Abstract
The Melanoma Inhibitory Activity (MIA) protein is strongly expressed and secreted by malignant melanoma cells and was shown to promote melanoma development and invasion. The MIA protein was the first extracellular protein shown to adopt an Src homology 3 (SH3) domain-like fold in solution that can bind to fibronectin type III domains. Together with MIA, the homologous proteins OTOR (or FDP), MIA-2, and TANGO (or MIA-3) constitute a protein family of non-cytosolic and – except for fulllength TANGO and TANGO1-like (TALI) – extracellular SH3-domain containing proteins. Members of this protein family modulate collagen maturation and export, cartilage development, cell attachment in the extracellular matrix, and melanoma metastasis. These proteins may thus serve as promising _targets for drug development against malignant melanoma.
For the last twenty years, NMR spectroscopy has become a powerful technique in medicinal chemistry. While traditional high throughput screenings only report on the activity or affinity of low molecular weight compounds, NMR spectroscopy does not only relate to the structure of those compounds with their activity, but it can also unravel structural information on the ligand binding site on the protein at atomic resolution. Based on the molecular details of the interaction between the ligand and its _target protein, the binding affinities of initial fragment hits can be further improved more efficiently in order to generate lead structures that exhibit significant therapeutic effects. The NMR-based approach promises to greatly contribute to the quest for low molecular weight compounds that ultimately could yield drugs to treat skin-related diseases such as malignant melanoma more effectively.Current Medicinal Chemistry
Title:NMR-based Drug Development and Improvement Against Malignant Melanoma – Implications for the MIA Protein Family
Volume: 24 Issue: 17
Author(s): Oliver Arnolds, Xueyin Zhong, King Tuo Yip, Miriam Schöpel, Bastian Kohl, Stefanie Pütz, Raid Abdel-Jalil and Raphael Stoll*
Affiliation:
- Biomolecular NMR, Ruhr University of Bochum, 44780 Bochum,Germany
Keywords: NMR, FBLS, MIA, FDP, TANGO, SH3.
Abstract: The Melanoma Inhibitory Activity (MIA) protein is strongly expressed and secreted by malignant melanoma cells and was shown to promote melanoma development and invasion. The MIA protein was the first extracellular protein shown to adopt an Src homology 3 (SH3) domain-like fold in solution that can bind to fibronectin type III domains. Together with MIA, the homologous proteins OTOR (or FDP), MIA-2, and TANGO (or MIA-3) constitute a protein family of non-cytosolic and – except for fulllength TANGO and TANGO1-like (TALI) – extracellular SH3-domain containing proteins. Members of this protein family modulate collagen maturation and export, cartilage development, cell attachment in the extracellular matrix, and melanoma metastasis. These proteins may thus serve as promising _targets for drug development against malignant melanoma.
For the last twenty years, NMR spectroscopy has become a powerful technique in medicinal chemistry. While traditional high throughput screenings only report on the activity or affinity of low molecular weight compounds, NMR spectroscopy does not only relate to the structure of those compounds with their activity, but it can also unravel structural information on the ligand binding site on the protein at atomic resolution. Based on the molecular details of the interaction between the ligand and its _target protein, the binding affinities of initial fragment hits can be further improved more efficiently in order to generate lead structures that exhibit significant therapeutic effects. The NMR-based approach promises to greatly contribute to the quest for low molecular weight compounds that ultimately could yield drugs to treat skin-related diseases such as malignant melanoma more effectively.Export Options
About this article
Cite this article as:
Arnolds Oliver , Zhong Xueyin , Tuo Yip King , Schöpel Miriam , Kohl Bastian , Pütz Stefanie, Abdel-Jalil Raid and Stoll Raphael *, NMR-based Drug Development and Improvement Against Malignant Melanoma – Implications for the MIA Protein Family, Current Medicinal Chemistry 2017; 24 (17) . https://dx.doi.org/10.2174/0929867324666170608104347
DOI https://dx.doi.org/10.2174/0929867324666170608104347 |
Print ISSN 0929-8673 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-533X |
Call for Papers in Thematic Issues
Advances in Medicinal Chemistry: From Cancer to Chronic Diseases.
The broad spectrum of the issue will provide a comprehensive overview of emerging trends, novel therapeutic interventions, and translational insights that impact modern medicine. The primary focus will be diseases of global concern, including cancer, chronic pain, metabolic disorders, and autoimmune conditions, providing a broad overview of the advancements in ...read more
Approaches to the Treatment of Chronic Inflammation
Chronic inflammation is a hallmark of numerous diseases, significantly impacting global health. Although chronic inflammation is a hot topic, not much has been written about approaches to its treatment. This thematic issue aims to showcase the latest advancements in chronic inflammation treatment and foster discussion on future directions in this ...read more
Cellular and Molecular Mechanisms of Non-Infectious Inflammatory Diseases: Focus on Clinical Implications
The Special Issue covers the results of the studies on cellular and molecular mechanisms of non-infectious inflammatory diseases, in particular, autoimmune rheumatic diseases, atherosclerotic cardiovascular disease and other age-related disorders such as type II diabetes, cancer, neurodegenerative disorders, etc. Review and research articles as well as methodology papers that summarize ...read more
Chalcogen-modified nucleic acid analogues
Chalcogen-modified nucleosides, nucleotides and oligonucleotides have been of great interest to scientific research for many years. The replacement of oxygen in the nucleobase, sugar or phosphate backbone by chalcogen atoms (sulfur, selenium, tellurium) gives these biomolecules unique properties resulting from their altered physical and chemical properties. The continuing interest in ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
The Prognostic and Clinicopathologic Characteristics of OCT4 and Lung Cancer: A Meta-Analysis
Current Molecular Medicine Tissue Engineering Applications and Stem Cell Approaches to the Skin, Nerves and Blood Vessels
Current Stem Cell Research & Therapy Regulation of the Metabolism of Polyunsaturated Fatty Acids and Butyrate in Colon Cancer Cells
Current Pharmaceutical Biotechnology Fungal Glycolipids as Biosurfactants
Current Biotechnology Relative In Vitro Potentials of Parthenolide to Induce Apoptosis and Cell Cycle Arrest in Skin Cancer Cells
Current Drug Discovery Technologies A Review on Shikonin and its Derivatives as Potent Anticancer Agents _targeted against Topoisomerases
Current Medicinal Chemistry Immunoproteasome-Selective Inhibitors: A Promising Strategy to Treat Hematologic Malignancies, Autoimmune and Inflammatory Diseases
Current Medicinal Chemistry The Potential of Natural Products as Effective Treatments for Allergic Inflammation: Implications for Allergic Rhinitis
Current Topics in Medicinal Chemistry Synthesis and Biological Interest of Structured Docosahexaenoic Acid–Containing Triacylglycerols and Phospholipids
Current Organic Chemistry Structural Analysis for Colchicine Binding Site-_targeted ATCAA Derivatives as Melanoma Antagonists
Medicinal Chemistry Small Peptide and Protein-based Molecular Probes for Imaging Neurological Diseases
Current Protein & Peptide Science Biomedical Applications of Accelerator Mass Spectrometry
Current Analytical Chemistry Role of Inflammatory Mediators in Angiogenesis
Current Drug _targets - Inflammation & Allergy Bench-to-Bedside Theranostics in Nuclear Medicine
Current Pharmaceutical Design Microfluidic approaches to synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy of living biosystems
Protein & Peptide Letters NSAIDs Induced Regulation of Alternatively Spliced Transcript Isoforms: Possible Role in Cancer and Alzheimer Disease
Current Cancer Drug _targets p53 as the Focus of Gene Therapy: Past, Present and Future
Current Drug _targets Modulating Mesenchymal Stromal Cell Function with Cholesterol Synthesis Inhibitors
Current Medicinal Chemistry Dual Topoisomerase I / II Inhibitors in Cancer Therapy
Current Topics in Medicinal Chemistry High Throughput Screening for Colorectal Cancer Specific Compounds
Combinatorial Chemistry & High Throughput Screening