by applying different scaling and
shifting on the time-axis). The CWT is then computed by
calculating the convolution between the input signal and the
generated wavelets.

APPENDIX E
HYPERPARAMETERS SELECTION FOR STATE OF THE ART

FEATURE SETS.

The hyperparameters considered for each classifiers were as
follow:

• SVM: Both the RBF and Linear kernel were considered.
The soft margin tolerance (C) was chosen between 10−3

to 103 on a logarithm scale with 20 values equally
distributed. Similarly the γ hyperparameter for the RBF
kernel was selected between 10−5 to 102 on a logarithm
scale with 20 values equally distributed.

• ANN: The size of the hidden layers was selected between
20 to 1500 on a logarithm scale with 20 values equally
distributed. The activation functions considered were sig-
moid, tanh and relu. The learning rate was initialized
between 10−4 to 100. The L2 penalty was selected
between 10−6 to 10−2 with 20 values. Finally, the solver

employed is Adam and early stopping is applied using
10% of the training data as validation.

• KNN: The number of possible neighbors considered were
1, 2, 3, 4, 5, 10, 15 and 20. The metric distance considered
was the Manhattan distance, the euclidean distance and
the Minkowski distance of the third and fourth degree.

• RF: The range of estimators considered were between 5
to 1000 using a logarithm scale with 100 values equally
distributed. The maximum number of features considered
(expressed as a ratio of the total number of features fed to
the RF) were: .1, .2, .3, .4, .5, .6, .7, .8, .9, 1. Additionally,
both the square root and the log2 of the total number of
features fed to the RF were also considered.

Note that the hyperparameter ranges for each classifier were
chosen using 3 fold cross-validation on the pre-training
dataset.

APPENDIX F
DIMENSIONALITY REDUCTION ON THE MYO ARMBAND

DATASET FOR STATE OF THE ART FEATURE SET

Table VI shows the average accuracies obtained on the
Evaluation dataset for the state-of-the-art feature sets with
and without dimensionality reduction. Note that all the results
with dimensionality reduction were obtained in a week of
computation. In contrast, removing the dimensionality reduc-
tion significantly augmented the required time to complete the
experiments to more than two and a half months of continuous
run time on an AMD-Threadripper 1900X 3.8Hz 8-core CPU.

APPENDIX G
REDUCING THE NUMBER OF EMG CHANNELS ON THE

TARGET DATASET

If the new user cannot wear the same amount of electrodes
as what was worn during pre-training the proposed transfer
learning technique cannot be employed out of the box. A
possible solution is to consider that the EMG channels are
akin to the channel of an image, giving different view of the
same phenomenon. In this section, the enhanced raw ConvNet
is modified to accommodate this new representation. The 2D
image (8 x 52) that was fed to the network is now a 1D
image (of length 52) with 8 channels. The architecture now
only employs 1D convolutions (with the same parameters).
Furthermore, the amount of neurons in the fully connected
layer was reduced from 500 to 256. The second network is
identical to the source network.

Pre-training is done on the pre-training dataset, training
on the first round of the evaluation dataset with 4 cycles of
training and the test is done on the last two rounds of the
evaluation dataset. The first, third, fifth and eighth channels
are removed from every participant on the evaluation dataset.
The pre-training dataset remains unchanged.

The non-augmented ConvNet achieves an average accu-
racy of 61.47% over the 17 participants. In comparison, the
same network enhanced by the proposed transfer learning
algorithm achieves an average accuracy of 67.65% accuracy.
This difference is judged significant by the one-tail Wilcoxon
Signed Rank Test (p-value=0.00494). While the performance
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TABLE VI
CLASSIFICATION ACCURACY ON THE Evaluation dataset FOR THE FEATURE SETS WITH AND WITHOUT DIMENSIONALITY REDUCTION.

TD Enhanced TD Nina Pro SampEn Pipeline

With
Dimensionality

Reduction

Without
Dimensionality

Reduction

With
Dimensionality

Reduction

Without
Dimensionality

Reduction

With
Dimensionality

Reduction

Without
Dimensionality

Reduction

With
Dimensionality

Reduction

Without
Dimensionality

Reduction

4 Cycles 97.76%
(LDA)

96.74%
(KNN)

98.14%
(LDA)

96.85%
(RF)

97.58%
(LDA)

97.14%
(RF)

97.72%
(LDA)

96.72%
(KNN)

3 Cycles 96.26%
(KNN)

96.07%
(RF)

97.33%
(LDA)

95.78%
(RF)

96.54%
(KNN)

96.53%
(RF)

96.51%
(KNN)

95.90%
(KNN)

2 Cycles 94.12%
(KNN)

93.45%
(RF)

94.79%
(LDA)

93.06%
(RF)

93.82%
(KNN)

94.25%
(SVM)

94.64%
(KNN)

93.23%
(KNN)

1 Cycle 90.62%
(KNN)

89.28%
(KNN)

91.25%
(LDA)

88.63%
(SVM)

90.13%
(LDA)

90.32%
(SVM)

91.08%
(KNN)

89.27%
(KNN)

of this modified ConvNet is noticeably lower than the other
classification methods viewed so far it does show that the
proposed TL algorithm can be adapted to different numbers
of electrodes between the source and the target.


