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Abstract 

The earthball Scleroderma, an ectomycorrhizal basidiomycete belonging to the Sclerodermataceae family, 
serves as a significant mutualistic tree symbiont globally. Originally, two genetically sequenced strains of 
this genus were obtained from fruiting bodies collected under chestnut trees (Castanea mollissima). These 
strains were utilized to establish in vitro ectomycorrhizal roots of chestnut seedlings. The genome 
sequences of these strains share characteristics with those of other ectomycorrhizal species in Boletales 
order, including a restricted set of genes encoding carbohydrate-active enzymes. The genome sequences 
presented here will aid in further exploring the factors contributing to the establishment of 
ectomycorrhizal symbiosis in chestnut trees. 
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Scleroderma, commonly known as earthballs, is a 

widely distributed ectomycorrhizal gasteromycetes 
genus that produces large, noticeable sporocarps or 
earthballs in various forest environments and areas 
adjacent to forests [1]. The ectomycorrhizal status of S. 
citrinum and S. yunnanense has been confirmed and 
symbiosis can be established in in vitro experimental 
systems [2]. Scleroderma citrinum belongs to the family 
Sclerodermataceae. This mushroom appeared early in 
the fruiting succession of ectomycorrhizal fungi. It is 
the primary colonizer of mining waste, enabling it to 
spread rapidly and colonize young root systems of 
numerous tree species. The genus Scleroderma is found 
worldwide, and S. citrinum is commonly recorded in 
temperate regions of the Northern Hemisphere (Fig. 
1A) [3]. Several host genera have been reported for 
Scleroderma, including poplars and eucalypts [4,5]. 

Multiple studies have investigated the symbiotic 
relationships between Scleroderma species and their 
host plants, focusing on the growth and nutritional 
benefits of this relationship [3,6-8]. Recently, the S. 
citrinum mycorrhizosphere has been studied as a 
model system to examine the impact of 
ectomycorrhizal symbiosis on the taxonomic and 
functional diversity of bacterial communities 
involved in mineral weathering [3,9,10]. 

In October 2018, S. citrinum hr. and S. yunnanense 
jo. strains were isolated from fruiting bodies growing 
under chestnut trees (Castanea mollissima) in Huairou 
and Jianou, China, respectively. These strains were 
cultured on agar plates containing the P20 medium at 
25°C, and subsequent mycelial (monosporal) cultures 
were used to remove contaminants until identical 
mycelia were obtained. The identity of the purified 
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strains was confirmed by sequencing the rDNA ITS 
region using the primers ITS4 and ITS5[11]. After 
molecular characterization, both strains were 
deposited at Beijing Key Laboratory of New 
Techniques in Agricultural Application with 
accession numbers 0322 for S. citrinum hr and 0323 for 
S. yunnanense jo. The growth of both strains on P20, 
MMN, and PDA media was compared, revealing that 
P20 medium was the most optimized for both strains 
(Fig. 1B). 

Fresh mycelia were obtained from fungal 
colonies grown on the P20 medium and were 
snap-frozen in liquid nitrogen. The samples were 
subsequently ground using a TissueLyser LT 
(QIAGEN). DNA was isolated following the CTAB 
extraction protocol [12], and total RNA was isolated 
using an RNAeasy extraction kit (QIAGEN), 
according to the manufacturer's instructions. During 
the extraction procedures, RNase A or DNase I (both 
from Thermo Fisher) were used to purify DNA or 
RNA, respectively. Approximately 200 μg of DNA 
and 10 μg of total RNA were extracted from each 
strain. 

The S. citrinum hr and S. yunnanense jo v1.0 
genomes were sequenced from 100 μg of genomic 
DNA using the Pacific Biosciences sequencing 
platform (>10kb PacBio libraries with Blue Pippin size 
selection), assembled with Falcon v. 0.0.8[13], polished 
with Arrow version SMRTLINK v8.0.0.80529 
(https://www.pacb.com/support/software-downloa
ds), and annotated using the MycoCosm developed 
by JGI[14], information of genomic portals can be 
found in https://mycocosm.jgi.doe.gov/Sclcihr1 and
 https://mycocosm.jgi.doe.gov/Sclyun1. The Whole 
Genome Shotgun project has been deposited in 
GenBank under BioProjects PRJNA711063 and 
PRJNA1080752. To support gene prediction, mRNA 

sequences were obtained using Illumina RNA-Seq 
data assembled using Trinity v2.11.0[15]. 

The assembly size of the Chinese strain hr of S. 
citrinum (77,47 Mbp), was higher than that of the 
previously sequenced European strain S. citrinum 
Foug A (i.e., 56,14 Mbp), whereas the number of genes 
was lower (10323 genes versus. 21012 genes) [16]. We 
identified polymorphic content within the assembly 
and annotation of strain hr, which reflected significant 
separation of alleles. Many scaffolds were observed to 
be highly similar to larger scaffolds and were 
predicted to constitute alternate or secondary 
haplotypes. The assembly size of the S. yunnanense 
genome (45,55 Mbp) was lower than that of S. citrinum 
genomes, despite the fact that the number of genes 
was very similar between the two Chinese strains, 
specifically 10,323 versus. 10,194. 

A restricted set of genes encoding 
carbohydrate-active enzymes (CAZymes) is a major 
trait in the evolution of ectomycorrhizal fungi from 
saprotrophic ancestors [16]. The genomes of S. citrinum 
hr and S. yunnanense contain 244 CAZyme genes, 
whereas the S. citrinum FougA genome encodes 257 
CAZyme genes. This repertoire of CAZyme genes 
acting on lignocellulose is much lower than that of 
their saprotrophic relatives in Boletales, such as 
Coniophora and Serpula species, as well as 
ectomycorrhizal fungi, such as Suillus and Boletus spp. 
(Fig. 2). In contrast, their CAZyme repertoire is very 
similar to that of Pisolithus species, which are also 
found in sandy soils with low soil organic matter 
content. 

The current set of genome sequences will enable 
additional research into the molecular factors that 
drive the formation of ectomycorrhizal symbiosis in 
chestnut trees. 

 

 
Figure 1. Basidiocarps (A) and vegetative mycelial cultures (B) of S. citrinum and S. yunnanense. A, natural habitate of S. citrinum hr. (B) Growth of S. citrinum hr and S. yunnanense 
jo strains on MMN, P20, and PDA solid media 1 or 30 days after inoculation. 
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Figure 2. Differential distribution of CAZyme gene copy numbers in the genomes of 92 species of saprotrophic and ectomycorrhizal fungi in Boletales. Principal coordinate 
analysis of the total CAZyme gene copy numbers identified in saprotrophic and ectomycorrhizal fungi. Each symbol corresponds to the genome of the Boletales species available 
in the JGI MycoCosm database (mycocosm.jgi.doe.gov). The lifestyle of the sequenced species is indicated by different colored species names (green for saprotrophic species and 
blue and red for ectomycorrhizal species). Divergent distributions of CAZyme gene sets in various mycorrhizal lifestyles with an increasing repertoire of CAZyme from 
ectomycorrhizal Scleroderma species (in red) to saprotrophic brown rotters (higher; from left to right). Principal component analysis (PCA) was performed using the MycoCosm 
PCA tool (mycocosm.jgi.doe.gov). The CAZyme gene repertoires were obtained after semi-manual curation of protein sequences by the CAZy team (www.cazy.org)[17]. 
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