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ABSTRACT:  
 
Accurate and frequently updated land cover maps of environmentally protected areas are necessary for the management of legislation 
programs governed by the EU, national authorities and local environmental schemes.  This study has analysed the suitability of 
Artificial Neural Networks (ANN) for mapping and monitoring land cover over regional areas, such as National Parks, using both 
hard and soft classification approaches together with the high spatial resolution of multispectral CarterraTM Geo IKONOS imagery. 
The study aimed to examine the transferability of remote sensing mapping algorithms over Northumberland National Park (NNP) 
located in Northern England.  The ANNs were trained using ground data of eight different upland vegetation classes and applied to a 
multispectral IKONOS image of NNP.  The ANNs applied consisted of a Multiple Layer Perceptron (MLP), using a conjugate 
gradient descent, and one hidden layer with a varying number of hidden nodes and combinations of weights.  The transferability of 
ANNs was found to depend on the ability to generalise, which could be improved by applying early stopping in the training process, 
improving the accuracy of the validation data by an average of 15%.  The classification accuracies for validation pixels of the 
training areas resulted in 80%, but decreased to less than 50% if evaluated against validation pixels acquired from different areas 
within NNP.  Limitations and issues regarding the transferability of MLP ANNs were observed to be significant.  Advanced ANN 
algorithms such as Support Vector Machines were required to enable the use of ANNs for mapping and monitoring land cover.   
 
KURZFASSUNG:  
 
Genaue und regelmäßig aktualisierte Karten von umweltgeschützten Gebieten sind notwendig für die Verwaltung von gesetzlichen 
Schutzmaßnahmen durchgeführt von der EU, bundesweiten und regionalen Umweltschutzprogrammen.  Diese Studie hat die 
Eignung und Nutzbarkeit von künstlichen Netzwerken als Kartierungs- und Überwachungsmethode für regionale Gebiete analysiert.  
Dabei wurden softe und harte Klassifizierungsmethoden, zusammen mit hochauflösenden multispektralen CarterraTM Geo IKONOS 
Bildern, verwendet.  Das Ziel der Studie war die Verbesserung der Übertragbarkeit von Kartierungsalgorithmen der Fernerkundung 
für das Gebiet des Northumberland Nationalparks im Norden Englands (GB).  Die künstlichen Netzwerke wurden für acht 
verschiedene Hochlandsvegetationsklassen trainiert und auf multispektrale IKONOS Bilder angewendet.  Die 
Gewichtskombinationen und die Anzahl der Neuronen des mittleren Layers wurde nach verschiedenen Literaturempfehlungen 
variiert.  Die Übertragbarkeit von künstlichen Netzwerke wurde beeinflusst von ihrer Generalisierung.  Diese konnte mit dem 
vorzeitigen Beenden des Trainingvorgangs verbessert werden und die Genauigkeit der Klassifizierung von Vergleichsdaten um 15% 
erhöht werden.  Die Klassifikationsergebnissen für Pixels der Trainingsgebiete erreichten um die 80%, aber verschlechterten sich zu 
unter 50% für Pixels des IKONOS Bildes von andern Gebieten des Nationalparks.  Die Studie zeigte Begrenzungen und Probleme 
bei der Übertragung von künstlichen Netzwerken auf.   
 
 

1. INTRODUCTION 

Environmentally protected areas are monitored by different 
legislation and management programmes introduced by the EU, 
national and local environmental management bodies, such as 
national park authorities.  Such management schemes require by 
legislation the accurate and frequent mapping and monitoring of 
land cover, for example for upland vegetation found in national 
parks in the UK.  Traditional mapping approaches, such as field 
surveys and the interpretation of aerial photography have been 
shown to be low in accuracy, time consuming and therefore 
expensive (Cherrill et al., 1994).  Remote Sensing has been seen 
as a potential mapping methodology for the last 20 years but has 

until recently been limited in its spatial resolution (e.g. Landsat 
TM) in relation to the spatial variability of land cover, such as 
that of upland vegetation (Taylor et al., 1991).  Additionally 
remote sensing has yet to be successfully applicable to 
monitoring schemes, allowing the transfer of mapping 
algorithms across geographical areas and multi-temporal 
imagery.   
The development of high spatial resolution satellite imagery in 
the last five years has offered a new potential to map vegetation 
regularly and at a more suitable scale (Slater and Brown, 2000).  
However the classification of high spatial resolution IKONOS 
imagery using traditional remote sensing mapping algorithms, 
such as the Maximum Likelihood Classification, has been 
limited to accuracies ranging between 52% and 80%.  This 



paper will report on the analysis of the suitability and 
transferability of Artificial Neural Networks (ANN), using both 
mixed and unmixed pixels, as a remote sensing algorithm for 
mapping and monitoring land cover at regional areas together 
with the high spatial resolution of multispectral CarterraTM Geo 
IKONOS imagery.   
 
1.2. Artificial Neural Networks in Remote Sensing 

Artificial Neural Networks have been applied to several remote 
sensing studies often resulting in higher or equal mapping 
accuracies than achieved with traditional classification 
methodologies or mixture modelling (Benediktsson et al., 1990; 
Foody et al., 1995; Atkinson et al., 1997).  An advantage of 
ANNs is the ability to generalise, and they do not require end-
member spectras for soft classifications approaches (Lippmann, 
1987; Heppner et al., 1990; Atkinson and Tatnall, 1997; Foody 
et al., 1997).  It has also been found that ANN require less 
training data than traditional remote sensing classification 
approaches, such as Maximum Likelihood classification 
(Heppner et al., 1990).  However, remote sensing applications 
of ANNs have tended to use simple data sets consisting of few 
pixels and land cover classes (Bernard, 1998).  The 
generalisation ability of ANNs has been found to be limited, as 
ANNs tend to be overfitted to the training data (Wilkinson, 
1997).  Additionally, the fine scale spectral variation and low 
number of pixels available for training in comparison to the 
number of pixels within the image have caused difficulties in 
applying ANN to high spatial resolution imagery.  In previous 
studies, the transferability over large geographical areas has 
been found to be limited and dependent on the ability of the 
ANN to generalise (Egmont-Petersen et al., 2002).  This study 
therefore aims to examine the ability of ANNs to transfer 
trained knowledge, acquired by a classifier on one area, to 
classify unseen data across large geographical areas and 
potentially multi-temporal imagery.   
 
 

2. METHODOLOGY 

2.1. Study area 

The study area was located in the Northumberland National 
Park (NNP) in Northern England (UK).  The NNP is one of the 
eleven English and Welsh National Parks and is valued for its 
biodiversity and wildlife.  It is covered mainly by upland 
vegetation, such as bracken, heather moorland (approximately 
20% of England’s upland vegetation resources) and blanket bog 
(approx. 18 % of England’s resource) (ERDP, 2000).  These 
resources are a significant proportion of the worldwide 
resources, as almost 15% of the world’s blanket bog can be 
found in Britain (RSPB, 2000; Backshall et al., 2001).  
However, the increasing pressure of changes in the environment 
and in management practices have impacted the status, 
composition and extent of important vegetation habitats and 
resulted in significant changes in the extent of upland 
communities and their biodiversity (Tallis, 1985).  The 
requirement for new monitoring and management schemes and 
the high spatial variation of upland vegetation made the NNP an 
ideal test site for this study.  The specific site covered by the 
IKONOS imagery is the British Ministry of Defence’s (MoD) 
Otterburn Training Area (OTA).  The Otterburn range is located 
in the centre of NNP and covers 229 square km, approximately 
20% of the Park area. 
 
 
 
 

2.2. Image and ground data acquisition 

A CarterraTM Geo IKONOS image, recorded on 2nd September 
2002, was acquired for the majority of the OTA.  The image 
was georeferenced to the British National Grid (BNG) using 18 
GPS ground control points, resulting in a Root Mean Squared 
(RMS) error of 2.57 m.  Corrections for relief displacement, 
caused by the altitude range of the imagery of 500 m, were also 
carried out, (Hanley and Fraser, 2001).  Further details of the 
geometric and atmospheric corrections applied to the image 
may be found in (Mehner et al., 2003; Mehner et al., in press).   
 
Ground survey data offered the only source of providing 
information on the surface land cover distribution.  Several GPS 
field campaigns using the kinematic Leica GPS 500 system 
were carried out along different transects across the imagery.  
Sample points were recorded at least every metre yielding 3D 
coordinates and the vegetation type attribute.  The GPS 
coordinates were transformed to BNG and thereby referenced 
with the imagery.  The number of measurements per class for 
each pixel was used as a guide to calculate the land cover 
distribution of each pixel.  The number of mixed pixels applied 
were however much smaller than pure pixels, reflecting the true 
spatial variation of land cover found at the test site.   
 
Two transects were located within the same geographical area 
(training site), while the third transect was carried out at a site 5 
km away (remote site).  Both areas are similar in terms of 
vegetation types and altitude and are relatively flat, thus the 
spectral variation due to anisotropic reflectance effects was 
minimised.  Initially the ANNs were trained using data, both 
mixed and unmixed pixels, from the training site and then 
applied to the remote site to test the performance of ANNs 
when classifying unseen data of a different geographical 
location.   
 
 
2.3. Artificial Neural Network design and training 
considerations 

The ability of an ANN to classify unseen data successfully and 
thereby transfer its trained knowledge dependent on its ability to 
generalise (Haykin, 1999).  The generalisation of an ANN is 
influenced by several parameters, which require an optimal 
choice.  
 
2.3.1. Design The classification performance of an ANN is 
influenced by its design depending on a choice of several 
parameters, such as the number of hidden nodes and learning 
algorithms (Haykin, 1999). The most common type of ANN 
used in remote sensing is the Multilayer Perceptron (MLP), 
which was also chosen for this study (Lippmann, 1987; Lees, 
1996; Atkinson and Tatnall, 1997).  MLPs have shown to be a 
suitable ANN design for many remote sensing applications 
(Lees, 1996).  MLPs consist of three different kinds of layers: 
input layer, hidden layer and output layer.  The number of nodes 
in the input layer is determined by the number of input bands, 
which is: four IKONOS bands - blue, green, red and near-
infrared - as well as the Normalized Difference Vegetation 
Index (NDVI), calculated to enhance the spectral separability 
(Figure 1).  The number of output nodes is dependent upon the 
number of land cover classes in the classification scheme: in 
this case eight different upland vegetation classes, such as 
Calluna vulgaris, Mire and Molinia Cearula (Figure 1) were 
considered.   
 
 



 

 

Figure 1. Example of an ANN as applied in this study, 
consisting of five input nodes, each connected to eleven hidden 

nodes, which are linked with each one of the eight output 
classes.  

 
 
No universally applicable rule concerning the optimal number 
of hidden layers and number of hidden nodes exists (Kavzoglu 
and Mather, 1999).  Most applications therefore apply extensive 
and time-intensive trial and error tests to determine the optimal 
design for each study, also known as structural stabilisation 
(Bishop, 1995; Openshaw and Openshaw, 1997).  In this study 
the number of hidden nodes was calculated following three 
literature recommendations.  The method (Equation 1a) 
suggested by (Atkinson et al., 1997) used only the number of 
input bands (n), whereas (Dunne and Campbell, 1994) 
recommended a formula considering only the number of output 
bands (m) (Equation 1b).  The third method (Equation 1c) by 
(Miller et al., 1995) consisted of both parameters to calculate 
the number of hidden nodes:  
 
 
No. of hidden nodes= 12 +n  (Atkinson et al., 1997) (1a) 
No. of hidden nodes =

��
�

�
��
�

�

2
m  (Dunne and Campbell, 1994) (1b) 

No. of hidden nodes = mn +2  (Miller et al., 1995) (1c) 
 
 
Following these recommendations, ANNs consisting of 11 
(Atkinson et al., 1997), 28 (Dunne and Campbell, 1994) and 12 
(Miller et al., 1995) hidden nodes were created.  The network 
training was carried out using the conjugate gradient algorithm, 
which requires no definition of additional parameters, such as 
momentum and learning rate for the gradient descent algorithm.  
The activation function was the ‘tanh’ function leading to 
quicker convergence than the sigmoid activation function 
(Bishop, 1995).  
 
2.3.2. ANN weights Beside the design, the network 
performance depends upon the choice of initial weights.  

Weights connecting the nodes between each layer (Figure 1) are 
initially assigned randomly and adjusted during the learning 
process to minimise the global error.  The influence of the 
assignment of random weights was considered in this study by 
initialising each neural network 10 times, each time with a 
different combination of weights.  
 
2.3.3. Training data The characteristics of the training data 
have to represent the whole data set.  Statistical parameters of 
all classes, including standard deviation and deviation from the 
mean, were calculated for all pixels.  The deviation from the 
mean was used as a guideline to include border and core pixels 
in the training dataset.  The integration of border pixels, 
covering the whole spectral range of each class is needed to 
allow the networks to learn the full characteristics of the 
responding land cover classes (Foody, 1999).  The data set of 
the training site was separated into 2/3 training data and 1/3 
validation data, consisting of 1363 pixels and 714 pixels 
respectively for the OTA classification. 
 
2.3.4. Training amount The amount of training applied to an 
ANN influences its ability to generalise (Bishop, 1995).  The 
longer the network is trained, the more the danger increases that 
the ANN becomes ‘overfitted’ to its training data, thereby 
reducing its ability to generalise (Atkinson and Tatnall, 1997; 
Benediktsson and Sveinsson, 1997).  The training process can 
be stopped according to one of the following user defined 
options (Bishop, 1995): 

� after a fixed number of epochs 
� after a certain CPU time 
� when a minimum error function is reached 
� after minimum gradient is reached and 

learning per epoch is only marginal  
� when the error value of validation datasets 

starts to increase (cross-validation). 
In most remote sensing applications the first approach is used, 
training the ANN for a user defined fixed number of epochs.  
However results in a previous study showed that generalisation 
was significantly affected by such an approach (Mehner et al., 
2003).  The longer the training process was carried out, the 
higher the accuracy of the training data, showing a good fit of 
the ANN model between input and output data.  However it 
caused the loss of generalisation, resulting in a decrease of 
accuracy of the validation data of up to 15 % (Mehner et al., 
2003).  This study applied early stopping as criteria for the 
amount of training carried out.  Early stopping utilises cross-
validation to stop the training process when the Mean Squared 
Error (mse) of the validation data starts to increase (Bishop, 
1995; Duda et al., 2001).  It allows maximum generalisation and 
prevents the network from becoming overfitted to the training 
data.   
 
 

3. RESULTS AND DISCUSSION 

The overall accuracy was calculated for all pixels, mixed and 
unmixed, using the rank matrix (Bernard, 1998).  The rank 
matrix is a modified traditional confusion matrix, as it calculates 
the accuracy based on the correctly classified positions and 
classes.  
 
The training of the ANNs using early stopping resulted in 
different numbers of epochs for each ANN, depending on the 
initialised random weights.  Early stopping enabled the ANNs 
to generalise and thereby classify the validation data to 
accuracies similar to the accuracies of the training data.  
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3.1. Classification accuracy of training and validation data 

The trained ANNs were applied to classify the training data and 
validation data of the training site.  For both data sets overall 
accuracies of the same magnitude were achieved for all 
networks, independent of the number of hidden nodes.  
Additionally the overall accuracies were found to be 
comparable to the accuracies of the Maximum Likelihood 
classification.  The overall accuracies ranged from 57% to 
77.4% for the training data and from 55.2% to 76.1% for the 
validation data of the training site of all ANNs.  The highest 
overall accuracy of the validation data of the training site was 
76.1%.  This showed that the ANNs had resulted in a high 
generalisation ability, enabling them to classify unseen data of 
the same area as the training data to a high accuracy.  On the 
other hand the choice of random weights influenced the 
performance of the neural networks more strongly than the 
choice of hidden nodes (Figure 2 and 3).  Differences in 
accuracy of up to 15% of both training and validation data 
(ANN F vs. ANN G) were found between ANNs consisting of 
different initialising weights (Figure 2).  Therefore different sets 
of random weights should be applied to each ANN within one 
study to determine the optimal ANN for the application.  
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Figure 2. Overall classification accuracy of training (blue) and 
validation (red) data of the training site for the ANN consisting 

of 11 hidden nodes. 
 
3.2. Overall accuracy of the classification of the remote site 

The trained ANNs were applied to pixels from the remote site to 
investigate the ability of the ANNs to classify unseen data.  The 
data of the remote site consisted of 384 mixed and unmixed 
pixels, being of similar vegetation cover, but had not been 
integrated in the training process.  The averaged overall 
accuracy of the remote site data for the three different ANN 
designs was 21.6% (11), 19.1% (28) and 21.7%% (12 hidden 
nodes) (Figure 3).  This showed a significant decrease in 
classification accuracy.  The highest overall accuracy of the 
transferability data was 27.3% for a ANN (ANN G) consisting 
28 hidden nodes.  However even the highest accuracy of the 
remote site data achieved was far below expectations, indicating 
a poor classification performance.  The generalisation and 
knowledge of the ANN gained at the training site was not 
sufficient to classify pixels of a remote part of the image.  
Modifications and improvements of the ANN classification 
were therefore required.  
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Figure 3. Averaged overall classification accuracy of training 

(blue), validation (brown), remote site (yellow) data and 
maximum overall classification (turquoise) for the remote site 

data (light blue), shown for all ANN designs. 
 
3.3. Adding a geographical label to the data 

The ANN training process was repeated but with modifications 
of the training data.  Some pixels of the remote site (156 pixels) 
were integrated in the training process, but being much lower in 
number than the original training data.  Additionally a 
geographical label was added as input band referring to the test 
site of the pixel.  The label of 1 was given to pixels of the 
training site and 2 to pixels of the remote site.  All ANNs were 
retrained, partly consisting of a new number of hidden nodes 
depending on the 6 input bands, applying again early stopping. 
The overall accuracy of the training and validation data of the 
training site was similar to the accuracies of the original training 
process.  The averaged overall accuracy ranged between 31.6% 
and 78% for the training data and between 33.3% and 74.9% for 
the validation data (Figure 4).   
 
 

Overall accuracy of 8 class-ANNs trained with labels of 
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Figure 4. Averaged overall accuracy of the training (blue), 
validation (brown), original remote site (yellow) data and 

averaged accuracy (red) and maximum overall accuracy (green) 
of remote site data, when training data included geographical 

label. 
 
A big improvement in classification accuracy was however 
found for pixels of the remote test site.  The overall accuracy of 
the remote site ranged between 25.1% and 65.3% for the ANNs 
trained with a geographical label.  The highest accuracy of all 
three ANN designs, being 64.9% (13 hidden nodes) and 65.3% 
(28 hidden nodes), which was of the same magnitude as the 
overall accuracy of the validation data of the training site.  The 
overall classification accuracies achieved using a geographical 
label were of the same magnitude as other remote sensing 



studies, highlighting the potential of ANNs to classify 
vegetation of a high spatial variation.  In the example of the 
ANNs consisting of 28 hidden nodes, overall accuracies were 
calculated for both approaches.  On average the overall 
accuracy of the remote site data increased by 38%, e.g. for ANN 
E from 22.6% to 64.4%.  It showed that the generalisation 
ability and thereby performance of the ANN could be improved 
by adding additional data to the training process.  The 
integration of geographic label also comes as no additionally 
cost and provides a simple option to improve the classification 
performance significantly.   
 
 

4. CONCLUSION 

This study analysed the suitability of Artificial Neural Networks 
as mapping methodology for regional areas.  The ANNs were 
trained using limited amounts of training data of one site of the 
image.  The trained ANNs classified the training and validation 
data of the training site to accuracies comparable to the 
traditional Maximum Likelihood classification.  However when 
the ANNs were applied to unseen data of a remote testsite the 
overall accuracy significantly decreased.  The ANNs performed 
poorly and did not result in a generalisation ability high enough 
to transfer the learned knowledge to unseen data.  The 
performance of the ANNs could be improved if additional 
information of each site, in this case a geographical label, was 
added.  It increased the overall classification accuracy of the 
unseen data of the remote site to the same magnitude as of the 
validation data of the training site.  It was concluded that ANNs 
as classification methodology across regional areas, and 
therefore also as multi-temporal approach, had failed to 
perform.  
 
On the other hand it was concluded that the specific 
characteristics of upland vegetation influenced the 
generalisation ability of the ANNs.  Upland vegetation consists 
of a high spatial variation, resulting in a spectral variability of 
land cover classes depending on the topographic location and 
interaction of different upland species.   
 
Simplified ANN classification schemes promise a higher 
transferability.  More research is needed to improve the 
transferability of ANNs as classification methodology.  The 
choice of more ancillary data or incremental learning offer new 
opportunities to improve its application across large 
geographical areas and as multi-temporal classification 
approach.  
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