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ABSTRACT

In this article we examine the computation of the trifocal tensor from different view points: the minimization of algebraic

or reprojection error, the consideration of the internal constraints, and the effect of nearly coplanar object points. It is

shown using synthetic data, that a correct solution for the trifocal tensor can be obtained as long as the object points

deviate from a common plane by at least 1 % of the viewing distance. Using real data it is shown that the orientation

parameters derived from the tensor can be successfully used to initialize a subsequent bundle block adjustment.

1 INTRODUCTION

Projective geometry is widely used in Computer Vision

because it enables linear and simple representations for

several orientation methods; e.g. the trifocal tensor for the

relative orientation of three uncalibrated images [Hartley

1997].

These alternative representations based on projective ge-

ometry, however, are still not very popular in Photogram-

metry, because there are several drawbacks associated with

them:

• The linearity of these representations is achieved by

over-parameterization, i.e. more parameters than

the actual degrees of freedom (DOF) are used. Conse-

quently certain non-linear constraints among the pa-

rameters must be satisfied; and the direct linear solu-

tion does not satisfy them in general.

• The linearity is further achieved by considering the

images to be uncalibrated, i.e. the information of

an a-priori given interior orientation can not be used

directly (or the linearity gets lost).

• The linearity of these representations can be used ef-

fectively only if the so-called algebraic error is min-

imized instead of the so-called reprojection error (i.e.

the error in the original image measurements).

• The solution of the respective linear system of equa-

tions for determining the alternative parameters fails

if the image correspondences originate from exactly

planar object points or lines.

• In projective geometry only linear mappings are dealt

with. Consequently, unknown non-linear image dis-

tortion can not be handled directly in this frame-

work; known non-linear image distortion could be re-

moved from the images in a preprocessing step.

In contrast to all these drawbacks, however, we have the

linearity of these alternative representations, which is a

huge benefit, as it liberates us from the requirement to pro-

vide approximate values for the exterior (and sometimes

also interior) orientation parameters, which are inevitable

for a conventional bundle block adjustment.

With the benefit and drawbacks mentioned above, a rea-

sonable strategy would consist of two steps: a) perform

the orientation using a convenient alternative representa-

tion and b) to use the orientation parameters obtained

thereby as approximate values for a subsequent bundle

block adjustment to further refine the result by consider-

ing a-priori known interior orientation and modelling the

non-linear image distortion.

To successfully apply this strategy it is essential, that the

linear orientation in step a) does not fail. The main reason

for the linear orientation to fail are coplanar object points.

Due to the noise in the images this will not only happen for

mathematically exact coplanar object points, but already

for nearly coplanar points. The required deviation from

a common plane is further increased by the other draw-

backs; i.e. the negligence of the internal constraints, the

unknown interior orientation and the unknown non-linear

image distortion.

Therefore, it is interesting to investigate the effects of the

drawbacks mentioned above on the linearly obtained ori-

entation parameters in the case of nearly coplanar object

points; e.g. what minimum deviation from a common plane

is necessary for a successful solution if the internal con-

straints are considered or neglected and if algebraic error

or reprojection error is minimized? For this investigation

we will consider the trifocal tensor, which is made up of 27

elements (with 18 DOF) and linearly describes the relative

orientation of three uncalibrated images. Compared with

the other linear representations of two (the fundamental

matrix with 9 elements and 7 DOF, [Luong and Faugeras

1996]) and four images (the quadfocal tensor with 81 el-

ements and 29 DOF, [Hartley 1998]), the trifocal tensor

is more robust than the fundamental matrix, due to the

third image, and not as complex as the quadfocal tensor

(9 vs. 52 internal constraints).



This article is structured in the following way. Section 2

gives an short overview on the properties of the trifocal

tensor. In section 3 the results of synthetic experiments

are presented, followed by an example using real data in

section 4. The findings are summarized in section 5.

2 THE TRIFOCAL TENSOR

The trifocal tensor is made up of 27 homogenous elements,

thus can be visualized as a 3×3×3 cube of numbers. Slices

in every direction of this cube return 3 × 3 matrices with

special properties; e.g. [Ressl 2003]. These slices allow the

determination of the six epipoles in the three images and

the determination of the three respective fundamental ma-

trices. In case of unknown interior orientation, the latter

can be further used to derive a common interior orientation

for the three images using the so-called Kruppa equations;

e.g. [Hartley and Zisserman 2001]. Finally the fundamen-

tal matrices and the interior orientation can be used to

obtain the projection centers and rotation matrices of the

relative orientation of the three images; [Ressl 2003].

The trifocal tensor can be computed from corresponding

points and/or lines across the three images. Each triple

of points gives 4 independent homogenous equations, so-

called trilinearities, and each triple of lines gives 2 indepen-

dent equations - all being linear in the tensor’s elements.

Consequently, at least 7 point- or 13 line-correspondences,

or a proper combination, are needed for the direct linear

solution of the trifocal tensor minimizing algebraic error.

The relative orientation of three uncalibrated images has

only 18 DOF. Consequently 9 constraints must be satisfied

by the 27 tensor elements, one of the constraints is the

fixing of the tensor’s homogenous scale. Various sets of

constraints were proposed in the past; see [Ressl 2003] for

an overview.

For computing a valid trifocal tensor, which satisfies the

constraints, preferably by minimizing reprojection error in-

stead of algebraic error, we have to use the so-called Gauss-

Helmert model, [Koch 1999], also called general case of

least squares adjustment. This non-linear iterative method

requires approximate values for the tensor elements, which

could be obtained from the direct linear solution.

Note: In projective geometry every entity is represented as

an homogenous vector, e.g. a 2D point x as x = (x, y, 1)>.

Now suppose the point x is measured in a digital image

with 2000 × 3000 pixels and is located far away from the

origin of the coordinate frame. In this case the coordi-

nates x and y will be in the order of 1000, whereas the

homogenous extension still is 1. This difference in order

between the Euclidian and the homogenous part will cause

enormous numerical problems if such projective points are

used to compute other quantities; e.g. the trifocal tensor

from several point correspondences. These problems can

be avoided easily if the projective entities are shifted and

scaled prior to the computations. This procedure is due

to Hartley, who used this for computing the fundamental

matrix; [Hartley 1995]. He proposes to translate the set of

image points in the way that their centroid xC is moved to

the origin and then to scale the translated points isotropi-

cally by m =
√

2/s, where s is the average distance of the

points from xC .

3 EXPERIMENTAL RESULTS FROM

SYNTHETIC DATA

In [Ressl 2003] the trifocal tensor is computed by different

methods for different image configurations and for a vary-

ing number of point correspondences; all with regard to

nearly coplanar object points. These examples are based

on synthetic data and shall demonstrate

• the differences between minimizing algebraic and re-

projection error,

• the effects of considering or neglecting the internal

constraints of the tensor, and

• the impact of critical configurations; i.e. how close

must points lie to the same plane so that the compu-

tation fails? To answer this question the object points

are placed inside a cuboid, which is then incremen-

tally compressed in one direction till the computation

fails; the compression for which the computation is

still possible will be referred to as minimum thick-

ness of the cuboid.

Five different image configurations: ’Tetra’, ’Air1’ and

’Air2’ (with strong image geometry), and ’Street1’ and

’Street2’ (with weak image geometry), see figure 1, are

summarized below. For each image configuration the tri-

focal tensor was computed in five different ways:

’UCA’: The direct linear solution or in other words the

unconstrained solution (with 26 DOF) minimizing al-

gebraic error.

’UCR’: The unconstrained solution (with 26 DOF) mini-

mizing reprojection error realized in the Gauss-Helmert

model. This iterative estimation is initialized by the

’UCA’ solution.

’CR’: The constrained solution (with 18 DOF) minimiz-

ing reprojection error. This iterative estimation is ini-

tialized by the ’UCA’ solution.

’CR*’: This iterative estimation is identical to ’CR’ but

it is initialized by the known true trifocal tensor.

’CA’: This is a projection method, which returns that

valid trifocal tensor TFT (with 18 DOF), represented

by the vector q, which lies closest to the ’UCA’ solu-

tion t; i.e. |TFT(t)− TFT(q)| → min.

For each image configuration the object cuboid is filled

with n0 = 512 points, which are then projected into the

images and Gaussian noise with 1 pixel standard deviation

is added. From these image points a small sample of k

correspondences is selected, starting from k = 7 (the min-

imum number) up to k = 15. For these samples the tensor



Figure 1: Sketches of the five image configuration. Upper row - configurations with strong image geometry: ’Tetra’,
’Air1’ and ’Air2’. Lower row - configurations with weak image geometry: ’Street1’ and ’Street2’. The arrows point in
direction of the cuboid compression, the limit of which is represented by the small bar. The camera geometry for ’Tetra’,
’Street1’ and ’Street2’ is based on the Nikon DCS460; i.e. 3000×2000 pixels (9 µm) with principal distance of 3500 pixel.
The camera geometry for ’Air1’ and ’Air2’ is based on the aerial normal angle case; i.e. image size 23×23 cm2, assumed
to be scanned with 15 µm, and principal distance 300 mm.

is computed by the five methods mentioned above. From

the computed tensor projection matrices are extracted fol-

lowing [Hartley 1997], which are then used to determine

all n0 points into object space by spatial intersection. This

results in a projective, not a Euclidian, reconstruction of

all n0 points. Using the known Euclidian object coor-

dinates of the k sample points a transformation M be-

tween the projective reconstruction and the true Euclidian

space can be computed. With M the other n0 − k points

are also transformed from the projective reconstruction to

the Euclidian space and the mean and maximum differ-

ences (termed ground errors) between the transformed and

known Euclidian positions are determined.

These steps are repeated for 1000 samples and the overall

mean of the mean and maximum ground errors are stored.

Then the cuboid is compressed in a certain direction and

the whole process is repeated for the thinner cuboid. The

overall means of the mean and maximum ground errors are

then plotted against the compression rate of the cuboid;

see figure 2 (left part) which shows the plot for the ’Tetra’-

configuration and 8 point correspondences.

For each image configuration a threshold for the mean

ground error was set. If this threshold is hurt by the mean

ground error of a certain sample, the number of failures

for the respective pair (image configuration and cuboid

compression) is increased by 1. After all 1000 samples the

percentage of failures are also plotted against the cuboid

compression; see figure 2 (right part).

Due to the space limitation only the plot for the image con-

figuration ’Tetra’ and 8 corresponding points is included

in this article. For a detailed description of these synthetic

experiments with all respective plots see [Ressl 2003]. The

results found there can be summarized in the following

way:

• The ground errors obtained for the different compu-

tation methods tend to be the same

– for a particular image configuration, if the num-

ber of point correspondences increases, and

– for a particular number of point correspondence,

if the stability of the image geometry increases.

Therefore, from 10 points onwards for ’Tetra’, ’Air1’

and ’Air2’, and from 25 points onwards for ’Street1’

and ’Street2’, all computation methods return prac-

tically the same result; i.e. then the simple direct lin-

ear solution (’UCA’) is equivalent to the rigorous con-

strained computation (’CR’) minimizing reprojection

error.

• For small numbers of point correspondences, ≤ 8 for

the stable configurations ’Tetra’, ’Air1’ and ’Air2’ and

for the unstable configurations ’Street1’ and ’Street2’

in general, the unconstrained minimization of repro-

jection error generally performed better than any al-

gebraic (constrained or unconstrained) minimization.

Therefore, the benefit of minimizing only reprojection

error, is larger than of considering only the constraints.

• Concerning the impact of the minimum thickness of

the cuboid on the various computation methods, we

can say that
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Figure 2: Plot of the mean and maximum ground errors for the ’Tetra’ configuration using: 8 points, 1 pixel noise,
camera distance: 3 m, threshold for failures: 0.025 m. The mean ground error is plotted with thin lines, the maximum
ground error with thick lines.

– for image configurations with strong geometry,

i.e. ’Tetra’, ’Air1’ and ’Air2’, the minimum thick-

ness is practically independent on the computa-

tion method of the tensor, and becomes smaller

for larger numbers of point correspondences.

– for image configurations with weak geometry, i.e.

’Street1’ and ’Street2’, the minimum thickness is

larger for the algebraic methods and smaller for

the reprojection methods, where the consider-

ation of the internal constraints adds a signifi-

cant additional benefit; and for larger numbers

of point correspondences the minimum thickness

also gets smaller generally.

• Depending on the number of point correspondences,

the computation of the trifocal tensor was still suc-

cessful for the minimum thickness of the cuboid given

in table 1; afterwards it failed. Because of the discrete

cuboid compressions the actual minimum thickness is

smaller than the presented values; i.e. if the percent-

age of failures for one compression is zero and for the

next it is non-zero, then the actual minimum thickness

lies somewhere in between.

4 EXPERIMENTAL RESULTS FROM REAL

DATA

The findings of the previous section suggest that the practi-

cally most relevant image configurations ’Air1’ and ’Tetra’,

could be used also for very flat objects, with a minimum

thickness of about 1% of the camera distance, provided

10 point correspondences are available. One such object

could be the facade of a building.

The Institute of Photogrammetry and Remote Sensing in

Vienna created a test field for the calibration of terrestrial

cameras by sticking retro reflecting targets on the facades

of their inner courtyard; [Ballik 1989]. Due to the known

object coordinates of the targets, these facades provide a

suitable object to test the determination of the trifocal

tensor for nearly coplanar object points using real data.

The right part of figure 3 shows one of three images from

one of the facades, which were taken approx. 35 m away -

from the third floor of the opposite part of the building us-

ing a calibrated Canon EOS 1Ds with a 20 mm objective1.

Considering this camera distance the minimum thickness

of about 1% would correspond to approx. 35 cm. Unfor-

tunately the retro reflecting targets on this facade have a

depth range of only 18 cm. Furthermore, the 20 mm ob-

jective used for this test has a significant amount of radial

image distortion, see figure 3 left part, which was not re-

moved in advance from the three images used for this test.

Also the focal length of 20 mm is significantly different

from the focal length of 32 mm, which was used for the

synthetic ’Tetra’ configuration.

Because of all these differences between the setup for the

synthetic and the real data, the required thickness of the

object points to successfully determine the trifocal tensor

is larger than 1% of the camera distance and using only

points on the facade fails. Therefore one point (#1) on

the roof significantly behind the facade by 3.3 m has to

be used in the test sample to successfully determine the

trifocal tensor for the three images; see figure 3 right part.

On the selected facade 121 points in total are visible in

all three images and are extracted automatically with an

accuracy of approx. 0.4 pixel2.

The task of this experiment using real data is somewhat

changed compared with the synthetic data: (i) compute

the trifocal tensor for the three images using a subset of

1The digital camera Canon EOS 1Ds is equipped with a
CMOS sensor of size 24× 36 mm2 and 4064× 2704 pixels.

2This accuracy is better than the 1 pixel noise in the syn-
thetic test, but due to the other prevailing differences (distortion
and camera distance), the required thickness is still larger than
1%.



number of points
configuration

8 10 15

’Tetra’: camera distance approx. 3 m 8.3 % 2.8 % 0.9 %

’Air1’: camera distance approx. 1500 m >15 % 1.7 % 0.6 %

’Air2’: camera distance approx. 1500 m 5 % 1.7 % 0.6 %

number of points
configuration

15 20 25

’Street1’: camera distance approx. 10 m 50 % 50 % 25 %

’Street2’: reference distance approx. 2.85 m 50 % 25 % 12.5 %

Table 1: Minimum thickness in percent of the camera distance for which the computation of the trifocal tensor was still
successful. For the configurations ’Tetra’, ’Air1’ and ’Air2’ the given values hold for any computation method, whereas
for the two ’Street’ configurations they hold only for the constrained method minimizing reprojection error (’CR’).

k points, (ii) retrieve the exterior orientation parameters

for the relative orientation and since the camera is cali-

brated use the known calibration (2061.0, -1339.0, 2292.8)

for this purpose. The extracted orientation parameters

shall serve as approximate values for a subsequent bundle

bock adjustment of the three images (with fixed interior

orientation and fixed distortion) using the subset of the k

points. After the block adjustment all 121 points in the

three images are computed in object space by spatial in-

tersection. This Euclidian reconstruction differs from the

known positions of the retro reflecting targets by an ab-

solute orientation A, i.e. shift, rotation and scale. This

transformation A is computed using all 121 points. The

remaining discrepancies after the absolute orientation are

used to judge the quality of the initialization of the block

adjustment.

The aim is to find the smallest possible subset of points

for the computation of the tensor, which still provides

good enough approximate values for the initialization of

the bundle block adjustment. This task can already be

solved with the minimum number of 7 points, which are

shown in figure 3 right part. And as it turned out, for

the creation of the approximate values it is not relevant

whether the tensor is computed in the simple way ’UCA’

(without the constraints and minimizing algebraic error)

or in the rigorous way ’CR’ (with the constraints and min-

imizing reprojection error). The remaining errors after

finishing the bundle block adjustment, using the known

calibrated interior orientation and the known non-linear

distortion parameters, and the absolute orientation are:

reconstruction errors [m]

mean max

x 0.009 -0.030

y 0.009 -0.033

z 0.006 0.030

For another task with the real data we could also ne-

glect the known interior orientation of the camera and use

Kruppa’s equations to derive a common interior orienta-

tion for the three images. In this case, however, the depth

range of the used subset of object points has to be ex-

panded a lot, see figure 3 right part, and at least 15 points

must be used: 11 points from within the facade, 2 points

from the roof (lying 3.3 m behind the facade) and 2 points

3.1 m in front of it. For this point sample the rigorous

computation of the tensor in the Gauss-Helmert model

by minimizing reprojection error and considering the in-

ternal constraints (method ’CR’) is necessary, because for

the direct linear solution (method ’UCA’) no valid inte-

rior orientation can be obtained using Kruppa’s equations.

The remaining errors after finishing the bundle block ad-

justment, using the determined interior orientation (2059.7,

-1043.8, 2726.6) fixed and without any non-linear distortion

parameters, and the absolute orientation are:

reconstruction errors [m]

mean max

x 0.115 0.326

y 0.113 0.370

z 0.100 -0.429

5 SUMMARY

Concerning the computation of the trifocal tensor we dis-

covered the following using different synthetic examples:

• the difference between minimizing algebraic and re-

projection error in the computation is negligible the

more point correspondences are used and the more

the respective object points deviate from a common

plane,

• minimization of reprojection error is more important

than considering the internal constraints

• if the image geometry is not too bad and at least 10

point correspondences are used, a minimum thickness

of the object points of about 1 % of the camera dis-

tance is already enough to allow a proper solution for

the trifocal tensor.



Figure 3: Left part: The non-linear, i.e. radial , image distortion of the camera Canon EOS 1Ds with a 20 mm objective.
Right part: The second of three images of the facade used for the experiment. The 7 yellow arrows pointing up-right
mark the points used to compute the trifocal tensor for the task with known interior orientation; #1 marks the one point
on the roof significantly behind the facade by 2.5 m. The 15 blue arrows pointing up-left mark the points used to compute
the trifocal tensor for the task with unknown interior orientation.

Guided by this findings we also carried out an example

using real images taken from a facade. From this example

we see:

• if the interior orientation of the camera is known, then

the exterior orientation derived from the trifocal ten-

sor is sufficient to initialize a bundle block adjustment,

even in the presence of significant radial distortion

and even if the tensor is computed with the minimum

number of 7 point correspondences (since the mini-

mum thickness of the points on the facade was below

1 % of the camera distance, one point significantly

away from the facade was necessary),

• if the interior orientation is unknown and the tensor is

computed with at least 15 points with 4 points signif-

icantly away from the facade, reasonable approximate

values for the interior orientation can be obtained us-

ing Kruppa’s equations.

Although for most of the investigated examples, the sim-

ple direct linear solution (’UCA’) for the tensor and the

rigorous solution in the Gauss-Helmert model (’CR’) re-

turn similar results, the latter solution is the recommended

one, because for some situations the simple solution fails

to yield a usable result.

Therefore the recommended strategy for image orienta-

tion is to first estimate the trifocal tensor rigorously in the

Gauss-Helmert model, then to derive - if unknown - a com-

mon interior orientation, to extract the exterior orientation

and finally to initialize with those orientation parameters

a bundle block adjustment, which refines the orientation

by additionally modelling the non-linear image distortion.
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