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Abstract
In a recent paper, we have presented a generative adversarial
network (GAN)-based model for unconditional generation of
the mel-spectrograms of singing voices. As the generator of the
model is designed to take a variable-length sequence of noise
vectors as input, it can generate mel-spectrograms of variable
length. However, our previous listening test shows that the qual-
ity of the generated audio leaves room for improvement. The
present paper extends and expands that previous work in the
following aspects. First, we employ a hierarchical architecture
in the generator to induce some structure in the temporal dimen-
sion. Second, we introduce a cycle regularization mechanism
to the generator to avoid mode collapse. Third, we evaluate the
performance of the new model not only for generating singing
voices, but also for generating speech voices. Evaluation result
shows that new model outperforms the prior one both objectively
and subjectively. We also employ the model to uncondition-
ally generate sequences of piano and violin music and find the
result promising. Audio examples, as well as the code for imple-
menting our model, will be publicly available online upon paper
publication.

1. Introduction
In the recent development of deep learning, unconditional gener-
ation of images has been a popular research topic [1, 2, 3], either
for its own artistic value or for being used as a base model for
developing models with more fine-grained conditions (e.g., [4]).
Unconditional music generation in the symbolic domain, which
aims at generating sequences of musical notes in a symbolic
format such as the piano roll, has also become an active research
topic lately [5, 6, 7].1

Unconditional generation of raw audio waveforms, or its
time-frequency representations, has received growing attention
in recent years as well. A notable example is the Zero Resource
Speech Challenge (“TTS without T,” or text-to-speech without
text) organized in some editions of the INTERSPEECH con-
ference [15]. Given a collection of raw audio without text or
phoneme labels as the training data, the participants have to dis-
cover the subword units of speech [16, 17, 18] in an unsupervised
way so as to synthesize novel utterances from novel speakers.
While being an interesting and meaningful unconditional audio
generation task, the task setup is fairly speech-specific and ac-
cordingly such TTS without T models are not readily applicable
to generate other types of audio signals, such as instrumental or
environmental sounds.

1Following the convention in the literature, we define unconditional
generation as a task that aims at generating things from scratch, i.e.,
taking nothing but random noises as the input. In contrast, a conditional
generation model takes additional input such as class labels [8], text [9],
pitch labels [10, 11], or reference audio [12, 13, 14].

There have been attempts to unconditional generation of
general audio, e.g., [19, 20, 21]. However, they all use an auto-
regressive approach that takes only a noise vector as input and
generates sequentially samples of an audio signal (e.g., timesteps
or spectral frames), one sample at a time, which might not be ef-
ficient at inference time. We are motivated to explore alternative
model architectures.

We present such an attempt in a recent work for uncondi-
tional singing voice generation [22], aiming to generate impro-
vised singing voices without using not only the phoneme labels
(i.e., the lyrics) but also the pitch labels (i.e., the singing melody),
in both model training and inference time. It is based on a gener-
ative adversarial network (GAN) [1] where the generator takes
a variable-length sequence of noise vectors as input, instead of
just one noise vector as done in [19, 20, 21]. The mission of the
generator is to convert the sequence of input noise vectors to a
mel-spectrogram of the corresponding length, with each input
vector corresponds to a certain length at the output. Such an
architecture therefore has the potential to generate a variable-
length audio in a more efficient way. While being an interesting
attempt, the user study reported in the previous work (i.e., [22])
suggests that the model presented there is not powerful enough to
generated samples with satisfying perceptual quality. Moreover,
whether such a GAN-based model can be applied to audio other
than singing voices remains unexplored.

We presented in this paper an improved version of our prior
model, using a similar GAN architecture that takes multiple noise
vectors as input. But, the new generator now employs a hierarchi-
cal structure to govern the temporal coherence of the generated
samples. Moreover, we regularize the model training process by
enforcing cycle consistency between each input noise vector and
the corresponding segment in the output mel-spectrogram. We
validate both objectively and subjectively that the new model
greatly outperforms the prior one, for unconditional generation
of not only singing voices but also speech.

We refer to the proposed model architecture as UNAGAN, or
unconditional audio generation with GAN. The code and trained
models are available at https://github.com/ciaua/
unagan.git. Samples of the generated sounds of singing,
speech, as well as instruments are also provided.

2. Problem Formulation
In the literature, a common approach to audio generation is to
first generate acoustic features, such as the mel-spectrograms,
and then pass them to a vocoder to generate the corresponding
audio waveforms [9, 20]. We follow this practice in this paper,
and we focus on generating the mel-spectrograms.

The problem formulation adopted in [19, 20, 21] can be
generally described as follows. Given an input noise vector
z ∈ RN , where N denotes the length of the vector, they build
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a generator G(·) so as to convert the input vector to a sequence
of acoustic features (e.g., the mel-spectrograms), X̂ ≡ G(z) ∈
RK×T , in an auto-regressive manner. Here, K denotes the
length of each acoustic feature vector x̂t, and T the temporal
length of the sequence to be generated.

We intend to use instead a sequence of random noise vectors
as the input, namely, Z = [z1, z2, . . . , zT ′ ], where each term in
each vector zt is sampled from a Gaussian distribution with zero
mean and unit variance. And, the length of the input sequence,
namely T ′, is proportional to the length of the target output se-
quence, namely T . In other words, each zt has a direct influence
over one (i.e., when T ′ = T ) or a few (when T ′ < T ) samples
of the target output X̂.

3. Model
We adopt the GAN framework for unconditional generation of
audio signals of arbitrary length. Similar to [22], we find that the
boundary-equilibrium GAN (BEGAN) [23] works better than
other types of GANs for this task, so we also use it here. To
further improve the generation quality, we propose a number of
changes for the generator and the discriminator, as described
below. We start with a brief introduction of BEGAN first.

3.1. Boundary-Equilibrium GAN

In BEGAN [23], the loss functions lD and lG for the discrimina-
tor D(·) and the generator G(·) are respectively:

lD =L(X)− τsL(G(Z)) , (1)
lG =L(G(Z)) , (2)

where X ∈ RK×T denotes a sequence of acoustic features from
a real audio signal sampled from the training data, and L(·) is a
function that measures how well the discriminator reconstructs
its input. Specifically,

L(M) =
1

WT

∑
w,t

|D(M)w,t −Mw,t| , (3)

for an arbitrary W × T matrix M, where Mw,t denotes the
(w, t)-th element of a matrix M (and similarly for D(M)w,t).
Moreover, the variable τs in Eq. (1) is introduced by BEGAN to
balance the power of D(·) and G(·) during the learning process.
It is dynamically set to be τs+1 = τs + β(γL(X)−L(G(Z))),
for each training step s, with τs ∈ [0, 1]. And, β and γ are
manually-set hyperparameters. From Eqs. (1) and (2), we see
that D(·) and G(·) have contradicting goals, giving rise to the
name of adversarial training. Once trained, only G(·) is used at
the inference time for generating new content from scratch.

3.2. Hierarchical Structure in the Generator

In our previous work [22], each spectral frame x̂t has its own
input noise zt, i.e., T ′ = T . This allows the generator to gen-
erate a sequence of arbitrary length. However, this could also
make it difficult for the generator to generate coherent sequences
of acoustic features while respecting the input noises, because
[z1, z2, . . . , zT ′ ] are sampled independently. As a result, the
generated sounds tend to be fragmented and do not form com-
plete pronunciations.

To alleviate the aforementioned issue, we make two changes
to the architecture of the generator. First, we reduce the number
of input noise vectors by a downsampling factor of S. That is,
to generate a sequence of length T , we use T ′ = dT/Se input

Figure 1: The hierarchical architecture of the proposed gener-
ator. Here, ‘GBlock’ is a stack of convolution layers and gate
recurrent unit layers with skip connections; ‘Head’ is a convolu-
tion layer; and ‘Up’ is a nearest-neighbor upsampling operation
with scaling factor of 2.

noise vectors. Due to this change, it is necessary to upsample the
output of the intermediate layers of the generator. This incurs the
second change to the generator architecture—instead of a pure
upsampling operation, we adopt a hierarchical architecture where
the generator generates acoustic features from coarse ones to
more refined ones, as shown in Figure 1. This kind of processing
has been shown effective in several generation models [3, 21].

As depicted in Figure 1, in the proposed generator we still
employ the ‘GBlock’ proposed in our prior work [22]. It entails
a stack of gate recurrent unit (GRU) layers [24, 25] and grouped
convolution layers. Therefore, the major changes are associated
with the use of the upsampling layers (‘Up’), and the auxiliary
convolution layers (‘Head’) in the skip connections.

3.3. Cycle Regularization in the Generator

Another issue of the previous model [22] is that it seems to suffer
from the “mode collapse” issue [26, 27] and generate sounds that
are not diverse enough. We propose using a cycle regularization
mechanism in the generator to alleviate this.

In cycleGAN [28], a cycle-consistency constraint is enforced
on two generators of two different domains, so that the content
generated by one generator and the content generated by the
other generator have certain degree of correspondence. In our
case, one domain is about the acoustic features xt and the other
domain the input noises zt. In other words, the cycle consistency
is established between the input noise and the target output.
We note that Ulyanov et al. [29] have used this strategy as an
alternative way for generation without the adversarial term.

Specifically, besides the GAN loss lG, we add the following
cycle regularization term to the loss function of the generator:

lC = |E(G(Z))− Z|1 + |G(E(X))−X|1 , (4)
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Details Ch. Stride Dilation
2D Block 1 2D Conv 4 (2, 1) (1, 2)

Batch norm
Leaky ReLU

2D Block 2 * 16 (2, 1) (1, 4)
2D Block 3 * 64 (2, 1) (1, 8)

Flatten

1D Block 1 1D Conv 512 1 1
Batch norm
Leaky ReLU

1D Block 2 * 512 1 16
1D Block 3 * 512 1 32
1D Block 4 * 512 1 64
1D Block 5 * 512 1 128

Output 1D Conv 80 1 1

Table 1: The architecture of the discriminator. All convolution
layers have kernel size 3. ‘Ch.’ denotes the number of channels.

where E, an encoder, predicts Z from the output of G. In our
implementation, E consists of 2D and 1D convolution layers
similar to D, but has downsampling operations to match the
upsampling operations of G. The loss function of the generator
therefore becomes

l′G = lG + λ lC , (5)

where λ is a tunable hyperparameter.
If the cycle regularization term is met perfectly, it will en-

force a one-one and onto mapping between the domain of noises
and the domain of acoustic features. In other words, for every
acoustic feature vector x, there is a vector z such that G(z) = x.
This also means that every mode is covered, avoiding mode col-
lapse. However, as the cycle term is not met perfectly in reality,
mode collapse may still happen, yet hopefully to a less degree.

Another benefit of this regularization is that it is general-
purpose: it can be augmented to any generators and discrimina-
tors without changing the architectures.

3.4. The Discriminator

In [22], the discriminator also contains GRUs. We have found
that it is possible to use a more efficient discriminator that con-
tains only convolution layers without compromising the perfor-
mance. Specifically, we use 2D convolution layers followed by
1D convolution layers in this work, as shown in Table 1.

4. Evaluation
To demonstrate that the proposed model works for a diverse
set of audio, we apply it to generating singing voices, speech,
and solos of piano and violin, each using a different dataset.
Examples of the generated sounds can be found in our GitHub
repo. Below, we present the implementation details, as well as
the objective and subjective studies that validate the effectiveness
of the proposed model for generating singing and speech voices.

4.1. Datasets

We employ the following audio datasets in this work.

• Speech: We use the LJ Speech dataset [30], which con-
tains 13,100 short audio clips of a single speaker reading

passages from books.

• Singing: Following our previous work [22], for the
singing part we use a collection of 17.4 hours of female
voices singing in Jazz. The singing voices are obtained by
applying a state-of-the-art blind source separation model
[31] to the original songs which contains instrumental
background music.

• Piano: We use the MAESTRO dataset [32], which con-
tains 23 hours of virtuosic piano performance of classical
music recoreded in several years. The MIDI part of the
dataset has been increasingly used in symbolic-domain
music generation [6]. We use however the audio record-
ings of the data, using only those from the year of 2004.

• Violin: We use an in-house collection of around 16.7
hours of high-fidelity violin solo recordings of classical
music from various composers and violinist.

4.2. Model Implementation Details

For fair performance comparison with our prior model [22], we
follow as closely its model settings, except for the major changes
mentioned in Section 3. We use 20-dimensional noise vectors as
the input (i.e., N = 20), and 80-dimensional mel-spectraograms
as the output acoustic features (i.e., K = 80). The parameters of
the network are optimized with Adam [33] with 0.0001 learning
rate. And, a mini-batch of size 5 is used and 100,000 updates are
executed for each model. The training takes around 0.5 1 day on
an NVIDIA RTX 2080Ti.

The mel-spectrograms are converted into waveforms using
the MelGAN [20] as the vocoder. Except for speech, we train a
specific MelGAN for each of the audio types listed in Section 4.1.
For speech, we directly use the vocoder trained on LJ Speech
provided in the official MelGAN GitHub repository. 2

4.3. Evaluation Metrics

We employ the following objective metrics for our task.

• Vocalness measures whether an audio clip contains hu-
man voices. Following [22], we employ the JDC model
[34]3 for measuring vocalness. The JDC model regards
a frame as being vocal if it has a vocal activation ≥ 0.5
AND if the detected pitch value falls within a reasonable
human pitch range (i.e., 73–988 Hz). We define the vo-
calness of an audio clip as the percentage of non-silent
frames that are vocal.4

• Diversity. Following [27], we employ the following two
diversity metrics proposed by Richardson et al. [35] to
examine the generated mel-spectrograms: statistically-
different bins (NDB) and Jensen-Shannon divergence
(JSD). They measure diversity by 1) clustering the train-
ing data into several clusters, and 2) measuring how well
the generated samples fit into those clusters. In other
words, it uses the training data as a baseline of diversity
and compares the generated samples with this baseline.
We use the the official implementation of NDB and JSD.5

2https://github.com/descriptinc/
melgan-neurips

3https://github.com/keums/melodyExtraction_
JDC

4The non-silent frames are derived by using the librosa function
‘effects._signal_to_frame_nonsilent.’

5https://github.com/eitanrich/gans-n-gmms/
blob/master/utils/ndb.py
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Singing Non-Hier. Hier. Hier. w/ cycle

Naturalness 2.55 ± 1.07 3.40 ± 0.92 2.60 ± 1.02
Audio Quality 1.90 ± 0.70 2.75 ± 0.94 2.45 ± 1.02
Diversity 2.60 ± 0.97 3.15 ± 0.73 2.95 ± 0.97
AI Vocalness 2.75 ± 1.26 3.40 ± 0.86 2.85 ± 1.15

Speech

Naturalness NA 2.42 ± 1.02. 3.50 ± 1.06

Table 2: Result of subjective evaluation on a 1-to-5 five point
Likert scale; the higher the better.

In the subjective evaluation, we ask human listeners to rate
the generated samples (on a five-point scale) by the following
four metrics for singing, and by Naturalness only for speech.

• Naturalness measures whether an audio recording
sounds like real singing voices or speeches.

• Audio Quality measures the perceptual audio quality.

• Diversity measures the diversity of the audio contents
across three different samples generated by the same
model, and presented to the participant consecutively.

• AI Vocalness measures whether the generated singing
voices fit the listener’s own (and subjective) expectation
of vocals from an AI. This metric is included with the
assumption that an singing voice generating AI may have
its own timbre that cannot be found in human voices.

4.4. Subjective Evaluation Result

We discuss the subjective evaluation first. We solicit non-paid
responses from the Internet with an online questionnaire. For
the singing part, a subject is asked to listen to three 10-second
samples generated by a model and then rate the performance of
the model based on an overall impression on the three samples.
For the speech part, the subject rates (the Naturalness of) each
generated 10-second sample individually.

We compare the following three models for the singing part:

• Non-Hier.: The old model originally proposed in [22].

• Hier.: The proposed new model using the hierarchical
structure but not the cycle regularization.

• Hier. w/ cycle: The proposed model with both hierarchi-
cal structure and cycle regularization.

For the speech part, we only compare the second two models.
We ask a subject to rate in total 6 generated samples, 3 from each
model. The ordering of the samples are randomized.

We inform the subjects that the samples are freely generated
by machine without following any text, lyrics, or pitch labels.

The responses from 20 subjects are summarized in Table 2.
We can see that the generators with a hierarchical architecture
greatly outperform the non-hierarchical one in almost all the four
metrics for the singing voices, demonstrating the effectiveness of
the proposed hierarchical structure. Moreover, while the average
rating for the old model is all under ‘3’ (i.e., below average), this
is not the case for the new model, except for Audio Quality.

Interestingly, the cycle regularization largely improves the
generation quality for the speeches, but not for the singing. We
conjecture that there might be two reasons for this discrepancy.
First, the training data for the singing voices are the output of

Singing Non-Hier. Hier. Hier. w/ cycle

Vocalness ↑ 0.48 ± 0.11 0.58 ± 0.07 0.64 ± 0.10
NDB ↓ 48 61 50
JSD ↓ 0.04 0.06 0.05

Speech

Vocalness ↑ NA 0.35 ± 0.07 0.49 ± 0.04
NDB ↓ NA 37 8
JSD ↓ NA 0.03 0.01

Table 3: Result of objective evaluation. The Vocalness [34] are
the higher the better, while NDB and JSD [35] are the opposite.

a source separation model, which could be noisy, while the
training data for the speeches are clean speech data from a single
person. The cycle regularization retain the modes but can also
retain the modes of the noisy signals at the same time. Second,
compared to the singing voices, speeches have a clearer target for
the encoder to predict, that is, the phonemes, while the factors
that are involved in singing are more complicated [36, 37].

4.5. Objective Evaluation Result

For the objective evaluation, 100 10-second samples are gener-
ated by each model with the same random seed. We report the
average scores across the 100 samples in Table 3.

For the vocalness, we can see that the hierarchical archi-
tectures perform better than the non-hierarchical one for both
singing voices and speeches. Using cycle regularization makes
relatively moderate difference in the singing voices, but large
improvement in speech. This finding seems to be consistent with
the result of subjective evaluations.

From the result of NDB and JSD, we can see that hierarchical
architectures with cycle regularization improves the diversity for
both singing voices and speeches. This is as expected because
the cycle regularization is meant to reduce mode collapse.

There are two interesting findings related to diversity. First,
for singing, the non-hierarchical architecture actually performs
the best among the three models. Our conjecture is that the hier-
archical structure enforces a consistency among local features
and reduces the degree of freedom. This makes the diversity
lower in NDB and JSD, but makes the audio more pleasant to
listen to, as shown in the subjective evaluation.

Second, the singing voices with cycle regularization has
better objective diversity, while those without cycle has better
subjective diversity, comparing Tables 2 and 3. This may be
related to the artifact of source separation again—the diversity
caused by the artefacts might be counted by the objective metrics
but not perceived as contributing to diversity subjectively.

5. Conclusions
In this paper, we have proposed a new model for unconditional
generation of general audio of arbitrary length. It features a hier-
archical generator to convert a sequence of random noises into
slices of a mel-spectrogram, and a cycle regularizer between the
noise input and the output. We have subjectively and objectively
validated the effectiveness of the proposed design in different
types of voices. For future work, we intend to compare the model
against other existing models (e.g., [21]), and to further improve
the audio quality of the generated samples.
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