20 ANNUAL 24 MEETING

Don't Miss the ASTP Annual Meeting!

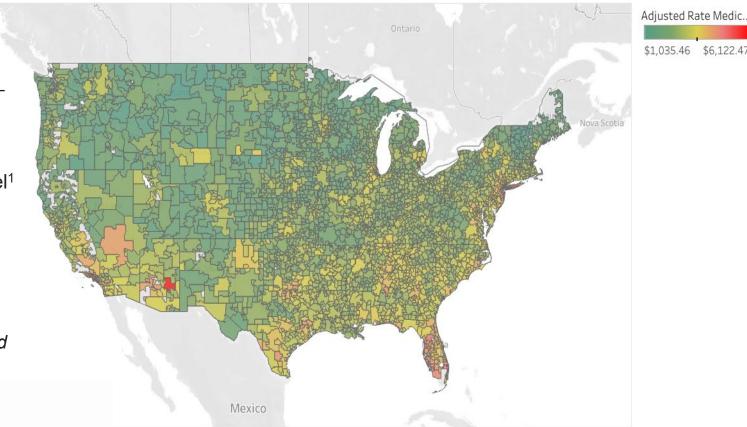
Washington, DC | December 4-5

www.ASTPAnnualMeeting.com

Advancing the Science and Practice of Local AI Evaluation

Moderator: Jordan Everson, PhD, MPP

Panelists: Peter Embi, MD MS Corey Miller Sara Murray, MD, MAS


December 4, 2024

The importance of local evaluation

Map: Price-Adjusted Physician Reimbursements per Enrollee, by HSA (2019) (Price, Age, Sex, and Race adjusted)

- Artificial and augmented intelligence are pattern
 recognizers
 - Make predictions based on simplifications of patterns including content generation
- Particularly likely to be wrong when patterns vary
- There is no such thing as a validated prediction model¹
 - Patient populations vary
 - · Measurements of predictors or outcomes vary
 - Populations and measurements change over time
- Local evaluation does not rely on generalizing from other sites²
 - Allows for pre-deployment testing where it will be used
 - Localization and monitoring to ensure reliable performance.

1 Van Calster, Ben, et al. "There is no such thing as a validated prediction model." *BMC medicine* 21.1 (2023): 70.

2 Youssef, Alexey, et al. "External validation of AI models in health should be replaced with recurring local validation." *Nature Medicine* 29.11 (2023): 2686-2687.

HTI-1 Predictive DSI Source Attributes

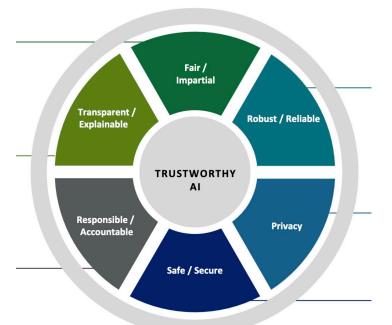
1 General Description and Outputs	2 Purpose	3 Cautioned Out-of-Scope Use
 Name and contact information for the intervention developer; Funding source of the technical implementation for the intervention(s) development; Description of value that the intervention produces as an output; and Whether the intervention output is a prediction, classification, recommendation, evaluation, analysis, or other type of output. 	 5) Intended use of the intervention; 6) Intended patient population(s) for the intervention's use; 7) Intended user(s); and 8) Intended decision-making role for which the intervention was designed to be used/for. 	 Description of tasks, situations, or populations where a user is cautioned against applying the intervention; and Known risks, inappropriate settings, inappropriate uses, or known limitations.
4 Development and Input Features	5 Process used to ensure fairness	6 External Validation Process
 Exclusion and inclusion criteria that influenced the data set; Use of variables in paragraph (b)(11)(iv)(A)(5)-(13) as input features; Description of demographic representativeness including, at a minimum, those used as input features in the intervention; Description of relevance of training data to intended deployed setting; 	 15) Description of the approach the intervention developer has taken to ensure that the intervention's output is fair; and 16) Description of approaches to manage, reduce, or eliminate bias. 	 17) Description of the data source, clinical setting, or environment where an intervention's validity and fairness has been assessed, other than the source of training and testing data 18) Party that conducted the external testing; 19) Description of demographic representativeness of external data including, at a minimum, those used as input features in the intervention; 20) Description of external validation process.
7 Quantitative Measures of Performance	8 Ongoing Maintenance of Intervention	9 Validation or Fairness Schedule
 Validity of intervention in test data derived from the same source as the initial training data; Fairness of intervention in test data derived from the same source as the initial training data; Validity of intervention in data external to or from a different source than the initial training data; Fairness of intervention in data external to or from a different source than the initial training data; Fairness of intervention in data external to or from a different source than the initial training data; References to evaluation of use of the intervention on outcomes, including, Assistant Georetry, bibliographic citations or hyperlinks to evaluations of how well the intervention reduced morbidity, mortality, length of stay, or other outcomes; 	 26) Description of process and frequency by which the intervention's validity is monitored over time; 27) Validity of intervention in local data; 28) Description of the process and frequency by which the intervention's fairness is monitored over time. 29) Fairness of intervention in local data; and 	 30) Description of process and frequency by which the intervention is updated; and 31) Description of frequency by which the intervention's performance is corrected when risks related to validity and fairness are identified.

Proportion of hospitals that reported most or all models were evaluated using data from their hospital or health system (n=1,660).

Model Accuracy	1,009	61%
Model Bias	711	44%
Model Bias and Accuracy	709	44%

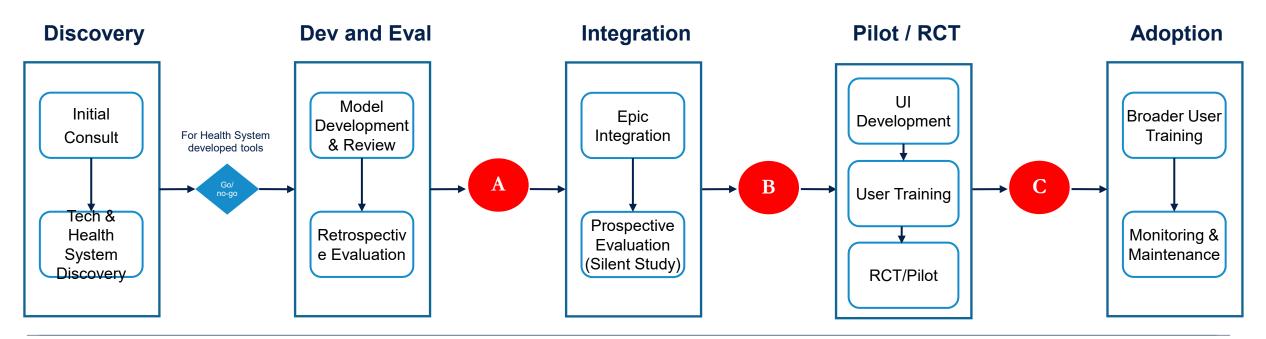
Note: 36 hospitals did not indicate whether they evaluated models for accuracy or bias and were excluded from analysis.

Paige Nong, Julia Adler-Milstein, Nate Apathy, A Jay Holmgren and Jordan Everson "Current Use And Evaluation Of Artificial Intelligence And Predictive Models In US Hospitals" Forthcoming, Health Affairs Source: 2023 American Hospital Association Information Technology.


ASTP Decision Support Intervention Toolkit

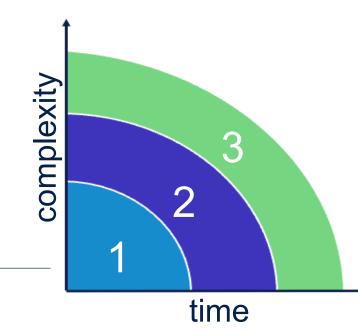
- Recently awarded contract
- Assess needs for a set of tools to facilitate detection of bias in AI models
- Develop tools and share on ASTP web site
- Among other functions, tool will facilitate comparing local data to synthetic data to detect anomalies or potential unique biases in local data.

Local AI Evaluation at UCSF Health


- It is very difficult for health systems to know when AI is "trustworthy"
 - Limited regulation and standards for vendors
 - Healthcare delivery systems do not innately have AI assessment capabilities
- Early lessons in health AI use highlighted gaps across mission areas
 - Unreliable and/or biased vendor tools
 - Research tools deployed haphazardly without guardrails

AI Oversight Across the AI Lifecycle

- Health AI Oversight Committee ensures all AI tools implemented in the health system are "trustworthy"
- Diverse, multidisciplinary committee with broad expertise
- Scope includes locally developed, vendor procured, and research tools



UCSF IMPACC (Impact Monitoring Platform for AI in Clinical Care) IMPACC = AI Monitoring Infrastructure + Robust Adjudication Process

- Unique partnership bridging health system and campus/academic expertise
- Generalizable monitoring infrastructure for all enterprise AI tools deployed at UCSF
 - Implementation and use, algorithmic vigilance, KPIs and outcomes

3 Horizons of IMPACC AI Monitoring Horizon 1: Basic Metrics Horizon 2: Advanced Insights Horizon 3: Open Research Questions

Predictive Al

10%

Risk of Unplanned Readmission Adams, Kim

	Contribution	Factor			Value
	19%	Number	of ED visits	in the last six months	2
	17%	Number orders	of active in	15	
5-	16%	ECG/EKG	6 order		Present in last 6
nt i Is	n last 6		11%	Imaging order	
			9%	Age	
			8%	Number of hospit	alizations in last year
1.1	mg/dL)		7%	Latest creatinine	
			6%	Charlson Comorb	idity Index
day	/s		4%	Current length of	stay
			1 more fa	actor not shown	

Generative Al

🧶 Draft by Art

Generated at: 6/18/2024 9:56 AM.

Hi George,

You've got it right. Jessica's lab test is now scheduled at the health center on 11/2 before her allergy appointment. The video visit is set for 11/5. No worries at all, it's understandable that things can get a bit hectic. If you have any more questions or need further clarification, feel free to ask.

Best,

Dr. Walker

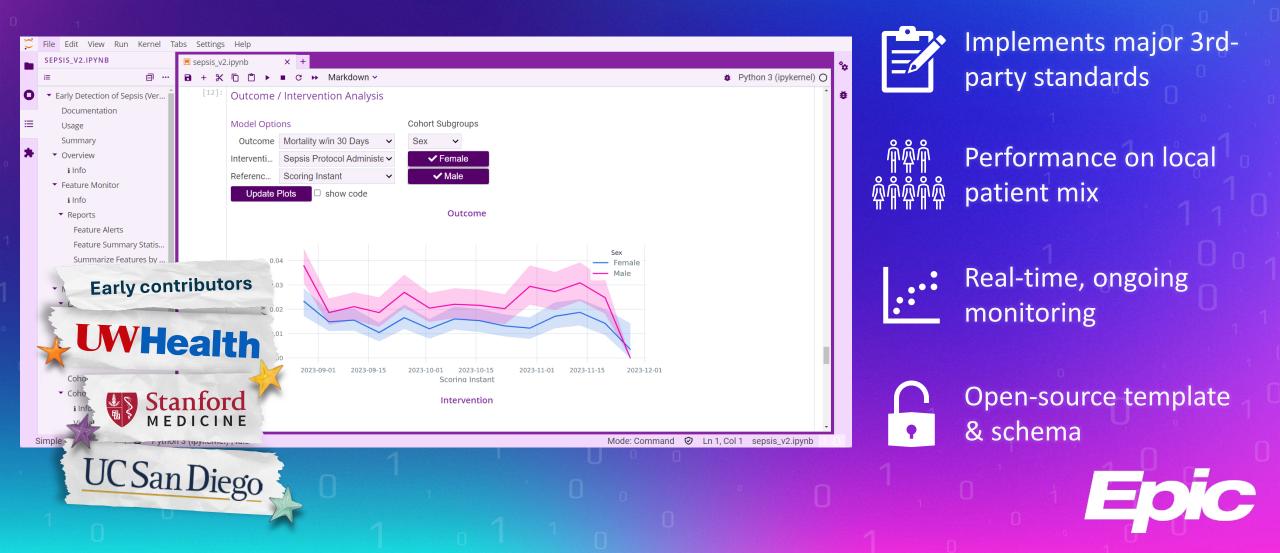
🖒 🖓 🛈 Learn More

Start with Draft Start Blank Reply

ಢ Lab test dates?

George Adams (Proxy for Jessica Adams) → supporting Drew Walker, MD

(Newest Message First) Just now (4:55 PM)


N 🍫

Hi Dr. Walker,

just confirming... instead of the previous plan to do the lab test on 10/24 at the hospital, and then a video visit with you on 10/25, we'd do the lab at the health center on 11/2 before her allergy appointment? Then we're doing the video visit on 11/5? Did I get all that right? Forgive me... it's been a crazy week.

-George

Al Trust & Assurance Suite

Enabling Algorithmovigilance for Safe, Effective, & Equitable Health Al

Peter J. Embí, MD, MS, FACP, FACMI, FIAHSI

Professor of Biomedical Informatics and Medicine Chair, Department of Biomedical Informatics Endowed Directorship in Biomedical Informatics Co-Director, ADVANCE AI Center Senior Vice-President for Research & Innovation

ASTP/ONC Annual Meeting

December 4, 2024

Al Discovery & Vigilance to Accelerate Innovation & Clinical Excellence

"Algorithmovigilance"

"The scientific methods and activities relating to the evaluation, monitoring, understanding, and prevention of adverse effects of algorithms in health care."

Akin to pharmacovigilance for monitoring drug effects

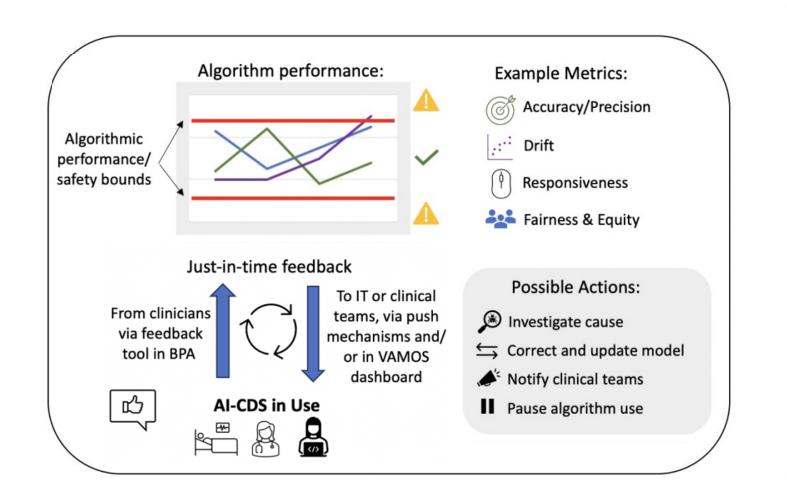
Increasingly important as AI/ML-derived algorithms are used

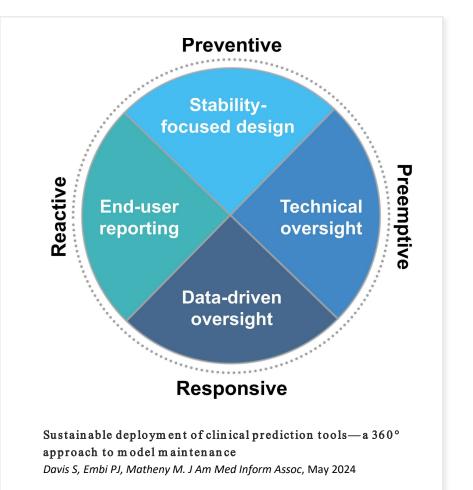
Network Open.

Invited Commentary | Health Informatics

Algorithmovigilance—Advancing Methods to Analyze and Monitor Artificial Intelligence–Driven Health Care for Effectiveness and Equity Peter J. Embi, MD, MS

In recent years, there has been rapid growth and expansion in the use of machine learning and other artificial intelligence approaches applied to increasingly rich and accessible health data sets to develop algorithms that guide and support health care.¹ As they make their way into practice, such algorithms have the potential to fundamentally transform how health care decisions are made and, therefore, how patients are diagnosed and treated.² While such approaches hold great promise for enabling more precise, accurate, timely, and even fair decision-making when properly developed and applied, there is also growing evidence that systematic biases can lead to unintended and even severe consequences.^{3,4} Mirroring disparities and inequities inherent in our society and health system,⁵ such biases can be inherent in not only the underlying data used to develop algorithms but also how algorithmic interventions are deployed.


Related article


Author affiliations and article information are listed at the end of this article.

Elsewhere in *JAMA Network Open*, Park and colleagues⁶ present findings from a study evaluating different approaches to the debiasing of health care algorithms developed to predict postpartum depression (PPD) among a cohort of pregnant women with Medicaid coverage. The researchers, from IBM Research, leveraged the IBM MarketScan Medicaid Database, a deidentified, individual-level claim records data set with approximately 7 million Medicaid enrollees across multiple states, to derive their algorithms. They started by developing 2 sets of machine learning models trained to predict 2 outcomes: (1) diagnosis or treatment for PPD and (2) postpartum mental health service utilization. Their initial, risk-adjusted generalized linear models for each outcome demonstrated a notable difference in the cohort with binarized race, with White patients having twice the predicted likelihood of being diagnosed with PPD compared with Black patients and a significantly higher likelihood of utilizing mental health services. However, as the authors point out,

Embi PJ. JAMA Network Open. 2021;4(4):e214622.

The Vanderbilt Algorithmovigilance Monitoring and Operations System (VAMOS)

VAMOS DASHBOARD MOCK-UP

Show: All

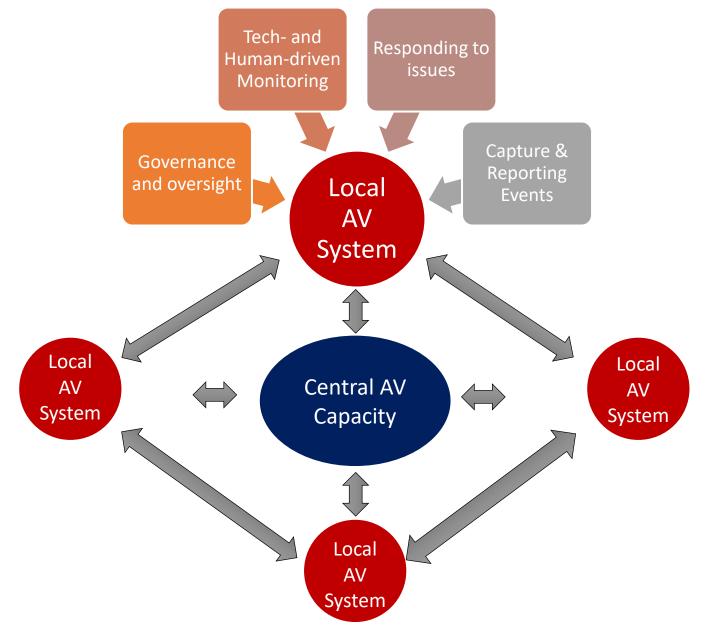
Search:

 \checkmark

Q

Show Alerts

Generate reports


orts 🚺

						ŀ	PERFORMANCE		PROCESS				OUTCOMES		
Model Name	State	Criticality	Class	Next Review	Туре	Metric 1	Status	Metric 2	Status	Metric 1	Status	Metric 2	Status	Outcome	Status
Cornelius	Active	3	Clinical	-4 d	BPA	Precision		Accuracy		Fire rate		Acceptance		Readmission	
Deterioration index	Inactive	1A	Clinical	131 d	Story- board	Recall		Accuracy		Views		-		Clinical deterioration	
Post-partum hemorrhage	Maint.	1B	Clinical	68 d	Patient list	Brier Score		Precision		Appearance in lists				Uterine atony	
CLOT	Active	2	Clinical	19 d	Order set	Precision		Accuracy		Views		Order acceptance		Hosp. VTE	
Others															

Show: AllAllActive StateMaintenance StateInactive StateResearch ClassClinical ClassOperational ClassOthers		
 Active State Maintenance State Inactive State Research Class Clinical Class Operational Class 	Show: All	\sim
 Maintenance State Inactive State Research Class Clinical Class Operational Class 	All	
	 Maintenance State Inactive State Research Class Clinical Class Operational Class 	

Select Metric	\sim
Accuracy	
AUC	
Bias	
Brier Score	
Drift	
Fire Rate	
O-to-E Ratio	
PPV	
Responsiveness	
Trigger Rate Stability	
Others	

Creating Local and Federated Algorithmovigilance (AV) Systems

Thank You!

Business Card

Questions or Comments?

@embimd.bsky.social

peter.embi@vumc.org

Stay up-to-date on the agenda with the Annual Meeting app!

Download **ShoApp** in the App Store or Google Play.

20 ANNUAL 24 MEETING

Share your content on X and don't forget to use the hashtag **#ASTP2024**

Today's Agenda

December 4th

9:00 ^{am} - 11:30 ^{am}	Keynote Remarks from Micky Tripathi Morning Plenary: TEFCA - Year One in the Books and Looking to the Future
11:30 ^{am} - 1:00 ^{pm}	Lunch on your own
1:00 pm - 2:00 pm	Breakout Sessions I – View the ASTP Annual Meeting app for details
2:00 pm - 2:15 pm	Break
2:15 pm - 3:15 pm	Afternoon Plenary: Collaboration, Harmonization, and Standardization: How USCDI+ is Raising the Floor for Interoperable Data Use
3:15 ^{pm} – 3:45 ^{pm}	Break
3:45 ^{pm} - 5:00 ^{pm}	Breakout Sessions II – View the ASTP Annual Meeting app for details

Tomorrow's Agenda

December 5th

9:25 ^{am} - 11:30 ^{am}	 Morning Plenaries: What the GPT? Does AI Have a Place in Health Care Delivery? Meeting the Mission with AI: How HHS is Using AI to Advance Health and Human Services
11:30 ^{am} – 1:00 ^{pm}	Lunch on your own
1:00 ^{pm} – 2:00 ^{pm}	Breakout Sessions III – View the ASTP Annual Meeting app for details
2:00 ^{pm} – 2:15 ^{pm}	Break
2.00 pm – 2.10 pm	DIEak
2:15 ^{pm} – 3:15 ^{pm}	Breakout Sessions IV – View the ASTP Annual Meeting app for details

Today's Agenda

December 5th

9:25 ^{am} – 11:30 ^{am}	 Morning Plenaries: What the GPT? Does AI Have a Place in Health Care Delivery? Meeting the Mission with AI: How HHS is Using AI to Advance Health and Human Services
11:30 ^{am} - 1:00 ^{pm}	Lunch on your own
1:00 pm - 2:00 pm	Breakout Sessions III – View the ASTP Annual Meeting app for details
2:00 pm - 2:15 pm	Break
2:15 ^{pm} – 3:15 ^{pm}	Breakout Sessions IV – View the ASTP Annual Meeting app for details