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ABSTRACT: 
 
Recently, desertification and degradation of water cycle by deforestation in the Amazon, South America, have become a serious 
problem. In this study, it was attempted to estimate the discharge of the invisible Amazon River branches in the JERS-1/SAR images 
for the purposes of the periodical environment and disaster monitoring. First, by SFP filters for SAR images, some traces of the very 
narrow open-water channels were visualized, which were not found in the original SAR images because of the resolution with less 
than 20 m. Next, the river shapes were transformed into one-dimensional signals, and the spatial frequencies were calculated with the 
Fourier and wavelet analyses. Furthermore, with river geomorphology or the Hack’s and Horton’s rules, the characteristics of the 
river shapes such as the meandering wavelength, the amplitude, the branch length and the number of branches were extracted from 
the SAR images. Then, It was compared that the characteristics of the river shapes with the existing discharge data and derived some 
regression equations. Finally, the discharge of the Amazon River branches was estimated from the SAR images. 
 
 

1. INTRODUCTION 

Recently, desertification and degradation of water cycle by 
deforestation in the Amazon, South America, have become a 
serious problem. In this study, we attempted to estimate the 
discharge of the Amazon River branches from JERS-1/SAR 
images, which are independent of the weather. According to the 
river geomorphology, the river shapes such as the amplitude 
and the meandering are related with its discharges. For example, 
a small meandering wavelength shows low discharge, while a 
big one shows high discharge. First, we visualized some traces 
of the Amazon River branches by filtering, which were not 
found in the original SAR images. Next, we transformed river 
shapes into a one-dimensional signal, and calculated the river 
characteristics or the spatial frequencies with the Fourier and 
wavelet analysis. These characteristics mean the average of the 
spatial frequencies of the river shapes, the angle of the 
meandering, the number of branches, the river slope, the river 
length, and the drainage area. Then, we related the 
characteristics of the river shapes with the existing discharge 
data and derived some regression equations. Finally, we 
estimated the discharge of the Amazon River branches from the 
SAR images. 
 
 

2. METHOD 

2.1 Study Area 

We selected 11 stations in the Amazon Basin, and 12 scenes of 
JERS-1/SAR, which observed mostly rainy seasons from 1993 
to 1997 at the near sites of the discharge measurement stations. 
Beside, we used the discharge data of the Amazon River 
branches, Rio Madeira, Rio Jipanara, Rio Purus, Rio Guapore, 

Rio Tabajara, and Rio Juruena, which were observed from 1965 
to 1997. In the absence of discharge data on the same date of 
SAR observation, we used the mean discharge during the 
observation periods. 
 
2.2 Approach to Estimate the River Discharges 

First, to remove speckle noises in the original SAR images, we 
used a SFP filter and an enhanced SFP filter (1), and integrated 
two images. These filters could remove speckle noises while the 
small features were preserved. 
Next, we emphasized the pixel value differences of the 
surroundings in order to extract the very thin rivers from the 
bright characteristic spots. The very narrow open-water 
channels did not show the dark characteristics, but 
intermittently showed the bright characteristics with the corner 
reflected effect. We prepared a 5-by-5 window, and calculated 
the sum of the absolute differences between a center pixel and 
its surrounding pixel values (2). Then, we emphasized the 
isolated string scatters, and visualized very thin rivers, which 
were not found in the original SAR images (Fig. 1). 
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where  Zc = a center pixel value in the window 
 Zkl = a pixel value except the center 
 xc = a center pixel value after filtering 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  Filtered SAR image (Path =416, Row =315, Tabajara) 

 
 
Next, to extract the only river shapes, we applied binarizing and 
thinning for the images (Fig. 2). First, we obtained the 
coordinates through the river path at every constant interval, 
and calculated each angle from the adjacent line segment (Fig. 
3). We determined this constant length was 20 pixels (500 m) 
because the smallest river wavelength was approximately 500 m. 
By this technique, we transformed the river shapes into a one-
dimensional signal (Fig. 4). This signal showed that a small 
meandering had high frequency and big amplitude, while a large 
meandering had low frequency and small amplitude. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  Binarized image (Path =416, Row =315) 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Method of one-dimensional transformation 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.  One-dimensional signal (Path = 416, Row = 315) 
 
 
Next, to analyze the spatial frequencies or the characteristics of 
the river shapes, we applied the Fourier and continuous wavelet 
transforms for the one-dimensional signals. In this technique, 
we could treat the river shapes in the spatial frequency domain. 
The mother wavelet that we applied was the Gabor wavelet 
expressed as the equation (3), which showed the best fitting 
wave for the original wave (Fig. 5). The wavelet’s scale was 
equivalent to the frequency, and then the bigger scale was 
equivalent to the lower frequency. We show the space-
frequency two-dimensional plane where an x axis corresponds 
to the spatial scale, a y axis corresponds to the wavelet’s scale, 
and a z axis corresponds to the spectral intensity (Figs. 6 to 9). 
 
 
 
 
      (3) 
 
 
 
 
 
where  W(b,a) = spectrum intensity 
 f(x) = original signal 
 �(x) = mother wavelet 
 a = scale 
 b = position 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.  Real part of Gobor wavelet 
 
 
Moreover, we applied the multi-resolution analysis with a 
discrete wavelet transform to the original signals. In this 
technique, we analyzed which level of that frequency was 
included in which part of the signals. The level corresponded 
to the frequency, and then the higher level was equivalent to 
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the lower frequency. This mother wavelet that we applied was 
the Daubechie’s wavelet. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.  Fourier spectrum (Path = 415, Row = 319, Jiparana) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.  Fourier spectrum (Path=419, Row=315, Porto Velho) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                    Fig. 8.  Space-frequency plane 

(Path=415, Row=319, Jiparana) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                     Fig. 9.  Space-frequency plane 

(Path=414, Row=306, Manaus) 
Furthermore, we calculated the averages of every Fourier 
spectrum, wavelet’s scale and level. Thus, we analyzed the 
meandering of the river shapes, and obtained the average of 
the spatial frequencies as follows. 
 
 
 
      (4) 
 
 
 
 
where  j = a wavelet’s level or scale 
 w(j) = average of spectral intensity 
 N = number of the level or scale 
 
 
Finally, to compare these characteristics with the existing 
discharge data, we derived each regression equation between 
the Fourier power spectrum and the discharge, the wavelet’s 
scale and the discharge, the level and the discharge, and the 
amplitude of the one-dimensional signal and the discharge. 
Next, we obtained the macro scaled river characteristics from 
the drainage map with 1:2,500,000 (Fig. 10). Namely, we 
analyzed the orders of drainage patterns with the Horton’s rule, 
and we calculated the numbers and the lengths of the branches 
for each order. Moreover, we obtained the river slopes from 
DEM. On the other hand, we estimated the river lengths and 
the drainage area with the Hack’s rule. Then, we supposed the 
invisible rivers in the original images as an order of zero, and 
estimated the river length, the drainage area, and the discharge 
of the order of zero with the relationships from the order of 
one to five (Figs. 11 to 13). Finally, we compared these results 
with the micro scaled characteristics derived from the SAR 
images. 
 
 

3. RESULTS 

We could obtain a good correlation between the discharge of 
the Amazon River branches and the characteristics of the river 
shapes. The derived regression equations are as follows. 
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where  Q = discharge (m3/s) 
 � = amplitude of the one-dimensional signal (degree) 
 FT = Fourier power spectrum 
 CWT = continuous wavelet spectrum 
 DWT = discrete wavelet spectrum 
 
 
Furthermore, the river characteristics of an order of zero 
derived from a macro scaled drainage map were very similar to 
the narrow open-water channels with less resolution derived 
from SAR. Then, we showed the average of the numbers and 
the lengths of the branches for each order from the Madeira 
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river basin (Table 1), and the estimated numbers, lengths, 
drainage areas and the average of the discharge of an order of 
zero (Table 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.  Drainage map of the Madeira river basin 
 
 
 
 
 
 
 
 
 
 

Fig. 11.  Number of branches vs. Orders 
 
 
 
 
 
 
 
 
 
 

Fig. 12.  River lengths vs. Orders 
 
 
 
 
 
 
 
 
 
 

Fig. 13.  River slope vs. Orders 
 
 

Table 1.  River characteristics for each order 
 
 
 
 
 
 

Table 2.  Estimated characteristics of the order zero 
and the average of discharge 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14.  Lengths vs. Areas 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15.  Discharges vs. Areas 
 
 
 

4. CONCLUSIONS 

We analyzed the JERS-1/SAR images about 12 scenes from 
1993 to 1997 in the Amazon, and found out the characteristics 
of the river shapes with the river geomorphology correlated the 
discharge well. Namely, as a result of the Fourier and wavelet 
analyses, the more discharge had the less spatial frequencies, 
while the less discharge had the higher spatial frequencies. In 
particular, we found that the continuous wavelet analysis was 
the best method to estimate the river discharge. Moreover, by 
the river geomorphology or Hack’s and Horton’s rules with the 
macro scaled drainage map, we could estimate the river 
characteristics of the order of zero, and they almost 
corresponded with the invisible river characteristics estimated 
from SAR images. However, for the reason the characteristics 
were averaged for each order, the precision had some of error. 
Therefore, we could obtain the difference between some rivers, 
but a very small change such as a seasonal change was hard to 
be derived. In the future, we will analyse and estimate the 
seasonal change of its discharge with the precipitation data and 
brightness of the river. Accordingly, by the analysis of the river 
characteristics, we could estimate the discharge of the narrow 
branches in the Amazon basin, and monitor the water budget 
and soil runoff. 
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Order 0 (estimate) 1 2 3 4 5
Number of the branches 1191 227 42 8 3 1

Length of the branches (km) 48.4 82.5 139.6 428.3 507.6 312.4
River slope 1.573 1.570 1.567 1.562 1.553 1.556

Length of the branches
(km)

Drainage area
(km2)

Average of the discharge
(m3/s)

Estimate of the order of zero 48.4 632.6 13.5
Invisible river characteristics

 estimated from SAR 31.5 628.0 13.4
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