E-Learning Performance Prediction: Mining the Feature Space of Effective Learning Behavior
Abstract
:1. Introduction
2. Related Work
2.1. The Correlation between E-Learning Behavior and Performance
2.2. The Development of E-Learning Behavior Classification
2.3. E-Learning Performance Prediction
2.3.1. Prediction Indicators of E-Learning Performance
2.3.2. Feature Engineering
2.3.3. Prediction Model
3. Methods
3.1. Problem Definition
3.2. Method
3.2.1. Behavior Classification—E-Learning Behavior Classification Model (EBC Model)
3.2.2. Data Preprocessing
3.2.3. Feature Selection
3.2.4. Feature Fusion
3.2.5. Model Training
4. Experimental Design
4.1. Data Source
4.2. Mining the Feature Space of Effective E-Learning Behavior
4.2.1. Experimental Program
4.2.2. Feature Selection
4.2.3. Construct Input Variables for Training Data
4.3. Validation of Feature Fusion
4.3.1. Experimental Program
4.3.2. Feature Fusion
4.4. Realization and Evaluation of the Predictor
5. Experimental Discussion and Analysis
5.1. Mining the Feature Space of Effective E-Learning Behavior
5.2. Validation of Feature Fusion
5.3. Experimental Efficiency
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mallinson, B.; Sewry, D. Elearning at Rhodes University—A case study. In Proceedings of the IEEE International Conference on Advanced Learning Technologies, 2004. Proceedings, Joensuu, Finland, 30 August–1 September 2004; pp. 708–710. [Google Scholar] [CrossRef]
- Huang, L.; Wang, C.D.; Chao, H.Y.; Lai, J.H.; Yu, P.S. A Score Prediction Approach for Optional Course Recommendation via Cross-User-Domain Collaborative Filtering. IEEE Access 2019, 7, 19550–19563. [Google Scholar] [CrossRef]
- Zeng, J.; OuYang, J.; Ji, J.; Wang, X.; Qiao, B. The Analysis of the Learning Behavior Characteristics that Influence the Qualified MOOC Learners’ Learning Outcome. J. Open Learn. 2018, 23, 1–9. [Google Scholar] [CrossRef]
- Siemens, G. Learning Analytics: The Emergence of a Discipline. Am. Behav. Sci. 2013, 57, 1380–1400. [Google Scholar] [CrossRef] [Green Version]
- Musso, M.F.; Hernández, C.F.R.; Cascallar, E.C. Predicting key educational outcomes in academic trajectories: A machine-learning approach. High. Educ. 2020, 80, 875–894. [Google Scholar] [CrossRef] [Green Version]
- Pardo, A.; Mirriahi, N.; Martinez-Maldonado, R.; Jovanovic, J.; Dawson, S.; Gašević, D. Generating Actionable Prediction Models of Academic Performance. In Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, New York, NY, USA, 25–29 April 2016; pp. 474–478. [Google Scholar] [CrossRef]
- Tomasevic, N.; Gvozdenovic, N.; Vranes, S. An overview and comparison of supervised data mining techniques for student exam performance prediction. Comput. Educ. 2020, 143, 103676. [Google Scholar] [CrossRef]
- Zacharis, N.Z. A multivariate approach to predicting student outcomes in web-enabled blended learning courses. Internet High. Educ. 2015, 27, 44–53. [Google Scholar] [CrossRef]
- Yu, T.; Jo, I.H. Educational Technology Approach toward Learning Analytics: Relationship between Student Online Behavior and Learning Performance in Higher Education. In Proceedings of the Fourth International Conference on Learning Analytics And Knowledge, Indianapolis, IN, USA, 24–28 March 2014; pp. 269–270. [Google Scholar] [CrossRef]
- Wu, F.; Tian, H. Mining Meaningful Features of Learning Behavior: Research on Prediction Framework of Learning Outcomes. Open Educ. Res. 2019, 25, 75–82. [Google Scholar] [CrossRef]
- Brinton, C.G.; Buccapatnam, S.; Chiang, M.; Poor, H.V. Mining MOOC Clickstreams: Video-Watching Behavior vs. In-Video Quiz Performance. IEEE Trans. Signal Process. 2016, 64, 3677–3692. [Google Scholar] [CrossRef]
- Akram, A.; Fu, C.; Li, Y.; Javed, M.Y.; Lin, R.; Jiang, Y.; Tang, Y. Predicting Students’ Academic Procrastination in Blended Learning Course Using Homework Submission Data. IEEE Access 2019, 7, 102487–102498. [Google Scholar] [CrossRef]
- Qiu, F.; Zhang, G.; Sheng, X.; Jiang, L.; Zhu, L.; Xiang, Q.; Jiang, B.; Chen, P.K. Predicting students’ performance in e-learning using learning process and behaviour data. Sci. Rep. 2022, 12, 1–15. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Yu, C.; Zong, Y. Mining LMS Data for Behavioral Engagement Indicators in Online Learning Environments. Open Educ. Res. 2016, 22, 77–88. [Google Scholar] [CrossRef]
- Shen, X.; Liu, M.; Wu, J.; Dong, X. Towards a model for evaluating students’ online learning behaviors and learning performance. Distance Educ. China 2020, 10, 76–84. [Google Scholar] [CrossRef]
- Bolliger, D.U.; Halupa, C. Online student perceptions of engagement, transactional distance, and outcomes. Distance Educ. 2018, 39, 299–316. [Google Scholar] [CrossRef]
- Zheng, B.; Lin, C.H.; Kwon, J.B. The impact of learner-, instructor-, and course-level factors on online learning. Comput. Educ. 2020, 150, 103851. [Google Scholar] [CrossRef]
- Qureshi, M.A.; Khaskheli, A.; Qureshi, J.A.; Raza, S.A.; Yousufi, S.Q. Factors affecting students’ learning performance through collaborative learning and engagement. Interact. Learn. Environ. 2021, 1–21. [Google Scholar] [CrossRef]
- Kokoç, M.; Altun, A. Effects of learner interaction with learning dashboards on academic performance in an e-learning environment. Behav. Inf. Technol. 2021, 40, 161–175. [Google Scholar] [CrossRef]
- Cerezo, R.; Sánchez-Santillán, M.; Paule-Ruiz, M.P.; Núñez, J.C. Students’ LMS interaction patterns and their relationship with achievement: A case study in higher education. Comput. Educ. 2016, 96, 42–54. [Google Scholar] [CrossRef]
- Moore, M.G. Editorial: Three types of interaction. Am. J. Distance Educ. 1989, 3, 1–7. [Google Scholar] [CrossRef]
- Hillman, D.C.; Willis, D.J.; Gunawardena, C.N. Learner-interface interaction in distance education: An extension of contemporary models and strategies for practitioners. Am. J. Distance Educ. 1994, 8, 30–42. [Google Scholar] [CrossRef]
- Hirumi, A. A framework for analyzing, designing, and sequencing planned elearning interactions. Q. Rev. Distance Educ. 2002, 3, 141–160. [Google Scholar]
- Sun, Y. Characteristics Analysis of Online Learning Behavior of Distance Learners in Open University. China Educ. Technol. 2015, 8, 64–71. [Google Scholar]
- Wu, L.; Lao, C.; Liu, Q.; Cheng, Y.; Mao, G. Online Learning Behavior Analysis Model and Its Application in Network Learning Space. Mod. Educ. Technol. 2018, 28, 46–53. [Google Scholar]
- Nawang, H.; Makhtar, M.; Shamsudin, S.N.W. Classification model and analysis on students’ performance. J. Fundam. Appl. Sci. 2017, 9, 869–885. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, Q. Prediction of academic performance and risk: A review of literature on predicative indicators in learning analytics. Distance Educ. China 2018, 1, 5–15, 44, 79. [Google Scholar] [CrossRef]
- Marbouti, F.; Diefes-Dux, H.A.; Madhavan, K. Models for early prediction of at-risk students in a course using standards-based grading. Comput. Educ. 2016, 103, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hooshyar, D.; Pedaste, M.; Yang, Y. Mining educational data to predict students’ performance through procrastination behavior. Entropy 2020, 22, 12. [Google Scholar] [CrossRef] [Green Version]
- Macfadyen, L.P.; Dawson, S. Mining LMS data to develop an “early warning system” for educators: A proof of concept. Comput. Educ. 2010, 54, 588–599. [Google Scholar] [CrossRef]
- Yang, Y.; Hooshyar, D.; Pedaste, M.; Wang, M.; Huang, Y.M.; Lim, H. Predicting course achievement of university students based on their procrastination behaviour on Moodle. Soft Comput. 2020, 24, 18777–18793. [Google Scholar] [CrossRef]
- McNeely, C.L.; Hahm, J.O. The Big (Data) Bang: Policy, Prospects, and Challenges. Rev. Policy Res. 2014, 31, 304–310. [Google Scholar] [CrossRef]
- Saha, S.; Rajasekaran, S.; Ramprasad, R. Novel Randomized Feature Selection Algorithms. Int. J. Found. Comput. Sci. 2015, 26, 321–341. [Google Scholar] [CrossRef]
- Brankovic, A.; Falsone, A.; Prandini, M.; Piroddi, L. A Feature Selection and Classification Algorithm Based on Randomized Extraction of Model Populations. IEEE Trans. Cybern. 2018, 48, 1151–1162. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Du, S.; Liang, J.; Kang, Z. Towards a prediction model of learning performance:informed by learning behavior big data analytics. Distance Educ. China 2021, 4, 8–20, 76. [Google Scholar] [CrossRef]
- Chen, C.; Liang, X. Feature selection method based on Gini index and chi-square test. Comput. Eng. Des. 2019, 40, 2342–2345, 2360. [Google Scholar] [CrossRef]
- Wang, K.; Wang, J.; Xing, Z.; Han, X. Infrared spectrum modeling method based on RF algorithm of improved feature selection. Appl. Res. Comput. 2018, 35, 3000–3002. [Google Scholar]
- Wang, Z.; Xiao, X.; Rajasekaran, S. Novel and efficient randomized algorithms for feature selection. Big Data Min. Anal. 2020, 3, 208–224. [Google Scholar] [CrossRef]
- Saha, S.S.; Rahman, S.; Rasna, M.J.; Zahid, T.B.; Islam, A.M.; Ahad, M.A.R. Feature Extraction, Performance Analysis and System Design Using the DU Mobility Dataset. IEEE Access 2018, 6, 44776–44786. [Google Scholar] [CrossRef]
- Bian, K.; Zhou, M.; Hu, F.; Lai, W. RF-PCA: A New Solution for Rapid Identification of Breast Cancer Categorical Data Based on Attribute Selection and Feature Extraction. Front. Genet. 2020, 11, 1082. [Google Scholar] [CrossRef]
- Kwak, N.; Choi, C.H. Feature extraction based on ICA for binary classification problems. IEEE Trans. Knowl. Data Eng. 2003, 15, 1374–1388. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, K.; Song, J.; Zhu, X.; Sun, J.; Brian, C.; Brian, M.N. Academic Performance Prediction Based on Multisource, Multifeature Behavioral Data. IEEE Access 2021, 9, 5453–5465. [Google Scholar] [CrossRef]
- Li, Y. Feature extraction and learning effect analysis for MOOCs users based on data mining. Int. J. Emerg. Technol. Learn. (iJET) 2018, 13, 108–120. Available online: https://www.learntechlib.org/p/185278 (accessed on 21 April 2022). [CrossRef]
- Vieira, C.; Parsons, P.; Byrd, V. Visual learning analytics of educational data: A systematic literature review and research agenda. Comput. Educ. 2018, 122, 119–135. [Google Scholar] [CrossRef]
- Dudani, S.A. The Distance-Weighted k-Nearest-Neighbor Rule. IEEE Trans. Syst. Man Cybern. 1976, SMC-6, 325–327. [Google Scholar] [CrossRef]
- Brereton, R.G.; Lloyd, G.R. Support vector machines for classification and regression. Analyst 2010, 135, 230–267. [Google Scholar] [CrossRef] [PubMed]
- Sen, P.C.; Hajra, M.; Ghosh, M. Supervised Classification Algorithms in Machine Learning: A Survey and Review. In Emerging Technology in Modelling and Graphics; Springer: Singapore, 2020; pp. 99–111. [Google Scholar]
Symbols | Definition |
---|---|
The original E-learning behavior sets A, is labels of E-learning behavior. | |
Original E-learning behavior data, n represents the nth E-learning behavior, , m represents the student user tag, . | |
Standardized E-learning behavior data. | |
Standard E-learning behavior set , is the label of standard E-learning behavior. | |
Set of eigenvalues of learning behavior, represents the overall eigenvalue of the nth learning behavior. | |
Learning behavior class is composed of , is part of the standard E-learning behavior set . | |
E-learning behavior category feature value set, where represents the feature value after the feature fusion of behavior category . |
Number | E-Learning Behavior | Behavior Interpretation | Behavior Coding | Behavior Category Coding |
---|---|---|---|---|
01 | homepage | visit the homepage of the learning platform | H | BI |
02 | page | access the course page | P | BI |
03 | subpage | access the course subpage | S | BI |
04 | glossary | access glossary | G | KI |
05 | ouwiki | query with Wikipedia | W | KI |
06 | resource | search platform resources | R | KI |
07 | url | access course URL link | U | KI |
08 | oucontent | download platform resources | T | KI |
09 | forumng | participate in Forum discussion | F | CI |
10 | oucollaborate | participate in collaborative communication | C | CI |
11 | ouelluminate | participate in simulation seminars | E | CI |
12 | externalquiz | complete extracurricular quizzes | Q | SI |
Method Feature & Feature Value | Entropy Feature | Feature Value | Variance Filtering Feature | Feature Value | Reserve |
---|---|---|---|---|---|
1 | T (KI) | 2.27 | S (BI) | 1.75 | ✓ |
2 | H (BI) | 2.88 | F (CI) | 1.44 | ✓ |
3 | R (KI) | 3.53 | H (BI) | 3.78 | ✓ |
4 | S (BI) | 3.98 | R (KI) | 1.96 | ✓ |
5 | F (CI) | 4.97 | U (KI) | 1.78 | ✓ |
6 | Q (SI) | 5.40 | T (KI) | 5.93 | ✓ |
7 | U (KI) | 6.52 | W (KI) | 2.43 | ✓ |
8 | W (KI) | 6.70 | Q (SI) | 2.03 | ✓ |
9 | C (CI) | 8.48 | C (CI) | 8.92 | ✗ |
10 | G (KI) | 1.71 | E (CI) | 8.82 | ✗ |
11 | E (CI) | 1.90 | G (KI) | 4.71 | ✗ |
12 | P (BI) | 1.92 | P (BI) | 7.76 | ✗ |
Feature Subset | Behavior Category Coding | Behavior Coding |
---|---|---|
F0 | BI | H, S |
F1 | KI | W, R, U, T |
F2 | CI | F |
F3 | SI | Q |
F4 | BI, KI | H, S, W, R, U, T |
F5 | BI, CI | H, S, F |
F6 | BI, SI | H, S, Q |
F7 | KI, CI | W, R, U, T, F |
F8 | KI, SI | W, R, U, T, Q |
F9 | CI, SI | F,Q |
F10 | BI, KI, CI | H, S, W, R, U, T, F |
F11 | BI, KI, SI | H, S, W, R, U, T, Q |
F12 | BI, CI, SI | H, S, F, Q |
F13 | KI, CI, SI | W, R, U, T, F, Q |
F14 | BI, KI, CI, SI | H, S, W, R, U, T, F, Q |
Method | Group 1 | Group 2 | Group 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACC | F1 | K | T | ACC | F1 | K | T | ACC | F1 | K | T | |
SVC (R) | 83.17% | 0.887 | 0.563 | 3.620 | 90.14% | 0.932 | 0.751 | 4.497 | 96.08% | 0.973 | 0.899 | 3.982 |
SVC (L) | 81.65% | 0.873 | 0.537 | 2.032 | 89.70% | 0.927 | 0.749 | 1.852 | 95.14% | 0.966 | 0.882 | 1.573 |
BAYES | 81.67% | 0.877 | 0.523 | 3.254 | 89.51% | 0.928 | 0.735 | 1.501 | 95.28% | 0.968 | 0.877 | 1.511 |
KNN (U) | 80.20% | 0.863 | 0.510 | 1.767 | 88.63% | 0.923 | 0.706 | 0.449 | 94.68% | 0.964 | 0.863 | 0.390 |
KNN (D) | 79.92% | 0.860 | 0.504 | 0.688 | 88.37% | 0.921 | 0.701 | 0.121 | 93.99% | 0.959 | 0.846 | 0.066 |
DT | 80.90% | 0.873 | 0.495 | 0.038 | 87.43% | 0.914 | 0.677 | 0.018 | 91.75% | 0.944 | 0.786 | 0.016 |
SOFTMAX | 81.58% | 0.873 | 0.532 | 0.116 | 89.82% | 0.929 | 0.750 | 0.097 | 95.19% | 0.967 | 0.880 | 0.065 |
AVE | 81.30% | 0.872 | 0.523 | 1.645 | 89.09% | 0.925 | 0.724 | 1.219 | 94.59% | 0.963 | 0.862 | 1.086 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, F.; Zhu, L.; Zhang, G.; Sheng, X.; Ye, M.; Xiang, Q.; Chen, P.-K. E-Learning Performance Prediction: Mining the Feature Space of Effective Learning Behavior. Entropy 2022, 24, 722. https://doi.org/10.3390/e24050722
Qiu F, Zhu L, Zhang G, Sheng X, Ye M, Xiang Q, Chen P-K. E-Learning Performance Prediction: Mining the Feature Space of Effective Learning Behavior. Entropy. 2022; 24(5):722. https://doi.org/10.3390/e24050722
Chicago/Turabian StyleQiu, Feiyue, Lijia Zhu, Guodao Zhang, Xin Sheng, Mingtao Ye, Qifeng Xiang, and Ping-Kuo Chen. 2022. "E-Learning Performance Prediction: Mining the Feature Space of Effective Learning Behavior" Entropy 24, no. 5: 722. https://doi.org/10.3390/e24050722
APA StyleQiu, F., Zhu, L., Zhang, G., Sheng, X., Ye, M., Xiang, Q., & Chen, P.-K. (2022). E-Learning Performance Prediction: Mining the Feature Space of Effective Learning Behavior. Entropy, 24(5), 722. https://doi.org/10.3390/e24050722