
A NEW HIGH RELIABILITY AND DUAL MEASURE METHOD 
 FOR MULTI-SYSTEM/SENSOR REMOTE-SENSING DECISION FUSION 

 
 

Ali J. Rashidi a, M. Hassan Ghassemian b 

 
a,b Department of Electrical Eng., Tarbiat Modares University, and P.O.Box: 14115-111, Tehran, Iran 

aaiorashid@yahoo.com 
bghassemi@modarres.ac.ir 

 
Commission III, WG III/6 

 
 
KEY WORDS:  Multisensor, Modelling, Classification, Decision, Vector, Fusion 
 
 
ABSTRACT: 
 
In this paper we will introduce a new high reliability multi-system/sensor decision fusion scheme based on dual measure calculations 
and formulations. The data are collected from remote sensing of the ground targets in different spectral bands including visible, near 
infrared (NIR), IR, thermal, and microwave by multi-system/sensor systems. At first, we will review the decision fusion methods 
such as voting methods, rank based algorithm, Bayesian inference, and Dempster-Shafer combination scheme. We show that the 
essential and common weaknesses of these formal methods are ignoring the class correlation of local classification results and 
classification error distributions for all classes at different pixels. Then by establishing the commission and omission errors 
distribution vectors and matrixes, we will formulate and introduce a new dual measure decision fusion (DMDF) algorithm. 
Formulation the similarity and correlation of local classification results and errors for different classes and need to hard decisions, 
can be considered as the main features of DMDF. The assumption of uncorrelated errors is not necessary for DMDF, because an 
optimal class selector always selects the most appropriate class for each pixel. Finally, we deploy these methods for fusion of local 
classification results, obtained from remote sensing in 12 different spectral bands. In commission and omission errors viewpoints, we 
will obviously show that the DMDF method is more accurate and reliable than other methods. 
 
 

1. INTRODUCTION 

The recent developments of new sensor technologies (Trankler 
H. R. and Kanoun O., 2001) and applying the multiple sensor 
systems have necessitated new needs for advanced data 
processing techniques that are able to fuse received data from 
different variety of sensors and systems. Multi-sensor data 
fusion is a technology concerned with the problem of how to 
combine data and information from multiple sources/sensors in 
order to achieve improved accuracies and better inference about 
the observed target than could be achieved by the use of a 
single source/sensor alone. In recent years, the multi-sensor 
data fusion has been significantly considered for military and 
non-military applications, such as target and pattern recognition 
(Bhanu, 1986, Mirjalily et al., 2003), automatic landing 
guidance (Sweet and Tiana, 1996), remote-sensing 
(Benediktsson and Kanellopoulos,1999, Jimenez and Creus, 
1999, Rashidi et al., 2002, Rashidi and Ghassemian, 2003), 
manufacturing processes monitoring (Chen and Jen, 2000), 
robotics (Bond et al., 2002), and medical applications 
(Hernandez  et al. ,1996, Djafari, 2002). Data fusion 
considering the phase of processing, in which the fusion is 
carried out, is performed in three levels including the 
image/signal, feature, and decision fusion. In decision level 
fusion (Jimenez and Creus, 1999, Rashidi et al., 2002, Mirjalily 
et al., 2003, Rashidi and Ghassemian, 2003), the received 
results from different local classifiers will be combined for 
determination of final decision. The input decisions are some 
symbols (labels) with different degrees of confidence. This 
level of fusion has a great use in distributed and parallel 
processing systems.  Figure 1 illustrates, the concept of multi-
sensor decision fusion in distributed target sensing network. 

The useful decision fusion methods, which have been applied in 
different applications, are voting, rank based, Bayesian 
inference and Dempster-Shafer methods. 
 
 
 
 
 
 
 
  
                                                                                  
 
 
 
 
 
 
 

 

Figure 1.  Multi-sensor decision fusion framework. 

The main problem in voting methods is that they suffice to local 
classification results for local winner class in its defined pixel, 
which causes an intensive decrease in accuracies of decision 
fusion results for the obtained class-correlated data. Comparing 
with voting schemes, the rank based method has more attention 
on data. It uses the results of local classification for a defined 
pixel, but in all classes. In this method, the results of local 
classification should include the rank or classification measure 
values of all classes, which cause intensive increasing in data 
volume of local classifiers outputs, communication systems 
between local classifier and fusion centre, and the input of 
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decision fusion centre. The Bayesian method does not consider 
uncertainty and may have error and complexity in the posterior 
probabilities measurements. When the number of unknown 
propositions is large compared to the number of known 
propositions, the probabilities found by Bayesian method can 
become unstable. Dempster-Shafer method is an extension of 
the Bayesian inference, which overcomes some of the 
drawbacks. This method can be used without prior probability 
distributions and is able to deal with uncertainty. The main and 
common problem in suggested fusion methods is the ignorance 
of nature of local data classifiers and similarity of classes. Also, 
these methods use only the local classification results in one 
point (pixel), without attention on result distribution for all 
classes and other different pixels. These problems demand 
searching for new methods and tools for accessing desirable 
results. In this article, after a short review of the above-
mentioned methods, by using the mathematical features and 
distributions of multi-sensors local classification results, we 
introduce two new measures. These new measures are 
commission and omission errors functions. Then we derive and 
explain the commission and omission errors distribution vectors 
and appropriate matrixes that we can use as new tools for 
Dempster-Shafer method. Finally, we use these two measures 
jointly for presentation of a new powerful decision fusion 
method, which we called as Dual Measures Decision Fusion 
(DMDF) method. Deployment of these methods for fusion of 
local classification results, for data obtained from remote 
sensing in 12 different spectral bands show that the 
performances of DMDF is higher than another methods. In 
commission and omission errors viewpoints, we will show that 
DMDF method that uses special properties of multi-sensors 
local classification results has better accuracies and reliability 
than other methods. 
 

2. DECISION FUSION METHODS 

In this section, we explain the decision fusion methods, which 
applied for different application such as pattern recognition, 
automatic word recognition, target acquisition and remote 
sensing. These methods include voting, rank based, Bayesian 
inference, and Dempster-Shafer schemes. Now, we briefly 
explain about some criterions, which have been used in this 
article. For local classification, we have applied the maximum 
probability method that we will accordingly have: 

ijXgXgifX jii ≠∀>∈ )()(ω                (1) 

In which, the )(Xgi
 is classifier discrimination function and 

iω  is the selected data class. In addition, the output of each 
classifier can be generally defined as follow (Parker, 1998):
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 In which, the N is the number of ranked classes by thi  
classifier,  ),...,2,1( Njni

j = is the name of class, j is the class 

rank and i
js is the value of classification measure for thj  rank. 

Also, the rank of thn class in thi classifier is shown as i
nr . 

 

2.1. Majority voting fusion method (MVF) 
 
This method just uses the first rank of classifiers (hard decision) 
and is simple for applying. In MVF method, we have allocated 
X pixel to jω according to the following criterion (Jimenez& 
Creus, 1999): 
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The )( i
i
j xg is the classifier discrimination function. 

 

2.2.  Rank based method 
 

The classification measures and criterions in different classifiers 
can be different with each other, so it is not possible to compare 
them directly. For avoiding the disadvantages related to 
exchanging these criterions, the rank based method can be 
applied. A simple way for this method is calculation the 
summation of ranks for each class in the combination set. The 
class with minimum rank summation is the choice of decision 
fusion system. 
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In which, m is the number of classifiers, and )(nrΣ  is total 

ranks of thn  class [Acherman& Bunde, 1996], [Parker, 1998], 
[Rashidi& Ghassemian, 2003]. 
 

2.3.  Bayesian inference method 
 

The Bayesian theory is applied for inference of joint probability 
of input classifiers. Supposing },...,,{ 21 Nωωω=Ω is the 

data class set. In this case, X allocated to kω class if: 

kjXPXPifX jkk ≠∀>∈ )/()/( ωωω             (7) 

where )/( XP kω is the posterior conditional probability. In 
this method, the complexity of the posterior probabilities 
calculation is a serious problem [Hall, 1992], [Acherman& 
Bunde, 1996]. 
 

2.4.  Dempster-Shafer method (DS)  
 
Dempster-Shafer evidence theory, also known as theory of 
belief functions, is regarded as a generalization of the Bayesian 
theory (Dempster, 1968, Hall, 1992, Foucher et al., 2002, 
Hongwei et al., 2002). Suppose that },...,{ 1 NAA=θ , 
which is called as a frame of discernment, is a finite set of N 
mutually exclusive and exhaustive sets of propositions about a 
subject area. Therefore the power set of θ (denoted as θ2 ), 
composed all subsets ofθ , is as follow: 

,...},...,,,...,{2 1211 NN AAAAAA ∪∪=θ              (8) 
where ∪  is the sets union operator. The DS method, instead of 
assigning probability to hypotheses (Bayesian method), assigns 
probability masses )( iAm  to both single and combined 
propositions. The probability mass function is defined as 
follow: 
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In which, φ is the empty set and ⊂  is the subset operator. 
The DS rule of combination for two independent sources can be 
written as follow: 
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where ∩  represents sets intersection and im  is the 

probability mass function of thi  source (classifier). In addition 

lu  is a proposition that defined as a combination of the 
elemental hypotheses, iA  and jB . 
 

3. DUAL MEASURE DECISION FUSION (DMDF) 
METHOD  

In this section, we introduce new tools including commission 
and omission errors functions, distribution vectors, and matrixes 
based on local classification results. Then, we use commission 
and omission errors measures jointly, and present the algorithm 
of DMDF decision fusion method. 
 
3.1.  Extraction and offering DMDF tools 
 
We consider the iconf  as the confusion matrix obtained from 
the local classification results. In addition, we suppose that 
the

iCN is the total number of pixels related to the iC class and 

we denote the ijn  as confusion matrix general element. 

The ijn is the number of pixels which related to the iC  class 

that the local classifier is assigned them to the jC class. 
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In which, the *
jCN is the total number of assigned pixels to the 

jC  class. Now, we define the 
jiCCmc and 

jiCCmo  measures 

as the commission and omission errors functions of the thi  
classifier results:  
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In addition we define the i
C j

cµ and i
C j

oµ  vectors as the 

commission and omission errors distribution vectors of thi  
classifier results. Therefore, we have: 
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In which, T is the symbol of matrix transposition. 
Now, we define the commission and omission errors 
distribution matrixes of thi classifier results, iMc and iMo , as 
follows: 
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The iMc and iMo columns are respectively the commission 
and omission errors distribution vectors ( i

C j
cµ and i

C j
oµ ) of 

local classifiers. As much as we have lower commission or 
omission errors in classifying results, the iMc / iMo  matrix 
will be more diagonal. Therefore, in order to be aware of 
commission or omission errors of a classifier results, it is just 
sufficient to calculate the iMc / iMo  matrix and consider the 
diagonal level in different classes. The 

jiCCmc , 
jiCCmo , i

C j
cµ , 

i
C j

oµ , iMc and iMo  are DMDF toolbox elements which we 

will use them in the next section. 
Example: For explanation the properties of the DMDF toolbox 
elements (functions, distribution vectors, and matrixes), we 
have used the multispectral scanner data obtained from remote 
sensing related to an agricultural area in Indiana (United State). 
This data was collected by a 12-channel airborne multi-spectral 
scanner system during the 1971. In each local classification, the 
data of 4 bands have been used. (See table 1) 
 
Table 1.  Spectral information for data used in example 1 
 

Spectral 
Bands 
No. 

Wavelength  
( mµ ) 

Spectral 
Bands 
No. 

Wavelength  
( mµ ) 

1 0.46-0.49 7 0.61-0.70 
2 0.48-0.51 8 0.72-0.90 
3 0.50-0.54 9 1.00-1.40 
4 0.52-0.57 10 1.50-1.80 
5 0.54-0.60 11 2.00-2.60 
6 0.58-0.65 12 9.30-11.70 

 
By using the confusion matrix of the first local classifier we 
calculate the commission and omission errors matrixes 
( iMc , iMo ), for this local classifier. The fourth columns of 
the iMc  and iMo respectively are the commission and omission 
errors distribution vectors ( 1

4cµ  and 1
4oµ ) of the fourth class. 

(See Figure 2 and Eqs. (20), (21)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. The commission and omission errors ( 1

4cµ , 1
4oµ ) 

vector functions. 
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As it shown in Figure 2, the commission error distribution of 
the first classifier in assigning the pixels to the fourth class 

0
0.1
0.2
0.3
0.4
0.5

C1

C2

C3

C4

C5C6

C7

C8

C9

1
4Coµ

1
4Ccµ



 

( 4C ) is not desirable. For example, in this classification, the 

chance of assigning the pixels of other classes to the 4C  class is 
higher than the chance of assigning the 4C  pixels to the 

4C class (bad classification). So, in an exact expression, we can 
write: 
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Also, Figure 2 shows that the omission error distribution of the 
first classifier in assigning the 4C  pixels is not desirable. 
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Eq. (24), shows that only %33 of the 4C  pixels allocated to 
the 4C . In other words, after classification, the most pixels of 
the fourth class (%67) allocated to the other classes (bad 
classification). In next section, we will present the DMDF 
method for decision fusion, by applying the relevant tools and 
measures, which we have extracted in this section.  
 
3.2. The formulation of DMDF method  
 
We can apply each of the 

jiCCmc and
jiCCmo  measures as the 

probability mass function that indicated in Eq. (9). Therefore, 
for fusing the results of the two local classifiers, considering the 
commission or omission errors matrix of each classifier, we can 
deploy the new form of Eq. (10) as follow:       
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In which, ⊕ is symbol of classifiers fusion, ba
cl

⊕µ is 

commission or omission errors distribution vector obtained 
from fusion. Also, m and *m are respectively commission or 
omission errors distribution functions of a and b classifiers and 

ba ,α  coefficient is equal to: 
1
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where: 
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The selected class as the result of fusion is a class, which 
includes the maximum value of ba

cl

⊕µ  (fusion output). In other 

words, we have:   
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The new measures provide the advantages of considering the 
important features of local decisions, i.e. commission or 
omission errors, and they depend on only to the local classifier 
performances. Therefore, the calculation of these new tools 
compare with the basic DS method probability masses is very 
easier. If we use the commission or omission errors tools for 
improving the DS method, then the improved method name is 
DS (PM) or DS (CM).  Although, using these new measures, we 
can considerably improve the fusion results in DS method, in 

this section; we present the DMDF algorithm, which is based on 
the parallel usage of these measures. Supposing the decision 
fusion results, using commission and omission errors measures 
are as follows: 
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In which, jic ,α and jio ,α  are ba ,α  coefficient that defined in 

Eq. (25). In the DMDF method, the final decision for selected 
(winner) class is considered as follow: 
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In which, )(21
, hc cocm
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are the extracted joint measures from fusion results, by applying 
the commission and omission errors vectors, and defined as 
follows: 
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Figure 3, illustrates the decision fusion procedure in DMDF 
algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The multiple classifiers decision fusion scheme in 
DMDF method. 
 

4. Deployments and Comparing the Methods 
 

In this section, we have deployed the decision fusion methods  
including MVF, rank based, Bayesian inference, Dempster-
Shafer and DMDF for fusing the local classifier decisions. Then 
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we compared the decision fusion results, considering their 
commission and omission classification errors those defined as 
follows: 
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In which, 
iceo  and 

icec respectively are the omission and 

commission classification errors for ic  data class (Petrakos et 
al., 2000, Rashidi& Ghassemian, 2003). In addition, the total 
commission and omission errors and reliability factor ( totre ) 
for all data classes are defined as follows: 
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The experiments have done for more than 15 available remote 
sensing data classification results. In all of these experiments, 
we have found that the DMDF performances are higher than 
other methods. In this section we show the decision fusion 
results related the data described in example (we called C12 
data). In tables 3 and 4, there are comparisons for percentages 
of the omission and commission classification errors for the 
final classification in different methods versus data classes. In 
addition, Figures 4 and 5 and table 5 show the percentages of 
the total omission and commission errors and reliabilities for all 
data classes of data. 
 

Table 3. The decision fusion methods omission error 
percentages  (

iceo ) for C12 data.  
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Corn 1.64 0.45 13.3 2.41 2.11 2.89 
Soybeans 0.43 0.62 6.31 3.05 0.47 2.63 
Woods 77.8 75.2 94.0 36.0 50.9 23.9 
Wheat 23.8 30.0 71.5 20.9 30.6 14.6 
Sudex 2.12 1.92 11.6 3.55 3.32 3.56 
Oats 38.2 54.1 62.9 30.6 51.1 13.6 
Pasture 2.15 2.14 47.5 2.14 2.14 0.32 
Hay 25.8 35.1 66.6 16.5 32.8 15.4 
Unclassified 2.25 5.56 1.41 3.53 3.58 3.68 

 
Table 4. The decision fusion methods commission error 
percentages (

icec ) for C12 data. 
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Hay 26.8 8.63 45.3 14.6 9.06 15.8 
Unclassified 15.1 8.04 30.4 7.6 11.1 7.28 

                                                                                            
 
 
 
 
 
 
 
 
 
 
 
 
   
Figure 4. The total omission errors for the decision fusion  
  methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Figure 5. The total commission errors for the decision  
   fusion methods. 
 

Table 5. The reliability factors for the decision fusion methods. 
 

Methods Reliability (C12 
data) 

MVF %82.55 
Rank %84.20 
Bayesian %64.70 
DS(CM) %86.36 
DS(PM) %86.56 
DMDF %89.70 

 

Considering the mentioned results in the tables and figures, it is 
cleared that the DMDF method, has lower commission and 
omission errors and higher reliability than other methods. This 
superiority is raised from the better combination rules and 
extraction the new tools such as commission and omission 
errors distribution vectors in the DMDF algorithm. Another 
important point about the presented method is that, we just need 
to hard decision for extraction the commission and omission 
errors matrixes of classifier results as the fuser inputs, while the 
other methods such as rank based and Bayesian methods, need 
soft decisions which are high volume data and complex inputs. 
Therefore, we confirm that the new method has a desirable 
condition for all classes in commission and omission errors, and 
reliability viewpoints. Of course, for any data fusion and 
classification, we should note that we have to evaluate the 
commission and omission errors of the whole classes jointly, 
and improving in only one of them is not sufficient. So, table 5 
shows that the DMDF is superior in this aspect(reliability) 
comparing the all other methods. 
 
5.  Conclusion      
In this article, we described at first, the most useable methods of 
decision fusion such as  MVF, rank based, Bayesian inference 
and Dempster-Shafer theory of evidence. Meanwhile, we 
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referred to the related problems and insufficiency of mentioned 
methods as the formal methods of decision fusion. It was also 
showed that it is the main problem in voting methods that they 
use only the local classification results for local winner class in 
only one defined pixel. This causes an intensive increasing in 
commission and omission errors of decision fusion results for 
correlated data, and also for class correlated classifiers errors. 
Also, the rank based methods, which use the local classification 
results in the order of the rank of all classes in a defined pixel, 
the volumes of transferred data and data, which should be 
processed, will be intensively increased. Improvements in 
performances for voting and rank based methods are related to 
the degree of error diversity among combined classifiers. 
Unfortunately, in classification applications, it may be difficult 
to design an ensemble to exhibit a high degree of error 
diversity. The Bayesian method does not consider uncertainty 
and may have error and complexity in the posterior 
probabilities measurements. We explain that the Dempster-
Shafer method, which is an extension of Bayesian inference, 
overcomes some of the difficulties. This method can be used 
without prior probability distributions and is able to deal with 
uncertainty. The main and common problem in suggested 
fusion methods is the ignorance of nature of local data 
classifiers and similarity of classes. Also, these methods use 
only the local classification results in one point (pixel), without 
attention on result distribution for all classes and other different 
pixels. For solving these problems and accessing desirable 
results, by using the mathematical features and distribution of 
multi-sensor local classifications results, we introduced 
commission and omission errors functions. Formulation the 
similarity and correlation of local classification results and 
errors for different classes and need to hard decision, can be 
considered as the main features of these new tools. Finally, by 
using the common features of the mentioned tools, we 
presented the dual measure decision fusion (DMDF) method. 
The assumption of uncorrelated errors is not necessary for 
DMDF because an optimal class selector always selects the 
most appropriate class for each pixel. In previous section, we 
deployed these methods for fusion of three local classifier 
results. After comparing the results, we showed that the DMDF, 
which uses the special features of multi-sensor local decisions, 
has lower commission and omission errors and higher reliability 
than other methods. Of course, the DMDF method is a flexible 
method that can use for any decision fusion problem and any 
application. Although we obtained desirable results through 
developing the DMDF, extraction the new measures and 
distribution, and applying of some tools such as: fuzzy 
measures and methods, and neural network for accession the 
better reliability are considered as the next interest research of 
the writer. 
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