A SOLUTION FOR THE GENERAL CASE OF THE THREE-IMAGE ORIENTATION
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ABSTRACT:

In an easy solution for three - image orientation, each model coming from two images of a triplet is analyzed and the relative
orientation between them computed, by using an exhaustive research of preliminary values of its parameters. This non-conventional
approach supplies the orientation of two images, taking into account a priori information among four base solutions. The automatic
procedure of orientation wants to skip the manual assessment by using three images, which would allow to solve for the ambiguous
solutions. Once each model has been relatively registered, the absolute orientation is computed by using a linear parameterization of

this problem.

1. INTRODUCTION
1.1 Orientation procedures in photogrammetry

Orientation procedures play a fundamental role in the object
reconstruction process of photogrammetry. Traditionally, the
call for stereo-vision leaded to setup a geometric solution based
on interior and relative orientations, which are the pre-requisite
for any further task to extract information from a pair of images.
The former refers to the determination of 3 intrinsic parameters
(principal distance and coordinates of principal point in the
camera reference system), the latter to the computation of the
baseline vector linking two perspective centres and relative
rotation of one image with respect to the other; the number of
unknown parameters adds up to 5, which usually follow one of
two geometric model, namely the symmetric and asymmetric
one. By introducing the knowledge of ground information (e.g.
GCPs) the absolute orientation can be computed and the model
computed from relative orientation can be transformed into the
real world, or to a scaled representation of this such a
topographic map. Research on this topic has been attracting the
interest of photogrammetrists in the first mid of 20™ century
(Finsterwalder, 1899; Fourcade, 1926; Kruppa, 1913).

From the 50°s to 70’s, mathematical fundamentals of analytical
photogrammetry were established. New formulations of two-
image orientation were published (Semple & Kneebone, 1952;
Thompson, 1959; Stefanovic, 1973), while the unexplored field
of aerial triangulation began to be dealt with (Schmid, 1954;
Schut, 1955-56).

Two topic aspects have to be focused concerning orientation
procedures in photogrammetry up the so called “analytical era”:

e the use of analogue imagery and of purely manual
measurement for orientation purposes, resulting in the use
of a small set of accurate points for computing relative
and absolute orientation; this fact limits the problem of
blunders to a small number of gross errors (due to wrong
labelling, image content misunderstanding and the like)
and to a low fraction of small errors.

e orientation problems such as formulated in
photogrammetry are non-linear and they are usually

solved by a Least Squares approach, after a linearization
of equations. In this way, L.S. adjustments can run
automatically and more refined treatments (e.g. robust
procedures and re-weighted L.S.) can be performed, step
by step, always solving linear systems. It is obvious that
all methods can start only if the preliminary values of the
unknown parameters are known. Aerial blocks feature
regular shapes, so that approximations may be easily
derived, because the project for data acquisition define
these parameters with a sufficient accuracy, or auxiliary
measurements are available at the time of data acquisition.
But also close-range blocks, up to 70’s show
configurations, which are very similar to those of aerial
photogrammetry, offering the same possibility to solve for
approximations.

These statements will result fundamental to comprehend the
changes introduced in photogrammetric orientation approaches
in the following decades.

Since the 80°s a new challenge defied the community of
photogrammetrists, given by the possibility of managing and
processing digital images by computers. Whether the concept of
a totally digital stereo-plotter (Sarjakoski, 1981) became in few
years a reality, on the other hand automation of all analytical
orientation procedures was the topic research issue up to the
end of 1900 (for a review see Heipke, 1997).

1.2 Photogrammetry meets Machine Vision

The development of digital photogrammetry is parallel to that
of machine and robot vision techniques. Here the problem of
object reconstruction is needed for specialized and real-time
purposes, such as object recognition, production and quality
control, vehicle and robot guidance an so on, not for deriving
cartography of however a wider description of the space. This
fact limits the number of digital sensors to be used to the
minimum: in case of objects lying in a plane, a single image, in
case of 3D object a two-image configuration will be adopted,
tuning the interest on relative orientation procedure. For this
reason, many algorithms have been developed to cope with this
task, keeping into account the possibility of solving for any
geometric configuration (no approximation needed) and the use



of uncalibrated sensors (cameras and video-cameras). Thus
linear methods to solve for relative orientation' based on the
essential matrix (Longuet-Higgins, 1981) and on the
fundamental matrix (Faugeras et al., 1992), algorithms
integrating self camera calibration (Hartley, 1992), applications
to motion vision (Weng et al., 1993) and estimation techniques
different for classical L.S. have been introduced. A review on
this subject can be found in Hartley and Zisserman (2000).

The impact of these solution to photogrammetry was twofold:

e solution to the problem of approximations, which are
found by applying linear method and then refined by
standard photogrammetric equations; ih this case
derivation of geometric from algebraic parameters is
needed (see Hattory & Myint, 1995; Pan, 1999).

e preliminary gross outlier rejection, integrating high break-
down robust techniques (Torr & Murray, 1997).

Several matching techniques were developed to fin homologous
points and features. While in photogrammetry orientation
equations are prevalently point-based, machine vision
techniques also exploit other kinds of constraints, such as lines,
surfaces and angles.

Nevertheless object reconstruction from a pair of images suffers
from low redundancy, being the control on the extracting of
homologous point by matching techniques limited to epipolar
constraints. To overcome this drawback, a formulation of the
relative orientation of a triplet of images has been established
through the so called trifocal tensor (also referred to as trilinear
tensor), introducing a higher redundancy (Spetsakis &
Aloimonos, 1990; Hartley, 1994)2. A review can be found in
Ressl (2000). Application of trifocal tensor to solve for
approximations in standard orientation procedures (relative
orientation, AT) is very useful, because it allows to deal
effectively with large fraction of blunders, such those resulting
from automatic extraction of tie points by matching techniques.
However as in case of relative orientation, derivation of
geometric parameters must be computed.

1.3 Three-image orientation through exhaustive research

In this work, we tried to solve the non-linear problem of three-
image orientation based on the classical background of
photogrammetry. Solution such as those based on the trifocal
tensor could be very useful for stand alone problems such as
those of machine vision. When approximate values of geometric
orientation parameters of a standard photogrammetric block
have to be found, a solution giving this parameterization (or a
similar one, e.g. requiring only a 3D transform) would be better.
In Mussio & Pozzoli (2003a,b) a solution of relative orientation
problem based on exhaustive research of the preliminary values
of parameters has been proposed.

Exploring the 3D space with a step of [1/4 is possible to find all
the preliminary values of the unknown orientation parameters.
This idea want to avoid the linearization of the orientation
functions supplying the lack of information about the position
and the attitude of an image.

' In reality the paper of Thompson (1959), coming from

photogrammetry, already proposed a linear method for
relative orientation which was similar to that of Longuet-
Higgins.

2 Also in this case (see note 1), formulation of the dependency
among three images was already published in
photogrammetry by Rinner & Burkhardt (1972).

2. FROM IMAGES TO OBJECT VIA MODEL

The main function of photogrammetry is the transformation of
data from the image space to the object space. We can make this
transformation in a direct way, with collinearity equations, or in
two steps, with the formation of a model and, only in a second
time, reconstructing the original object (Kraus, 1993). First of
all, we have to take into consideration that:

- animage is not a map;
- at least two images are needed for reconstructing an
object.

A relation of roto-traslation with scale variation constitutes the
link between the coordinates of the point Q (x,y,z) in an image,
and the coordinates of the corresponding point P (X,Y,Z) in the
object space. Both reference systems are traditionally Cartesian
reference systems, but the same is true, with minor changes,
using a different reference system, suitable linked to the
previous ones. Let us show the above mentioned relation:
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Figure 1. Reference Photogrammetric Systems

3. PROJECTION TRANSFORMATION

The photogrammetric technique is based on a transformation of
a perspective (or a couple of perspectives) in a quoted
orthogonal projection. In this transformation, we have non-
linear equations and, before starting the plotting, we need
information about the preliminary value of unknown
parameters. Our main aim is to find expressions working with
parameters easy to be obtained. We choose a ‘two steps’
procedure to orient two images in the 3D space. This procedure
does not use the classical collinearity equations (/2 parameters:
Xy, Y1, Zy, X3, Yo, Z, -coordinates of the two projection
centers, and ®;, @, K 1, ®y, Py, K, -attituded angles of the two
sensors), but separates the model formation (Relative
Orientation) from the object reconstruction (Absolute
Orientation). In this procedure, we define the problem of



Absolute Orientation by means of 7 parameters: t,, t,, t, (shift
vector), A (scale factor), Q, ®, K (Cardanic angles). On the
contrary, to define the problem of Relative Orientation, we need
5 parameters: @, K, ®, ¢, K, (Symmetric Relative
Orientation), or by, b, ®,, ¢, %, (Asymmetric Relative
Orientation).

4. MODEL CONSTRUCTION
4.1 Relative Orientation Parameters

Regarding the Relative Orientation, we make an exhaustive
research of the preliminary values, solving a linearized problem
in all its possible cases. Notice that an exact solution has been
found (see par 1.2), but it leads to an equation of order four,
which supplies four plausible solutions, as we can easily
achieve by repeating a linearized problem via an exhaustive
research. In case of Asymmetric Relative Orientation, we have
to define by, b,, 0,, ¢,, K,, which are the parameters of position
and attitude of the second image, compared to those of the first
image. Notice that b, is already defined in the Absolute
Orientation, as the scale factor A. In case of Symmetric Relative
Orientation, we have to define ¢, k;, ®,, ¢y, K, parameters
which represent position and attitude of the two images. Notice
that ®; is missed because it is already defined in the Absolute
Orientation, as the global attitude angle €.

4.2 Exhaustive Research

For the Relative Orientation, we should have previous
information about the preliminary values of the parameters. It is
not always possible to know them, before the plotting. Let us
point out that non-conventional photogrammetry implies often
camera acquisition without classical surveying measurement. If
we consider the classical Symmetric procedure of Relative
Orientation, we can make an exhaustive research of all possible
preliminary parameters, because we work in a closed group (in
the topological sense) of values compared to the rotations in the
space.

Notice that in the Asymmetric procedure of Relative
Orientation, we have two shift parameters to be searched, but
the group of shifting is not a closed one, so we had to use a
different way to find the preliminary values. However with the
following relations is possible to transform the Symmetric
Relative Orientation parameters in the Asymmetric ones, and
vice versa:

b, =cos ¢, cosk, @, =arcsinb,
b, =cos @, sink, k, = arctan 22 (2,3,4,5,6)
b, =sing, b,
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The convergence of linearization of trigonometric functions is
acceptable as far as values lower or near I1/4. Therefore we
decided to explore all the admissible values for rotation angles
with a step of [1/4, as shown below:
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Table 2. Exhaustive Research for Symmetric Relative
Orientation parameters

where ©° k;=0 if ¢ ,=xI1/2 and/or k,=0 if ¢,=+I1/2

As known, if the ¢ angle is around £I1/2, we can not individuate
the k rotation, which is fixed equal to zero. Indeed in the polar
zones (we assumed their range in a circle of one degree), the
two angles are identical or quasi identical, and this fact
produced singularity or ill-conditioning.

The exhaustive research explored 5X%8x8x5x8 =12800
possible configurations. For each case, a linear system was
solved, using the values of this configuration (case), as
preliminary values of the parameters of the Symmetric Relative
Orientation.

Examples were carried out in all the middle points of the
possible configuration. Considering the 5 parameters of the
Symmetric Relative Orientation, the angles «,, m,, k, are defined
in a complete rotation (8 configurations), whilst ¢, ¢, are
defined in a half rotation (5 configurations), which led to the
above mentioned 12800 cases.

Each linear system solution gave us the estimate parameters for
the Symmetric Relative Orientation. The convergence to
admissible values is when o, is small enough. Considering only
the distinct solutions, we found four analytical acceptable
configurations.




v
A

Figure 3. The 4 final possible configurations

These configurations are really different, so it is not so difficult
to have information about the initial position of the images, in
every specific case. If an operator would select the proper case,
it is possible to calculate the estimate parameters for the
expected Symmetric Relative Orientation.

5. 3-IMAGE PROCEDURE

In our approach, we choose to use three images to operate the
global procedure, in order to eliminate the human decision.
Actually to start the Absolute Orientation, we have to select
manually one among the founded four configurations.
Introducing the third image, we want to bypass the human
decision, turning it automatically.

The step of the Model Construction furnishes four admissible
solutions, as above said, and produce four distinct models
(called A,B,C.D). In case of three partially overlapped images,
this step can be repeated two times. Indeed the model 1-2 can
be formed by the images 1 and 2, and the model 1-3 can be
formed by the images 1 and 3.

5.1 Bridging the models

A 3D S-transformation allows to make the bridging of these
models, taking into accounts all the four models obtained
according to the admissible solutions founded in the Relative
Orientation. The procedure leads to sixteen different small
blocks, as it is shown below:

2A 2B 2C 2D
1A | 1A-2A | 1A-2B | 1A-2C | 1A-2D
1B | 1B-2A | 1B-2B | 1B-2C | 1B-2D
1C | 1C-2A | 1C-2B | 1C-2C | 1C-2D
1D | 1D-2A | 1D-2B | 1D-2C | 1D-2D

Figure 4. Models Bridging

The majority of these blocks are completely unlikely; indeed the
sigma naught of the 3D S-transformation adjustment is
enormous. This fact is reasonable because if and only if both
models (1-2 and 1-3) are congruent between themselves, the
bridging can be carried out successfully.

The set of congruent and incongruent combinations supplies

only two small blocks whose sigma naught is satisfying. The
two small blocks are originated from two different admissible
solutions in each four couple; (this means that) putting in a
square table all the sixteen solid structures, the two congruent
ones belong always to different rows and columns.

The analysis of the geometry of four admissible solutions
recognizes the high regularity of the presented values. As a
consequence, the two congruent small blocks present 3D
coordinates in two mirror reference frames.

6. OBJECT RECONSTRUCTION
6.1 Absolute Orientation Parameters

Starting from a roto-traslation in the space, a rational alternative
to classical Rotation Matrix is the Rodriguez Matrix.

R=(I1-S)"'(1+S) )

where I is the identity matrix of 3x3 dimensions, and S is an
emisymmetric matrix defined as follows:

0 -b
S=|-¢ 0 «a (10)
b -a 0

This emisymmetric matrix S permits to find the exact solution of
the absolute orientation problem, thanks to the solution of a
linear system, after a suitable substitution of variables.
After simple substitutions, we obtain a linear solution, showing
the direct proportion between the model coordinates
x =x(u°v°,w°) and the object ones y = y(X,Y,Z):

yi =R =(1-8)(1+Sk, = (1-8)y, =(1+S)k;) (1

Reorganizing matrices and vectors, in a way which collects in a
unique vector the three unknown parameters, coming from the
above mentioned emisymmetric matrix, we obtain the following
final equation:

2 2 o0 N o (P
—(Z‘—WOU.) 0 —(X,—u°,i) bj + Yl—v°li =0
¥, - —(X, -uty) 0 ¢ |Zi—»y

6.2 Exact Solution of the Absolute Orientation

In our procedure for the Absolute Orientation, the object
reconstruction does not need preliminary parameters, because
we can reach the exact solution, by solving the linear system,
mentioned in an above paragraph.

6.3 Absolute Orientation with 3-image procedure

If we have to manage two different small blocks in two mirror
reference frames, the qualitative comparison with the object
coordinates select automatically the congruent configuration. As
well known, a 3D S-transformation permits to compare model
and object coordinates, transforming the first coordinates in the
second ones. The 3D S-transformation can be done in a linear
way, in fact the whole procedure terminates with a unique
solution, which traces back all the path followed, enhancing the



correct choices at the different steps and eliminating the wrong
possible alternatives.

Figure 5. The 2 small blocks obtained after the model bridging
(the second one is incongruent)

7. NUMERIC EXPERIMENTS

To verify precision, accuracy and reliability of these techniques,
a program in FORTRAN 95 has been implemented and tested.
It runs on a Pentium 3 PC, with 933 MHz — 262 Mb / RAM —
30 GB / Hard Disk. The exhaustive research for the Symmetric
Relative Orientation works in 4 - 5 seconds, while all others
procedures are immediate. In all the examples, we introduced
random errors, with standard deviation of 20 pm, as usual in
photogrammetry. Here we present an explanation of these
programs:

ORPHO it converts Cardanic angles in Eulerian angles and
vice versa. This is a very large used transformation in close
range photogrammetry, because it is essential for the image
orientation, when the rotation angles are acquired by surveying
measurements.

ORSYM it calculates the preliminary values for the Symmetric
Relative Orientation. It solves 12800 linear problems, exploring
all possible configurations in the space, with a step of [1/4. The
same program, choosing one of the four distinct solutions,

permits to calculate the preliminary parameters for the
Asymmetric Relative Orientation.
ORELA it calculates the adjusted parameters of the

Asymmetric Relative Orientation, starting from its preliminary
ones. If these preliminary values are unknown at the data
acquisition, it is possible to get them from the results of the
previous program. On the contrary, if they are already known, it
is possible to transform the Eulerian angles, more frequently
and easily acquired, into the Cardanic ones, by means of
ORPHO program.

ORABS_ it calculates the adjusted Absolute Orientation
parameters. They are calculated with a simple substitution of
variables, which is able to transform the non-linear problem of
the Absolute Orientation in a linear one.

Let us summarize the global procedure for the orientation of
two images, viewing the flowchart (Figure 6).

With the new procedure, we eliminate any human intervention
after the starting inputs. For that reason we unify all the
Orientation programs in one called ORTRE. This program can
run automatically and is able to find the adjusted parameters of
the Absolute Orientation. In the follow flowchart (Figure 7) we
want to show how all the global procedure run after the starting
inputs of three images.

SURVEYING

EASUREMENT AND
(CLASSICAL)

PHOTOGRAMMETRY

NON-CONVENTIONAL
PHOTOGRAMMETRY

ORPHO ORSYM
Y SELECTION OF
AN ACCEPTABLE
GTRELA. SOLUTION
A 4
ORABS
\ 4

PLOTTING

Figure 6. 2-image Orientation — Global Procedure

ORSYM 1-2 ORSYM 1-3
4 models 1-2 4 models 1-3

BRIDGING

v

‘ 16 solid structures ‘

ONLY ONE
ACCEPTABLE
SOLUTION

Figure 7. 3-image Orientation — Global Procedure
(ORTRE Program)

As evident, the analysis of the performance of the single
programs and of the global procedure was quite heavy. Indeed it
needed a long preparation of tools, which permitted to manage
files of commands. Furthermore many different levels were
prepared in order to collect, save and store the output files for
the different steps.

8. CONCLUSION AND FURTHER DEVELOPMENTS

A solution to solve for the problem of object reconstruction
from three images not requiring any initial approximations for
orientation parameters has been proposed. The procedure is
based on the classical two steps approach of photogrammetry,
i.e. relative and absolute orientation. All possible combinations
of image pair in the triplet are considered and relatively



registered by an algorithm running on exhaustive research
(Mussio & Pozzoli, 2003a,b). Each pair gives four solutions,
among those only the decision of the user would allow to select
the proper one. By comparing all sixteen small blocks
originated from the tern of images, it is possible to choose the
true solution in automatic way. Finally, the object
reconstruction is completed by computing absolute orientation,
for which a linear parameterization already published in the
above mentioned papers is applied.

Advantages of this method are twofold. First of all, the three-
image approach is based on a more reliable configuration with
respect to simple relative orientation of a pair. This fact will
result very important when dealing with image matching
algorithms, which are really error prone. Concerning this issue,
further developments concerning application of robust
technique to reject blunders are expected; in particular we look
with great interest to the use of high breakdown point
estimators, such as RANSAC (Fischler & Bolles, 1981) and
Least Median Squares (Rousseeuw & Leroy, 1987), which are
themselves based on the exploration of enough sub-samples
randomly extracted from the whole dataset. A possible
combination of exhaustive research and random sampling
devises to be analyzed in detail, exploring the way proposed by
Torr et al. (1995).

Secondly, the method is very suitable to provide initial values
of the unknowns to solve for machine vision or complex
photogrammetric problems (e.g. bundle adjustment, orientation
of more then three cameras or video cameras). Being only based
on typical parameterization of photogrammetry (symmetric
relative orientation and absolute orientation), derived geometric
parameters can be easily flow into block adjustments involving
several terns of images (see e.g. Niini, 2000), in easier way with
respect to methods based on algebraic linear formulations of
relative orientation or on the trifocal tensor.

Concerning future developments and applications, the use in
image sequence analysis seems to be very promising, being the
three video camera configuration widely adopted. Especially if
the relative positions of cameras is not fixed, the exhaustive
research method could upgrade orientations in real time,
because the searching space is limited by the knowledge of
previous parameters.

Finally integration of self-calibration in this approach would be
necessary to extend this use of any kinds of imagery sensor.
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