
Figure 1    Location of the study area.
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ABSTRACT:

This paper presents a research that integrates remote sensing, GIS, and dynamic spatial modeling for predicting urban spatial growth
with different development conditions considered.  The study area has been a fast growing American metropolis.  The prediction is based
on a cellular automate urban growth model governed by a set of complex transition rules combining both socio-economic and
biophysical conditions.  Historical urban extent data derived with remotely sensed imagery are used to calibrate the model.  Two possible
future growth scenarios are assessed.  The first scenario assumes that the current development conditions do not change and therefore,
can be termed as 'continuation'.   The second is a hybrid growth strategy in which both conventional urban development and alternative
growth efforts are addressed. It is found that many small-size urban patches would emerge and smaller ones would merge to form larger
urban clusters. If current conditions do not alter, the process of urbanization would deplete vegetation and open space. A restrictive
growth plan should be adopted in order to promote the livability and sustainable development in the study area. Overall, this study has
demonstrated the usefulness of remote sensing, GIS, and dynamic modeling in urban and landscape planning and management. The
methodology developed in this research can be easily adopted to other urban areas with similar growth patterns.     

1.  INTRODUCTION

Restless urban growth throughout the world has called for
improved methods and techniques towards a better understanding
of the dynamics of complex urban systems. Over the past
decades, a great deal of research efforts has been directed to
develop dynamic models in connection with urban and landscape
applications (e.g. Meaille and Ward, 1990; Batty and Xie, 1994;
Veldkamp and Fresco, 1996; White and Engelen, 1997; Clarke
and Gaydos, 1998; Wu and Webster, 2000; and Wang and Zhang,
2001).  Among the documented models, those based on cellular
automata (CA) are probably the most impressive because they
have grown out of an earlier game-like simulator and evolved
into a promising tool for urban growth prediction and forecasting.

This research has been focused on the exploration of  cellular
automata-based dynamic modeling approach for applied urban
studies with Atlanta as a case study area (Figure 1).  For the past
three decades, Atlanta has been one of the American’s fastest
growing metropolises as it emerged to become the premier
commercial, industrial, and transportation urban center of the
southeastern United States. Starting from 1996,  the author has
been involved in various research projects focusing on the
understanding of the dynamics of change in Atlanta through the
use of geographic information technologies.  This paper reports
part of the result of urban growth simulation carried out with a
cellular automate model, a key element of the above research
effort. 

This research was built upon the SLEUTH Urban Growth Model
(Clarke, 2000). SLEUTH derives its name from the six types of
data inputs: Slope, Land cover, Exclusion, Urban extent,
Transportation, and Hillshade.  This is a cellular automaton urban
growth model and its behavior is controlled by the coefficients of
diffusion, breed, spread, slope resistance, and road gravity. The
model considers four types of growth behavior: spontaneous
neighborhood growth, diffusive growth and creation of new

spreading centers, organic growth, and road influenced growth.
Detailed description of the model can be found elsewhere (e.g.
Clarke, 2000; Silva and Clarke, 2002).  Using Atlanta as the study
area, this project investigates the effectiveness of the SLEUTH



model as a tool to imagine, test and choose between possible
future urban growth scenarios in relation to different
environmental and development conditions. 

2.  RESEARCH METHODOLOGY

2.1 Data Assemblages

Five types of input data are needed to run the SLEUTH urban
growth model.  They are: urban extent, road, excluded area for
development, slope, and shaded relief. Most of these input data
were assembled from the databases constructed by the author
through different research efforts over the past years. Each layer
was resampled into three levels of spatial resolutions, namely 60
m, 120 m, and 240 m.

2.1.1 Urban Extent: Urban extent is actually urban built-up land,
thus including all types of urban uses. Five layers of urban extent
data were extracted from a time series of land use/cover maps
that were produced with a hybrid approach combining
unsupervised classification and knowledge-based spatial
reclassification.  Detailed description of these  procedures can be
found from Yang (2002).  These layers represent five different
dates, namely, 1973, 1979, 1987, 1993, and 1999.

2.1.2 Road: It contains not only major road networks but also
node points and large shopping malls. For convenience, this layer
is still named as ‘road’.  The  major highways were extracted
from the AND global highway database (http://www.and.com),
and then updated with satellite images to form 1973, 1987, and
1999 highway layers for three years.  Major node points are
either (major) highway exits, junctions, or towns where major
highway(s) runs across.  They may be of strategic significance
for commercial or industrial development. Three layers of large
mall polygons were extracted from the 1973, 1987, and 1999
Landsat images. A weighting system was established for
highways, nodes, and malls, respectively. 

The layers of  highways, nodes, and shopping malls in the same
year were combined to form a single ‘road' layer.  In this way,
three  ‘road' layers were produced for 1973, 1987, and 1999,
respectively.  The ‘road' layer for the year of 2025 was produced
by overlaying the 1999 roads with the improved roadways and
new roadways according to the 2025 Regional Transportation
Plan (Atlanta Regional Commission, 2000). 

2.1.3 Excluded Area for Development:  Two layers of excluded
areas were assembled. The first layer is a binary image,
consisting of the water extracted from 1973 Landsat MSS image
and the public lands.  The latter includes national parks/refuge
and wilderness areas, archaeological sites/areas, historic sites,
off-road vehicle sites/areas, wild and scenic areas, state parks,
USDA land, wildlife management areas, and county Parks. These
areas were not allowed for urban development. This layer was
mainly used for the model calibration.

For the future growth prediction, another layer was built, with
probabilities of exclusion included.  All excluded areas in the
first layer were still preserved and assigned a value of 100.
Additionally, this layer contains three levels of buffer zones
around major streams in the study area. 

2.1.4 Slope and Shaded Relief  Image: In order to produce
terrain slope and shaded relief images, a seamless DEM image
was constructed by mosaicking 159 USGS 7.5' DEMs covering
the entire modeled area.  Then, a terrain slope image was
computed and represented in percentage. Furthermore, a layer of

the hillshaded image was computed from the DEM.  This image
shows the topographic relief in the study area. It was used as a
background image for visualization purpose only.

2.2 Model Calibration

The purpose of model calibration was to determine the best values
for five control coefficients, namely, diffusion (overall
dispersiveness of growth), breed (likelihood of new settlements
being generated), spread (growth outward from existing spreading
centers), slope resistance (likelihood of settlements extending up
steeper terrain), and road gravity (attraction of urbanization near
road networks).

The calibration was built upon on a statistical approach. Thirteen
statistical measures were computed to quantify the historical fit
between the modeled results and historical urban extent data
extracted from remotely sensed imagery. The list of these
statistical measures and their detailed description are given
elsewhere (Yang and Lo, 2003).  They were used to narrow down
the range and determine the best value for each control coefficient.
The possible range is between 0 and 100 and the possible
combinations for the five control coefficients are approximately
5100 or 7.89 × 1069!  Ideally, each combination should be assessed.
Given the computational resources available (a Sun Ultra Model
1, with 143 Mhz CPU and 64 Mb RAM), however, this would take
years to complete according to an earlier test. For the time and
computational resources constraints, the calibration was broken
down into three phases (Table 1).  The coarse calibration was to
block out the widest range for each control coefficient. The fine
calibration was to  narrow down the ranges to approximately 10 or
less  The final calibration was to determine the best combination,
which had the following starting values: diffusion(55), breed (8),
spread(25), slope resistance (53), and road gravity (100).  

Table 1  Calibration runs: input data, calibration files,  number of
Monte Carlo iteration,  computation time, and outputs. 

*   These are about 1 percent of the total pixel numbers.
**   This number is for the Monte Carlo iterations. 



One more step was conducted to determine the starting values
used for future growth simulation.  The best values identified
above were actually the starting values.  Because of self
modification incorporated in the model, these starting values tend
to be altered when a run is completed.  Thus,  a coefficient may
have different starting and finishing values for each run.  At the
end, the final values of the control coefficients are:  diffusion(71),
breed(10), spread(32), slope resistance(73), and road
gravity(100). 

It should be pointed out that the model calibration was carried out
with the use of 240 m resolution dataset only.  An earlier test
estimates that the time for completing the first stage of calibration
using the 120 m resolution data set would be about 32,500 hours
or 135 days given the computer resource available. For practical
reason, the other two higher resolution data sets were not used in
model calibration.

2.3 Scenario Design and Simulation

Two possible planning scenarios for future urban development in
Atlanta were considered here, which are tied with different
policies and environmental conditions.  

2.3.1 Scenario One:  This scenario assumes the factors for the
growth remain unchanged and thus, it may be termed as
‘continuation'.  It provides therefore a benchmark for comparison
with the other alternative growth strategy. To implement this
scenario in model simulation, the values of growth control
coefficients obtained from the model calibration were used as the
starting values.  The 1999 urban extent data was actually used in
the simulation and other conditions and input data set can be
found from Table 2. 

Table 2    The conditions applied for each simulation

*  The definitions are: critical_high : when the growth rate exceeds this
value, self-modification increases the control parameter values;
critical_low: when the growth rate falls below this value,

self-modification increases the control parameter values); boom: value of
the multiplier (greater than one) by which parameter values are increased
when the growth rate exceeds critical_high; bust: value of the multiplier
(less than one) by which parameter values are decreased when the growth
rate falls below critical_low), and Critical_slope: average slope at which
system increases spread. 
**  Both starting and ending values are given.  It should be noted that the
ending values were the averaged values after100 times of Monte Carlo
computations. 
*** Program code was changed to allow up to 200 for road gravity. 

2.3.2. Scenario Two: The second scenario considers a hybrid
growth strategy in which both conventional suburban development
and alternative growth efforts, such as smart growth and new
urbanism, are addressed.  This scenario also considers
environmental conservation by limiting development 
around several predefined buffer zones.

To implement this idea in model simulation, the starting values for
five growth control coefficients used in the first scenario need to
be changed in order to slow down the growth rate and to alter the
growth pattern. The conditions used in this scenario can be seen
from Table 2.  Please note that the proposed transportation
improvements and new additions as well as environmental
conservation introduced in the second scenario are still valid here.

Although the two scenarios are different in policies and
environmental conditions, there are several commonalities. The
time span is the same, which is from 2000 to 2050.  Because of the
limitation in computation resources, only the data set with 240 m
spatial resolution is used.   The two input data layers, namely,
slope and hillshaded relief, are used without change for all the
runs.  The number of times of Monte Carlo computations is 100
and the random samples are 2,840, or about 1 percent of the total
pixels available. 

3. RESULT

The progressive urban development as projected into the future 51
years under two different scenarios can be perceived quite well
from Figure 2. The graphical outputs of the two scenarios are quite
similar. By evaluating these graphical outputs carefully, it is found
that a Los Angeles-like metropolis characterized by huge urban
agglomerations would emerge by 2030, if current development
conditions are still valid.  The vegetation area and open space in
the 13 metro counties (excluding the northwestern mountainous
area) would be very limited.  In contrast, the simulated
urbanization under the second scenario appears to be relatively
restrictive, indicating that the effort of slowing down urbanization
through model parameterization has been quite efficient. 

Statistical measures reveal much more information. Under the first
scenario,  the total urban area for 2050 would be 1,286,692 ha.
The total net increment in urban area with at least 50% probability
would be 793,561 ha., or 43.6 ha. per day on the average,
representing an increase of 160 percent between 1999 and 2050.
As a result of such a dramatic growth, urban land would occupy
approximately 78.67 percent of the total modeled land by 2050.
The averaged slope steepness for urban land would increase from
4.87 percent in 1999 to 8.32 percent in 2050 (Table 3), indicating
many woody area would be converted into urban use.

Under the second scenario, by 2050, the total urban area would be
906,134 ha., or approximately 55.40 percent of the entire modeled
area. The total net urban increment would be 413,003 ha., or 22.2
ha. per day, indicating an increase of 84 percent between 1999 and
2050. Apparently, the magnitude of urban growth as projected
under this scenario has been substantially suppressed. The mean



slope steepness for urban land would decrease from 4.87 percent
in 1999 to 4.46 percent in 2050, implying that many crop land
would be converted into urban uses.  

The spatial distribution of simulated urbanization under different
scenarios can be discerned from Figure 2.  For the first scenario,
the projected urban additions for the period of 1999-2010 are
largely adjacent to the 1999 urban pixels, which can be viewed
as ‘continuation' of urbanization.  This is in line with the statistics
given in Table 3, which show that more than 99 percent of the net
urban growth under this scenario are accounted for by the organic
growth.  This type of urban growth actually represents the
expansion of existing urban pixels into their surroundings. The

projected urban additions
during 2010-2030 are largely
distributed over places far away
from the 1999 urban land.
Many projected additions are
also found in western,
northwestern, and southeastern
parts.  Some large urban
clusters can be clearly
recognized. The projected
urban additions after 2030 are
predominately scattered over
the western and southeastern
parts.  Under the second
scenario,  the projected
urbanization for the period of
1999-2010 has been very
limited. Most of the new
additions are for the period of
2010-2030, represented by blue
and green pixels in Figure 2
(Note: The original figure is in

color. Readers can contact the author for obtaining a copy of this
color plate). Numerous large urban clusters can be clearly
recognized, particularly in southern and western parts. 

4. CONCLUSION

This study has demonstrated the usefulness of remote sensing,
dynamic modeling and geographic information technologies for
urban planning.  The model used here has been tested by its
developers for long-term urban growth prediction in two study
sites.  From a user's perspective, this study has moved forward to
investigate the effectiveness of the model as a tool to imagine, test

and choose between different
scenarios.  These scenarios
represent different growth strategies
that can be adopted by planners.
This is an area on which substantial
research efforts need to be made in
order to adopt dynamic modeling
technology for problem solving in
applied urban studies.

At the application level, this study
has established a well-documented
regional case study  focusing on
Atlanta, a metropolis without any
major natural barriers.  The two
scenarios designed with different
environmental and policy conditions
have largely represented the major
possible planning strategies.  These
result from the first  scenario
indicates Atlanta would be the next
‘Los Angeles' by approximate 2030
if the current rate and pattern of
urban growth do not alter.  These
will serve as a good warning to
planners in Atlanta.   In contrast, the
result from the second scenario
shows that much more greenness
and open space, including buffer
zones of large streams and lakes,
could be preserved.  Accordingly,
the second scenario should be the
most desirable for the future urban



growth of Atlanta.   Given that many major metropolises in the
United States face the growing problems caused by restless
suburban development, the technical frameworks developed in
the current study focusing on Atlanta should be applicable to
those metropolises with similar growth styles.
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