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ABSTRACT

We present an investigation on the use of Tensor Voting for categorizing LIDAR data into outliers, line elements (e.g.
high-voltage power lines), surface patches (e.g. roofs) and volumetric elements (e.g. vegetation).
The Reconstruction of man-made objects is a main task of photogrammetry. With the increasing quality and availability
of LIDAR sensors, range data is becoming more and more important. With LIDAR sensors it is possible to quickly aquire
huge amounts of data. But in contrast to classical systems, where the measurement points are chosen by an operator, the
data points do not explicitly correspond to meaningful points of the object, i.e. edges, corners, junctions. To extract these
features it is necessary to segment the data into homogeneous regions wich can be processed afterwards.
Our approach consists of a two step segmentation. The first one uses the Tensor Voting algorithm. It encodes every data
point as a particle which sends out a vector field. This can be used to categorize the pointness, edgeness and surfaceness
of the data points. After the categorization of the given LIDAR data points also the regions between the data points are
rated. Meaningful regions like edges and junctions, given by the inherent structure of the data, are extracted.
In a second step the so labeled points are merged due to a similarity constraint. This similarity constraint is based on a
minimum description length principle, encoding and comparing different geometrical models.
The output of this segmentation consists of non overlapping geometric objects in three dimensional space.
The aproach is evaluated with some examples of Lidar data.

1 INTRODUCTION

With the increasing quality and availability and falling costs
of LIDAR-data there is a growing need for automatic de-
tection and reconstruction of the objects contained in the
data. A human can easily read the content of a point cloud
because our brain is highly trained in such context-based
segmentation tasks, but for automatic reconstruction we
need to have the location of meaningful features like cor-
ners, edges or junctions.
The Problem with LIDAR-data is, that the measured points
do not have any context information and the grid in which
they are measured is not oriented on these features. Nor-
mally the wanted features are only indirectly observable
e.g. by segmenting two planes and intersecting them.
In this paper we show the extraction of features like curves,
surfaces and junctions from a point cloud. therefore we
present a two-step procedure that uses the tensor voting
framework as a first step to categorize the input points into
three types of appearance. In a second step we use a seg-
mentation to merge the categorized points into curves and
surfaces.
The tensor voting framework (Tang et al., 2000) can not
only be used for handling 2D or 3D (Tang and Medioni,
1999) data but also to process motion fields (Nicolescu and
Medioni, 2003) or stereo data (Lee and Medioni, 1998).
In most cases the input data is of small scale (Tang and
Medioni, 1998) in contrast to LIDAR-data and the output
is only used for visualisation in pixel or voxel representa-
tion (G. Guy, 1997).

In section two we will have a look on the tensor voting
framework. In section three we show how the output of
the tensor voting can be segmented. The results of the

approach are presented in section four. In section five a
conclusion is presented followed by an outlook.

2 TENSOR VOTING

The goal of the tensor voting is to extract the structure in-
herently given in the point cloud.
The results of the tensor voting process are three coutinu-
ous vector fields, represented by discrete grid points. The
scalar part of these fields represent the likelihood of the lo-
cation in space to be a point, part of a curve, a surface. The
vector part represents the orientation of the occurence.
These three fields can be searched through to find maxima
which represent the most likely location of a wanted fea-
ture.

2.1 TensorVoting in physical analogy

To explain the concept of Tensor Voting with an analogy
to physics, we can compare the Tensorfield with a physical
field of force, e.g. a magnetic field. We can imagine that
the object which is represented in the point cloud has a
magnetic field. It propagates its field into the space around
the object.

If we put iron particles into this field, these are affected by
the field so that they act as little magnetic dipoles which
align their field along the field lines of the object. If we
add enough particles we can infer the form of the field of
the object and thus the form of the object by interpolating
the little parts of the field send out by the particles.

In the case of the tensor voting we walk this path back-
wards: First we have the particles in space which are our



LIDAR-data points. We know that they lie besides the out-
liers on the surface of the wanted object. By assigning a
little standard field to every particle, the points will prop-
agate it into a certain neighborhood around them and in-
fluence the neighbored points. In this way they adapt the
form of the field of the respresented object. Afterwards we
can interpolate the field in the space between the particles
and extract meaningful points like edges and corner points
by searching for maxima.

2.2 Tensor encoding

The above mentioned field is a tensor field, that means each
point in space has an associated tensor. In our case this ten-
sor is a second order symmetrical tensor. If we formulate
the tensor like in (1) it encodes a 3D-ellipsoid rotated in
space. (2) is an equivalent writing for this. In fig. (1) we
can see the geometrical meaning of (1). The normalized
vectorse1, e2, e3 are the main axis of the ellipsoid. They
build a local right-handed coordinate system.
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This Ellipsoid has the dimensionsλ1, λ2 and λ3 in the
main axis directions. We define thatλ1 > λ2 > λ3 i.e.
we claim that the ellipsoid is always oriented in the direc-
tion of e1. With this definition we can rewrite (2) into (3)
by saying thatλ3 is the basic part in all three directions
where the differences ofλ2 − λ3 andλ1 − λ2 are added in
the directionse2,e1 ande1. The geometrical interpretation
is shown in fig. (2). The Ellipsoid is decomposed into the
λ3-part, which constructs a 3D sphere, encodes the likeli-
hood of this location to be a point also called point-ness.
The (λ2 − λ3)-part which defines a 2D disk in thee2-
e3-plane here called the surface-ness of the location and
the(λ1 − λ2)-part which defines a one-dimensional stick-
portion and which is the curve-ness.
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Figure 1: An ellipsoid with its local coordinatesystem and
the dimenionsλ1, λ2, λ3

Figure 2: The decomposition of a Tensor

2.3 Voting as communication

Every initial location sends out a tensor field and propa-
gates it into the space in a certain neighborhood. Every
other location in this neighborhood is then influenced by
this field. To calculate the total influence on a certain lo-
cation we simply have to summarize the tensor fields of all
neighbors in a given radius. therefore we have to look how
the tensor field propagates in space.

As we have seen above, the tensor field represents three
vectorfields with different meanings. Thus these vector
fields behave differently while propagating, we have to han-
dle each part by itself and assemble them again afterwards
(4). The reason why we formulate the three fields in a sin-
gle tensor is the comunication between these fields. This
implicit communication is shown in fig. (3) where two
votes of two different voting sites accumulate at the reciev-
ing site to a surface portion.

Figure 3: Communication between the curve field
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The design of the voting fields is derived by considering
the analogy with the flow of force in particle physics ().
The three voting fields are shown in fig. (4). The length
and orientation of the sticks depicted in fig. (4) is the
strength and orientation of the field sent out by the vot-
ing location (which is located in the center) and received
at the site position relative to the voting location in a local
coordinate system.

V (d, ρ) = e−
ad2+bρ2

σ2 (5)



The curve voting field has its main direction along thee1-
axis and is rotational symmetric around this axis. The
strength of the vote decays with increasing distance and
curvature like which can be written as (5), where d is the
distance,ρ is the curvature andσ is a scale factor that has
to be chosen in context of the input data. The constants a
and b have to be chosen to define the field. The resulting
orientation of the voting field is chosen in a way that the
total curvature along the path from the voting site to the
recieving site is minimized.
The surface and point voting fields we can derive from the
curve voting field by rotating the field first around thee3-
axis (surface) and then around thee2-axis (point).

All three fields have in common not to propagate infinitly
but decay with distance that they dont have any influence
after a given radius.

a)

b)

c)

Figure 4: The point (a), surface (b) and curve (c) voting
fields. The voting site is centered. On the left the view is
along thee2-axis, on the right the fields are rotated.

2.4 Sparse and dense voting process

To apply the tensor voting to LIDAR-data, we have to en-
code the data points as described in 2.2. The values for
the roation and the dimension of the initial ellipsoid has
to be chosen, e.g. scaled and oriented by the confidence
ellipse of the measured data, but even other geometrical
information can be encoded this way. With no additional
knowledge, we can assign a simple ballfield without ori-
entation. In a first step, the voting is carried out among
the group of the initial data points, i.e. each of the points
is influenced by its neighbor points. In this step the data
points dont lie close to each other and the number of point
is small in contrast to the number of points necessary to

describe the entire object in total. Because of that the first
step is called sparse voting.
To obtain an approximation of the continous tensor field
we have to interpolate the field between the given initial
locations. To do this, we sample the space of the point
cloud in a grid. At every grid point we calculate the tensor
field value by letting the neighbor points of the initial point
cloud vote. With this procedure we obtain the discrete ten-
sor field.

3 SEGMENTATION

After the Tensorvoting step we have a dense grid of data
points, each defining a tensor location in space. To get con-
nected surfaces and lines in 3D space, we have to search
for the most likely locations. We will handle this with a
feature extraction. Later on we search for equal parts to
merge them to geometrical objects, what we will handle in
a segmentation task.

3.1 Feature extraction

To find the wanted meaningful features, we decompose the
tensor field into its point-, surface- and curve-field to exam-
ine them separately. For each field we can extract these fea-
tures by searching for locations with the most likelihood,
i.e. search for maxima in the fields.
In the point field we can simply search for maxima of its
strength (λ3). In the other two fields we have also to look
on the orientation. therefore we build the gradient of the
strength (6) and project it on the orientation vector (7). In
the curve field we have the tangent vector (e1), in the sur-
face field we take the normal vector to that surface (e3).
Then we can search for zero-crossings of b.
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The resulting points are the most likely locations to be part
of curves, surfaces or to be single points.

3.2 Segmentation of planes

For Segmentation of planes there exist many different ap-
proaches in the literature. These approaches use different
types of procedures (Taylor et al., 1989, Boyer et al., 1994)
as well as different homogenity criteria (Besl, 1986, Wani
and Batchelor, 1994). Every approach has its special ap-
plication where it performs best (Hoover et al., 1996). We
use here a region growing algorithm that uses a minimum-
description-length criterion as homogenity criterion. Here
we present a quick overview over the algorithm whereas it
is review in detail in (Schuster, 2004).

The mathematical model we try to find are planes, that is
why we define every location from the output of the fea-
ture extraction as input for the segmentation. We encode
the locations as little plates of unit size and orientation of



the surface-part of the tensor.
The algorithm compares each location to its direct neigh-
bors and computes a value for each pair by applying the
homogenity criterion. These values are ranked then and
the couples which fit best together will be merged. For the
merged locations the homogenity criterion is again applied
in combination with each of the new neighbors. This pro-
cedure is repeated until no fitting pairs are found anymore.
The metioned homogenity criterion is based on the mini-
mum-description-length (MDL) principle (Rissanen, 1987).
The goal of the MDL principle is to select the simplest
model that explains the data. This is based on the informa-
tion theory (Shannon, 1948) where it is possible to express
the likelihood of an event with the length necessary to en-
code its occurance. In this case we have two models to
compare: two neighbors fit or dont fit. therefore the plane,
its uncertainity of orientation in space and the length of
the boundary of the two single regions are compared to the
hypotheticaly merged case. The value of saving if coding
length in case of a merging is the desired value. The higher
is it the earlier the neighbors are merged.

3.3 Segmentation of curves

For the segmenation of 3D curves there are also diverse
methods to find in literature (Lindeberg and Li, 1997). In
our case we define simple region growing like in the plane
segmenter, but so far we dont apply a mathematical model
for the curve. As homogenity criterion we define the sim-
ple constraint that neighbored locations are merged, if the
distance and the difference of the orientation of the curve-
part does not exceed a certain value. By applying this cri-
terion we get a collection of points defining a 3D curve.
For visualisation we take these points as sampling points
for splines.

4 RESULTS

In this section we present three different datasets. The first
one is a synthetical one. It containes a dice with a bor-
derlength of five fig. (5). It consists of equally distributet
points on the surface of the dice. These points are con-
tamined with gaussian noise. After the first, sparse voting
step the points have influenced each other fig. (6). The re-
sult of the second voting step is shown in fig. (7), which
are the decomposed fields after the maximum search.

The second data set is data of an airborn laser scanner, that
contains high voltage power lines fig. (8). In fig. (9) there
is an enlargement of the scene where the arcs of the power
lines are replaced by a spline which has been created with
the segmented points.

The third data set is taken by a terrestrial laser scanner and
contains a facade fig. (10). In fig. (11) there are the points
replaced by the planes found by the segmenter of 3.2

5 CONCLUSION AND OUTLOOK

We presented a segmentation algorithm which yields good
results for the processing of terrestrial or airborne LIDAR-
data.

Figure 5: The test dice

Figure 6: Result after the first voting step

The advantage of the preprocessing with the tensor voting
framework is that featured like edges, even if it is only im-
plicitly contained in the data, emerge from the point cloud
by continuing the tensor field. By this the decision of fit-
ting data points to one or an other mathematical model in
the segmentation step can be avoided, and the segmenta-
tion algorithm can be kept simple.
A problem is the value ofσ, the range of influence inside
the tensor voting. It has to be chosen in the context of the
data-characteristics and can destroy the results if it is badly
chosen.
Here it is solved in the knowledge that the data have the
characteristics of LIDAR-data. So they are euqally dis-
tributed in a grid-like structure in x-y-plane and can be tri-
angulated in 2D in the view from the Laser scanner. The
value of the dense grid and theσ variable is calculated as
mean value over all distances of the triangulated Network
over the point cloud. More investigation is necessary at
this point.
Some improvement can also be done by implementing dif-
ferent geometrical models in the segmentation procedures.
In this context it would be interesting to extract for exam-
ple general surfaces and chain lines.



Figure 7: Result after second voting step with decomposi-
tion into point, surface and curve field

Figure 8: Airborn LIDAR data with high voltage power
lines.

Figure 9: The segmented line points, taken as sample
points for splines.

Figure 10: A facade recorded by a terrestrial laser scanner.

Figure 11: The main plane in the segmented facade.



6 ACKNOWLEDGEMENT

Thanks toGÉOMÈTRE EXPERT FONCIER, B. MOREL †,
VONNAS, FRANCE and TOPSCAN GMBH, STEINFURT,
GERMANY for kindly providing the datasets.

REFERENCES

Besl, J., 1986. Invariant surface characteristics for 3d ob-
ject recognition in range images. CVGIP 33, pp. 33–80.

Boyer, K., Mirza, M. and Ganguly, G., 1994. The robust
sequentioal estimator: A general approach and its applica-
tion to surface organisation in range data. IEEE T-PAMI
16, pp. 987.

G. Guy, G. M., 1997. Inference of surfaces, curves and
juctions from sparse, noisy 3d data. IEEE T-PAMI 19(11),
pp. 1265–1277.

Hoover, Flynn, Bunke and Bowyer, 1996. An experimental
comparison of range image segmentation. IEEE T-PAMI
18(7), pp. 673–689.

Lee, M. and Medioni, G., 1998. Inferring segmented sur-
face description from stereo data.

Lindeberg, T. and Li, M.-X., 1997. Segmentation and clas-
sification of edges using minimum description length ap-
proximation and complementary junction cues. Computer
Vision and Image Understanding: CVIU 67(1), pp. 88–98.

Nicolescu, M. and Medioni, G., 2003. Perceptual grouping
from motion cues - a 4-d voting approach. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 25(4),
pp. pp. 492–501.

Rissanen, I., 1987. Minimum description length principle.
Encyclopedia of Statistical Sciences 5, pp. 523–527.

Schuster, H.-F., 2004. Segmentation of image and range
data using a mdl-criterion. Technical report, IPB Institut
for Photogrammetry Bonn.

Shannon, C. E., 1948. A mathematical theory of commu-
nication. Bell Syst. Technical Jrnl. 27, pp. 379–423, 623–
656.

Tang, C.-K. and Medioni, G. G., 1998. Extremal feature
extraction from 3-D vector and noisy scalar fields. In:
D. Ebert, H. Hagen and H. Rushmeier (eds), IEEE Visu-
alization ’98, pp. 95–102.

Tang, C.-K. and Medioni, G. G., 1999. Robust estimation
of curvature information from noisy 3d data for shape de-
scription. In: ICCV (1), pp. 426–433.

Tang, C.-K., Lee, M.-S. and Medioni, G., 2000. Tensor
Voting. Elsevier.

Taylor, R., Savini, M. and Reeves, A., 1989. Fast segmen-
tation of range imagery into planar regions. CVGIP 45,
pp. 42–60.

Wani, M. and Batchelor, B., 1994. Edge-region based seg-
mentation of range images. IEEE T-PAMI 16, pp. 314–
319.


