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ABSTRACT: 
 
This study is to take the advantage of shadow appearance in Standard Imagery produced from QuickBird for damage detection in 
urban areas. In a very complex scene of an urban area acquired from very high resolution satellite-based optical sensors, fortunately, 
the buildings tend to align in some dominant directions in a small area and posses geometric regularity. Therefore, their shadows 
also align following these dominant directions in a small area in spite of the acquisition condition. The changes of building 
structures caused by an earthquake could affect the orientation, shape and size of its shadow. Two QuickBird scenes acquired over 
the city of Boumerdes, which was one of the most heavily-damaged areas due to the Algeria earthquake of magnitude 6.8 on May 
21, 2003, are employed in this study. The first one was about one year before the event (April 22, 2002) and the second one was two 
days after the event (May 23, 2003). The result shows that the differences in shadow’s lengths paralleling dominant directions can 
assist the detection of collapsed buildings. Moreover, unlike other classes of land cover in urban areas, the shadows can be 
successfully segmented by a conventional pixel-based classification method. The promising results from this analysis prove that 
shadow-based information could be used as a potential cue for automated detection of building damage. 
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1. INTRODUCTION 

Damage detection plays an important role in disaster 
mitigation. It grasps the real situation after the events and 
provides the required information for further damage 
assessment. Hence, acquisition time, processing time, and 
accuracy of detection are vital. Remote sensing techniques 
providing the information in wide-coverage at a reasonable 
time gap after the events has been increasingly considered and 
employed. Recent researches in damage detection employing 
remote sensing can be listed into two directions. While the first 
direction is fusion of all available data sources as Casciati et al 
(1997) fused GIS, space- and airborne imagery, the second one 
develops methods for a specific kind of sensor. Typical 
examples of the latter are Hasegawa et al (1999) with aerial 
HDTV images, Matsuoka and Yamazaki (1999) with space-
based optical and radar data. In the context of quick damage 
detection and consequently quick damage assessment, first 
trend seems not to be always feasible. The reasons are unsolved 
fusion methods and unavailability of GIS data in developing 
countries. Following the second direction, we are focusing in 
developing method for damage detection from very high 
resolution satellite imagery such as QuickBird. Furthermore, 
the trend of damage detection to automatic processing is also 
our final goal. 
 
Providing very high spatial resolution imageries, QuickBird 
could provide enough detailed information for urban mapping 
and hence, it also presents more complex scene of urban areas. 
In such a scene, spectral information of building feature, which 

is our focus of interest, becomes diverse and ill-defined. 
Conventional pixel-based image classification such as 
parallelepiped, maximum likelihood, K-mean cannot produce a 
reliable detected result in processing multi-spectral high 
resolution satellite-based imagery (David and Wang, 2002). 
Object-based methods seem to be promising approaches but 
those methods have not been fully developed and implemented. 
Fortunately, at least pixel-based classification can successfully 
extract shadows. The stand of building casts the shadow in 
surrounding. In other words, shadows convey some aspect of 
information about buildings. The changes of buildings will 
affect the shadows of the buildings and it is probably the cue to 
assist the damage detection. Employing the well-developed 
pixel-based image classification and investigating the 
appearance of shadows to detect the damaged buildings are the 
focus of this study. The following section presents some 
observations which are the initial points for the shadow 
analysis. It is followed by the proposed methodology for 
shadow analysis, and testing result. 
 
 

2. OBSERVATIONS 

As abovementioned, Quickbird image presents very complex 
scene of urban area. However, behind this complexity, within a 
focused area, buildings tend to be aligned following some 
specific direction (Sohn and Downman, 2002). It was 
determined at the urban planning stage. Moreover, buildings 
usually possess geometric regularity such as rectangle. 
Therefore, building’s shadows will align following longitudinal 



 

and transverse directions of the building. Figure 1 demonstrates 
a small area with extracted shadows of buildings and the 
aligned directions shown in FFT power spectrum. 
 
 

 
 
Figure 1. Example of dominant directions in focused area: a) 

extracted shadow scene and b) FFT power spectrum 
 
When earthquake occurs, the strong ground motion will cause 
the damage of buildings. As a result, buildings might be fully 
collapsed, partly collapsed or its orientation might be changed. 
In those cases, the lengths of building’s shadows along the 
dominant directions in focused area will be changed. Thus, 
length comparison between pre-event and post-event scenes can 
be one of the indicators for damage detection. 
 
As shown in Figure 1a, the complexity of urban area also 
generates the complexity in extracted shadows. There are 
considerably large-size shadows generated by buildings or tree 
rows and small-size shadows generated by stand-alone trees, 
cars, or tents. Lack of spectral information from shadows, shape 
and size of shadows must be employed in discrimination 
analysis. Scale-space analysis, which takes scale property of 
objects into account, has been developed for decades 
(Lindeberg, 1993). Shadow analysis in this study concerns the 
changes of shadow lengths. Thus, the scale-space analysis 
should well preserve the details of each considerably large 
shadows but remove all small shadows. Non-linear scale space 
analysis based on area morphology has been proved to satisfy 
this requirement (Acton and Mukherjee, 2000). Briefly, area 
morphology scale space can be illustrated as follow. 
 
Let set S defined on domain Ω ⊂ Z2. Area open S ο s remove all 
components of area less than s in the set S. Area close S • s 
remove all components of area less than s in the set Sc 
(complement of S). The scale space is constructed using AOC 
(area open-close) or ACO (area close-open) operators. Let Is be 
the image representation at scale s, AOC (area open-close) 
scale space {I} given by 
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Given a scale space {I}, Is(x,y) is intensity at position (x,y) and 
scale s, to discriminate the shadows based on their size, we 
cluster Is(x,y) across the scale space. In this study, we simply 
apply K-mean clustering algorithm. Scale-space analysis 
employed in this study is like a non-linear filtering. Figure 2 
demonstrates a result of area morphology scale space filtering. 
It shows a perfect preservation of object’s boundaries. 
 
 

 
 
Figure 2. Example of area-morphology scale space filtering: a) 

Before filtering and b) After filtering 
 
 

3. METHODOLOGY 

Based on the above observations, we proposed an automatic 
shadow analysis, which compared the extracted shadows from 
pre-event and post event high resolution imageries to find out 
the cue for damage detection. This section presents only the 
core processing, which is fully automatic. There must be some 
pre-processing steps, which depend on the in-hand high 
resolution satellite imagery, before this automatic processing 
can be employed. Thus, the proposed method can be employed 
not only one kind of high-resolution satellite imagery. 
 
Step 1: Extract both pre-event and post-event imageries in the 
small equal portions. Separately processing each small portion 
is not only to focus the analysis into specific dominant 
directions but also to speed up the processing. While area 
morphology scale space produces a perfect result (Figure 2), its 
shortcoming is time consuming (Acton, 2000). Processing in a 
small portion will be faster than a very big scene. Moreover, 
parallel processing can be employed. 
 
Step 2: Apply area morphology scale space filtering as 
introduced in Section 2 for each portion. 
 
Step 3: Concerning the boundaries of extracted shadows, 
dominant directions of each portion are computed. Examining 
the local window 3x3 of each pixel, the direction of each pixel 
is assigned follow the rules in Figure 3, where direction is 
represented in degree. Consequently, histogram analysis shows 
the dominant directions for each portion. 
 
 

 
 
Figure 3. Distribution of boundary pixels in 3x3 local window 

and assigned angle 
 
Step 4: Compute the lengths of shadow along the above 
specified dominant directions. Length comparison is carried out 
afterwards. Let DiffL1 and DiffL2 be the differences in lengths 



 

along two mentioned directions, these lengths are calculated as 
follows. 
 

111 preLpostLDiffL −=    (2)
    

222 preLpostLDiffL −=    (3) 
     
where postL1, postL2  = lengths of shadows from post-event 

image 
preL1, preL2 = lengths of shadows from pre-event 
image 
| | = function to take absolute value 

 
 

 
 
Figure 4. Illustration of length computation along dominant 

directions 
 
Step5: Thresholding the differences in length. When one 
among two values of length difference is bigger than a 
threshold, it is probably due to the damage.  
 
Step 6: Merge all extracted shadows from all portions with 
assigned label whether it is damaged or non-damaged. 
 
 

4. TEST RESULT 

The proposed methodology was employed for processing two 
pan-sharpened Quickbird scenes acquired over Boumerdes city, 
Algeria. Boumerdes was one of the most heavily-damaged 
areas due to the earthquake of magnitude 6.8 on May 21, 2003. 
The first scene was about one year before the event (April 22, 
2002) and the second one was two days after the event (May 
23, 2003). These scenes were in Standard format, which were 
terrain corrected. It means the ground features were correctly 
mapped, but the scene has not been ortho-rectified. When 
comparing two scenes, the roofs of the same building were not 
in the same location but their shadows were overlapped. 
Furthermore, there is a slight difference between these scenes 
due to difference acquisition condition. Prior to employing the 
proposed extraction method, these two scenes were co-
registered and extracted into the same region of interest. 
Shadows were successfully extracted by K-mean unsupervised 
classification. The dimension of the test area was 3800 pixels x 
2900 pixels (approximately 2200 m x 1700 m for pan-
sharpened scene) (Figure 5).  
 
Detected shadows are shown in Figure 6. However, visual 
checking both scenes, there was just about 50% of shadows 
really caused by buildings; others were by trees or even clouds 
(Figure 7). Further studies will consider the clearly 
discriminating between those kinds of shadow. If trees and 
buildings could be successfully classified, their shadows would 
be well discriminated. 

 

 
 
Figure 5. Pan-sharpening Quickbird scene acquired on May 21, 

2003 in true colour composite of the study area 
 
 

 
 

Figure 6. Detected shadows (post-event scene) 
 
 

 
 

Figure 7. Distribution of detected shadows 
 
Examining the scatterogram between two length differences of 
extracted shadows (Figure 8), the threshold of 10 m was chosen 
to classify damaged and non-damaged buildings. This result 
was compared to visual interpretation of Quickbird carried out 
by Kouchi et al (2004). As illustrated in Figure 9, there is 
highest probability to detect heavily damaged buildings by 
using only shadow analysis. Only 10 % - 20 % of slightly or 
moderate damaged buildings could be detected. A shorter 
threshold could increase the percentage of successful detection 



 

in damaged buildings but also increase the percentage of wrong 
detection in non-damage buildings.  
 
In a very complex scene of urban area, only shadow analysis 
cannot produce an accurate detection. However, this analysis 
provided some aspect of information which has not been 
considered before. First, shadows were concerned as useful 
information for damage detection. Instead of directly 
comparing buildings, which are very difficult due to different 
acquisition condition, indirectly comparing through shadows 
could provide the cue for damage detection. Second, by 
automatic processing, shadow analysis can quickly point out 
the collapsed buildings. Last but not least, shadow analysis can 
be integrated in further developed damage detection method. 
The results from shadow analysis can guide the further analyses 
and also be clarified by these analyses, vice versa. 
 
 

 
 

Figure 8. Scatterogram of two length differences 
 
 

 
 
Figure 9. Distribution of detected shadows with respect to 

visual interpretation results 
 
 

5. CONCLUSION 

Automatic shadow analysis has been proposed, implemented 
and tested in Quickbird imagery. It was built to take advantage 
of shadow existence in the scene and to convert shadow to 
useful cue for damage detection. The test results showed high 
probability of shadow analysis in detection of heavily damaged 
buildings. Further testing in different sites can present more 
clearly the capability and limitation of shadow analysis. It is 
recommended to integrate shadow analysis, if applicable, into 

full developed automatic damage detection from high 
resolution satellite imagery. 
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