Evaluation of the Immunity Activity of Glycyrrhizin in AR Mice
Abstract
:1. Introduction
2. Results
Group | Body weight (g) |
---|---|
NC | 37.12 ± 1.49 |
MC | 34.15 ± 1.31 a |
lycopene 20 mg kg−1 | 34.97 ± 1.64 |
glycyrrhizin 10 mg kg−1 | 34.72 ± 1.73 |
glycyrrhizin 20 mg kg−1 | 35.01 ± 1.59 |
glycyrrhizin 30 mg kg−1 | 35.33 ± 1.82 |
Group | IgE (ng/mL) | IgA (g/L) | IgG (g/L) | IgM (g/L) |
---|---|---|---|---|
NC | 20.39 ± 1.41 | 3.98 ± 0.23 | 16.32 ± 1.74 | 3.07 ± 0.21 |
MC | 35.07 ± 1.43 b | 1.43 ± 0.12 b | 7.68 ± 0.54 b | 2.73 ± 0.17 |
lycopene 20 mg kg−1 | 29.78 ± 1.42 c | 2.07 ± 0.19 c | 15.77 ± 1.05 | 3.03 ± 0.24 |
glycyrrhizin 10 mg kg−1 | 30.28 ± 1.37 c | 1.64 ± 0.12 | 8.21 ± 0.78 c | 3.04 ± 0.19 |
glycyrrhizin 20 mg kg−1 | 24.27 ± 1.28 d | 2.61 ± 0.14 d | 10.29 ± 0.94 d | 3.01 ± 0.21 |
glycyrrhizin 30 mg kg−1 | 21.56 ± 2.15 d | 3.21 ± 0.16 d | 13.02 ± 1.14 d | 2.98 ± 0.23 |
Group | IL-2 (pg/mg) | IL-4 (pg/mg) | IL-5 (pg/mg) | IL-6 (pg/mg) | IL-12 (pg/mg) |
---|---|---|---|---|---|
NC | 16.42 ± 1.07 | 51.41 ± 1.11 | 3.05 ± 0.13 | 118.47 ± 8.69 | 37.29 ± 1.09 |
MC | 9.32 ± 0.78 b | 58.07 ± 1.43 b | 5.21 ± 0.24 b | 153.03 ± 10.77 b | 28.69 ± 1.67 b |
lycopene 20 mg kg−1 | 10.54 ± 0.85 | 55.78 ± 1.42 | 4.84 ± 0.19 | 148.44 ± 12.31 | 30.21 ± 1.98 |
glycyrrhizin 10 mg kg−1 | 13.05 ± 0.97 d | 55.28 ± 1.37 | 4.27 ± 0.23 c | 137.57 ± 11.57 c | 33.87 ± 1.75 d |
glycyrrhizin 20 mg kg−1 | 15.11 ± 1.06 d | 53.27 ± 1.28 c | 3.76 ± 0.16 d | 128.42 ± 9.09 d | 35.21 ± 2.05 d |
glycyrrhizin 30 mg kg−1 | 15.98 ± 1.12 d | 51.56 ± 1.15 d | 3.28 ± 0.14 d | 120.62 ± 8.93 d | 37.08 ± 1.99 d |
Group | NO (μmol/L) | TNF-α (pg/mL) | NOS/(U/mL) |
---|---|---|---|
NC | 63.82 ± 4.29 | 80.31 ± 5.94 | 21.65 ± 1.85 |
MC | 159.43 ± 13.74 b | 163.29 ± 13.77 b | 59.42 ± 1.97 b |
lycopene 20 mg kg−1 | 123.57 ± 11.05 d | 130.14 ± 10.62 d | 45.12 ± 2.68 d |
glycyrrhizin 10 mg kg−1 | 131.54 ± 9.84 d | 134.28 ± 12.93 d | 41.63 ± 2.95 d |
glycyrrhizin 20 mg kg−1 | 92.37 ± 6.72 d | 102.41 ± 8.93 d | 33.07 ± 1.47 d |
glycyrrhizin 30 mg kg−1 | 72.66 ± 5.36 d | 89.37 ± 6.05 d | 26.87 ± 1.21 d |
Group | AchE activity (U/mg) |
---|---|
NC | 0.3072 ± 0.0115 |
MC | 0.2127 ± 0.0136 b |
lycopene 20 mg kg−1 | 0.2328 ± 0.0185 |
glycyrrhizin 10 mg kg−1 | 0.3347 ± 0.0317 d |
glycyrrhizin 20 mg kg−1 | 0.4203 ± 0.0298 d |
glycyrrhizin 30 mg kg−1 | 0.5032 ± 0.0243 d |
Group | Peripheral blood (pg/mL) | Nasal mucosa (pg/mL) |
---|---|---|
NC | 85.38 ± 5.94 | 50.53 ± 6.03 |
MC | 157.04 ± 13.29 b | 97.29 ± 10.67 b |
lycopene 20 mg kg−1 | 148.39 ± 13.05 | 91.32 ± 9.73 |
glycyrrhizin 10 mg kg−1 | 124.25 ± 13.11 d | 80.15 ± 9.05 c |
glycyrrhizin 20 mg kg−1 | 104.31 ± 9.49 d | 69.42 ± 7.77 d |
glycyrrhizin 30 mg kg−1 | 90.63 ± 7.37 d | 60.11 ± 7.14 d |
3. Discussion
4. Experimental
4.1. Preparation of Glycyrrhizin
4.2. Animals
4.3. Allergic Rhinitis Model
4.4. Animal Grouping and Treatment
4.5. Measurement of Blood IgE, IgA, IgG, IgM, IL-4, IL-2, IL-5, IL-6, IL-10, TNF-α Levels
4.6. Measurement of Serum Nitric Oxide Level
4.7. Determination of Nitric Oxide Synthase Activity
4.8. Determination of AChE Activity
4.9. Statistical Analysis
5. Conclusions
Reference and Notes
- Huang, K.C. The Pharmacology of Chinese Herbs; CRC Press: Boca Raton, FL, USA, 1993; pp. 275–278. [Google Scholar]
- Anon. Glycyrrhiza glabra. Altern. Med. Rev. 2005, 10, 230–237.
- Schulz, V.; Hänsel, R.; Tyler, V.E. Rational Phytotherapy: A Physicians’ Guide to Herbal Medicine; Springer-Verlag: Berlin, Germany, 1998; pp. 160–187. [Google Scholar]
- Wang, Z.Y.; Athar, M.; Bickers, D.R. Licorice in foods and herbal drugs: Chemistry, pharmacology, toxicology and uses. In Herbs, Botanicals & Teas; Mazza, G., Oomah, B.D., Eds.; Technomic Publishing Co. Inc.: Lancaster, PA, USA, 2000; pp. 321–353. [Google Scholar]
- Finney, R.S.H.; Somers, G.F. The anti-inflammatory activity of glycyrrhetinic acid and derivatives. J. Pharm. Pharmacol. 1958, 10, 613–620. [Google Scholar]
- Shibata, S.; Takahashi, K.; Yano, S.; Harada, M.; Saito, H.; Tamura, Y.; Kumagai, A.; Hirabayashi, K.; Yamamoto, M.; Nagata, N. Chemical modification of glycyrrhetinic acid in relation to the biological activities. Chem. Pharm. Bull. (Tokyo) 1987, 35, 1910–1918. [Google Scholar]
- Monder, C.; Stewart, P.M.; Lakashmi, V.; Valentino, R.; Burt, D.; Edwards, C.R.W. Licorice inhibits corticosteroid 11β-dehydrogenase of rat kidney and liver: In vivo and in vitro studies. Endocrinology 1989, 125, 1046–1053. [Google Scholar] [CrossRef]
- Nose, M.; Ito, M.; Kamimura, K.; Shimizu, M.; Ogihara, Y. A comparison of the antihepatotoxic activity between glycyrrhizin and glycyrrhetinic acid. Planta Med. 1994, 60, 136–139. [Google Scholar] [CrossRef]
- Inoue, H.; Nagata, N.; Shibata, S.; Koshihara, Y. Inhibitory effect of glycyrrhetinic acid derivatives on capsaicin-induced ear edema in mice. Jpn. J. Pharmacol. 1996, 71, 281–289. [Google Scholar] [CrossRef]
- Bauchau, V.; Durham, S.R. Prevalence and rate of diagnosis of allergic rhinitis in Europe. Eur. Respir. J. 2004, 24, 758–764. [Google Scholar] [CrossRef]
- Bousquet, J.; Demarteau, N.; Mullol, J.; van den Akker-van Marle, M.E.; van Ganse, E.; Bachert, C. Costs associated with persistent allergic rhinitis are reduced by levocetirizine. Allergy 2005, 60, 788–794. [Google Scholar] [CrossRef]
- Bousquet, J.; van Cauwenberge, P.; Khaltaev, N. Allergic rhinitis and its impact on asthma. J. Allergy Clin. Immunol. 2001, 108, S147–S334. [Google Scholar] [CrossRef]
- Bousquet, J.; Neukirch, F.; Bousquet, P.J.; Gehano, P.; Klossek, J.M.; Le Gal, M.; Allaf, B. Severity and impairment of allergic rhinitis in patients consulting in primary care. J. Allergy Clin. Immunol. 2006, 117, 158–162. [Google Scholar]
- Valovirta, E.; Myrseth, S.E.; Palkonen, S. The voice of the patients: Allergic rhinitis is not a trivial disease. Curr. Opin. Allergy Clin. Immunol. 2008, 81, 1–9. [Google Scholar]
- Canonica, G.W.; Bousquet, J.; Mullol, J.; Scadding, G.K.; Virchow, J.C. A survey of the burden of allergic rhinitis in Europe. Allergy 2007, 62, 17–25. [Google Scholar]
- Schatz, M. A survey of the burden of allergic rhinitis in the USA. Allergy 2007, 62, 9–16. [Google Scholar] [CrossRef]
- Dykewicz, M.S.; Fineman, S.; Skoner, D.P. Joint task force summary statements on diagnosis and management of rhinitis. Ann. Allergy Asthma Immunol. 1998, 81, 474–477. [Google Scholar] [CrossRef]
- van Rossum, T.G.; Vulto, A.G.; de Man, R.A.; Brouwer, J.T.; Schalm, S.W. Glycyrrhizin as a potential treatment forchronic hepatitis C. Aliment Pharmacol. Ther. 1998, 12, 199–205. [Google Scholar] [CrossRef]
- Yuan, H.; Ji, W.S.; Wu, K.X.; Jiao, J.X.; Sun, L.H.; Feng, Y.T. Antiinflammatory effect of Diammonium Glycyrrhizinate in a rat model of ulcerative colitis. World J. Gastroenterol. 2006, 12, 4578–4581. [Google Scholar]
- Elson, C.O.; Sartor, R.B.; Tennyson, G.S.; Riddell, R.H. Experimental models of inflammatory bowel disease. Gastroenterology 1995, 109, 1344–1367. [Google Scholar] [CrossRef]
- Matsui, S.; Matsumoto, H.; Sonoda, Y.; Ando, K.; Aizu-Yokota, E.; Sato, T.; Kasahara, T. Glycyrrhizin and related compounds downregulate production of inflammatory chemokines IL-8 and eotaxin 1 in a human lung fibroblast cell line. Int. Immunopharmacol. 2004, 4, 1633–1644. [Google Scholar] [CrossRef]
- He, J.X.; Akao, T.; Nishino, T.; Tani, T. The influence of commonly prescribed synthetic drugs for peptic ulcer on the pharmacokinetic fate of glycyrrhizin from Shaoyao-Gancao-tang. Biol. Pharm. Bull. 2001, 24, 1395–1399. [Google Scholar] [CrossRef]
- Park, H.Y.; Park, S.H.; Yoon, H.K.; Han, M.J.; Kim, D.H. Anti-allergic activity of 18beta-glycyrrhetinic acid-3-O-beta-D-glucuronide. Arch. Pharm. Res. 2004, 27, 57–60. [Google Scholar] [CrossRef]
- Chayama, K. Management of chronic hepatitis C andprevention of hepatocellular carcinoma. J. Gastroenterol. 2002, 37, 69–73. [Google Scholar] [CrossRef]
- van Rossum, T.G.; Vulto, A.G.; Hop, W.C.; Schalm, S.W. Glycyrrhizin-induced reduction of ALT in European patients with chronic hepatitis C. Am. J. Gastroenterol. 2001, 96, 2432–2437. [Google Scholar]
- Miyaji, C.; Miyakawa, R.; Watanabe, H.; Kawamura, H.; Abo, T. Mechanisms underlying the activation of cytotoxic function mediated by hepatic lymphocytes following the administration of glycyrrhizin. Int. Immunopharmacol. 2002, 2, 1079–1086. [Google Scholar] [CrossRef]
- Sasaki, H.; Takei, M.; Kobayashi, M.; Pollard, R.B.; Suzuki, F. Effect of glycyrrhizin, an active component of licorice roots, on HIV replication in cultures of peripheral blood mononuclear cells from HIV-seropositive patients. Pathobiology 2002–2003, 70, 229–236. [Google Scholar]
- Sekizawa, T.; Yanagi, K.; Itoyama, Y. Glycyrrhizin increases survival of mice with herpes simplex encephalitis. Acta Virol. 2001, 45, 51–54. [Google Scholar]
- Holford-Strevens, V.; Warren, P.; Wong, C.; Manfreda, J. Serum total immunoglobulin E levels in Canadian adults. J. Allergy Clin. Immunol. 1984, 73, 516–522. [Google Scholar] [CrossRef]
- Mensinga, T.T.; Schouten, J.P.; Rijcken, B.; Weiss, S.T.; Speizer, F.E.; van der Lende, R. The relationship of eosinophilia and positive skin test reactivity to respiratory symptom prevalence in a community-based population study. J. Allergy Clin. Immunol. 1990, 86, 99–107. [Google Scholar] [CrossRef]
- Sorensen, H.; Ashoor, A.A.; Maglad, S. Perennial rhinitis in Saudi Arabia. A prospective study. Ann. Allergy 1986, 56, 76–80. [Google Scholar]
- Stenius, B.; Wide, L.; Seymour, W.M. Clinical significance of total IgE and of specific IgE to Dermatophagoides spp., grass pollen and other common allergens. II. Relationship to clinical mani-festations. Clin. Exp. Allergy 1972, 2, 303–306. [Google Scholar]
- Rabin, E.M.; Mond, J.J.; Ohara, J.; Paul, W.E. B cell stimulatory factor 1(BSF-1) prepares resting B cells to enter S phase in response to anti-IgM and lipopolysaccharide. J. Exp. Med. 1986, 164, 517–531. [Google Scholar] [CrossRef]
- Seder, R.A.; Paul, W.E. Acquisition of lymphokine-producing phenotypeby CD4+ T cells. Annu. Rev. Immunol. 1994, 12, 635–673. [Google Scholar] [CrossRef]
- Del Prete, G.; Maggi, E.; Parronchi, P.; Chretien, I.; Tiri, A.; Macchia, D.; Ricci, M.; Banchereau, J.; de Vries, J.; Romagnani, S. IL-4 is an essential factor for the IgE synthesis induced in vitro byhuman T cell clones and their supernatants. J. Immunol. 1988, 140, 4193–4198. [Google Scholar]
- Kakinoki, Y.; Ohashi, Y.; Nakai, Y.; Washio, Y.; Nasako, Y.; Tanaka, A.; Nakai, Y. Allergen-induced mRNA expression of interleukin-5, but not of interleukin-4 and interferon-γ, in peripheral blood mononuclear cells obtained before the pollen season predicts the clinical efficacy of immunotherapy for seasonal allergic rhinitis. Scand. J. Immunol. 2000, 51, 202–208. [Google Scholar] [CrossRef]
- Kita, H.; Jorgensen, R.K.; Reed, C.E.; Dunnette, S.L.; Swanson, M.C.; Bartemes, K.R.; Bartemes, K.R.; Squillace, D.; Blomgren, J.; Bachman, K.; et al. Mechanism of topical glucocorticoid treatment of hay fever: IL-5 and eosinophil activation during natural allergen exposure are suppressed, but IL-4, IL-6, and IgE antibody production are unaffected. J. Allergy Clin. Immunol. 2000, 106, 521–529. [Google Scholar] [CrossRef]
- Shi, H.Z.; Xiao, C.Q.; Zhong, D.; Qin, S.M.; Liu, Y.; Liang, G.R.; Xu, H.; Chen, Y.Q.; Long, X.M.; Xie, Z.F. Effect of inhaled interleukin-5 on airway hyperreactivity and eosinophilia in asthmatics. Am. J. Respir. Crit. Care Med. 1998, 157, 204–209. [Google Scholar]
- Kay, A.B.; Phipps, S.; Robinson, D.S. A role for eosinophils in airway remodeling in asthma. Trends Immunol. 2004, 35, 477–482. [Google Scholar]
- Li, X.-L.; Zhou, A.-G.; Zhang, L.; Chen, W.-J. Antioxidant status and immune activity of glycyrrhizin in allergic rhinitis mice. Int. J. Mol. Sci. 2011, 12, 905–916. [Google Scholar] [CrossRef]
- Cowan, D.C.; Cowan, J.O.; Palmay, R.; Williamson, A.; Taylor, D. Effects of steroid therapy on inflammatory cell subtypes in asthma. Thorax 2010, 65, 384–390. [Google Scholar] [CrossRef]
- Casale, T.B.; Stokes, J.R. Immunomodulators for allergic respiratory disorders. J. Allergy Clin. Immunol. 2008, 121, 288–296. [Google Scholar] [CrossRef]
- Maarsingh, H.; Zuidhof, A.B.; Bos, I.S.T.; van Duin, M.; Boucher, J.-L.; Zaagsma, J.; Meurs, H. Arginase inhibition protects against allergen-induced airway obstruction, hyperresponsiveness, and inflammation. Am. J. Respir. Crit. Care Med. 2008, 178, 565–573. [Google Scholar] [CrossRef]
- Casado, M.; Diaz-Guerra, M.J.M.; Rodrigo, J.; Fernandez, A.P.; Bosca, L.; Martin-Sanz, P. Expression of the calcium-independent cytokine-inducible (iNOS) isoform ofnitric oxide synthase in rat placenta. Biochem. J. 1997, 324, 201–207. [Google Scholar]
- Kharitonov, S.A.; Rajakulasingam, K.; O’Connor, B.; Durham, S.R.; Barnes, P.J. Nasal nitric oxide is increased in patients with asthma and allergic rhinitis and may be modulated by nasal glucocorticoids. J. Allergy Clin. Immunol. 1997, 99, 58–64. [Google Scholar]
- Stelmach, R.; do Patrocínio, M.; Nunes, T.; Ribeiro, M.; Cukier, A. Effect of treating allergic rhinitis with corticosteroids in patients with mild-to-moderate persistent asthma. Chest 2005, 5, 3140–3147. [Google Scholar]
- Kayasuga, R.; Sugimoto, Y.; Watanabe, T.; Kamei, C. Histamine H1 receptors are involved in mouse nasal allergic responses: A demonstration with H1 receptor-deficient mice. Int. Immunopharmacol. 2002, 2, 745–750. [Google Scholar] [CrossRef]
- Rahman, M.A.; Inoue, T.; Kamei, C. Role of substance P in allergic nasal symptoms in rats. Eur. J. Pharmacol. 2006, 532, 155–161. [Google Scholar] [CrossRef]
- Kaise, T.; Akamatsu, Y.; Ohmori, K.; Ishii, A.; Karasawa, A. Inhibitory effect of olopatadine hydrochloride on the sneezing response induced by intranasal capsaicin challenge in guinea pigs. Jpn. J. Pharmacol. 2001, 86, 258–261. [Google Scholar] [CrossRef]
- Lundblad, L.; Brodin, E.; Lundberg, J.M.; Anggard, A. Effects of nasal capsaicin pretreatment and cryosurgery on sneezing reflexes, neurogenic plasma extravasation, sensory and sympathetic neurons. Acta Otolaryngol. 1985, 100, 117–127. [Google Scholar] [CrossRef]
- Harrison, S.; Geppetti, P. Substance P. Int. J. Biochem. Cell Biol. 2001, 33, 555–576. [Google Scholar]
- Datar, P.; Srivastava, S.; Coutinho, E.; Govil, G. Substance P: Structure, function, and therapeutics. Curr. Top. Med. Chem. 2004, 4, 75–103. [Google Scholar] [CrossRef]
- Perkins, E.J.; Schlenk, D. In vivo acetylcholinesterase inhibition, metabolism, and toxicokinetics of aldicarb in channel catfish, role of biotransformation in acute toxicity. Toxicol. Sci. 2000, 53, 308–315. [Google Scholar]
- dos Santos Miron, D.; Crestani, M.; Shettinger, M.R.; Morsch, V.M.; Baldisserotto, B.; Tierno, M.A.; Moraes, G.; Vieira, V.L.P. Effects of the herbicides clomazone, quinclorac, and metsulfuron methyl on acetylcholinesterase activity in the silver catfish (Rhamdia quelen) (Heptapteridae). Ecotoxicol. Environ. Saf. 2005, 61, 398–403. [Google Scholar] [CrossRef]
- Habig, C.; Di Giulio, R.T. The anticholinesterase effects of the cotton defoliant S,S,S-tri-n-butyl phosphorotrithioate (DEF) on channel catfish. Mar. Environ. Res. 1988, 24, 193–197. [Google Scholar] [CrossRef]
- Galgani, F.; Bocquené, G.; Cadiou, Y. Evidence of variation in cholinesterase activity in fish along a pollution gradient in the North Sea. Mar. Ecol. Prog. Ser. 1992, 91, 77–82. [Google Scholar] [CrossRef]
- Payne, J.; Mathieu, A.; Melvin, W.; Fancey, L.L. Acetylcholinesterase, an old biomarker with a new future? Field trials in association with two urban rivers and a paper mill in Newfoundland. Mar. Pollut. Bull. 1996, 32, 225–231. [Google Scholar] [CrossRef]
- McHenery, J.G.; Linley-Adams, G.E.; Moore, D.C.; Rodger, G.K.; Davies, I.M. Experimental and filed studies of effects of dichlorvos exposure on acetylcholinesterase activity in the gills of the mussel, Mytilus edulis L. Aquat. Toxicol. 1997, 38, 125–143. [Google Scholar] [CrossRef]
- Kirby, M.F.; Morris, S.; Hurst, M.; Kirby, S.J.; Neall, P.; Tylor, T.; Fagg, A. The use of cholinesterase activity in flounder (Platichthys flesus) muscle tissue as a biomarker of neurotoxic contamination in UK estuaries. Mar. Pollut. Bull. 2000, 40, 780–791. [Google Scholar] [CrossRef]
- Solé, M.; Porte, C.; Barcelo, D.; Albaiges, J. Bivalves residue analysis for assessment of coastal pollution in the Ebro Delta (NW Mediterranean). Mar. Pollut. Bull. 2000, 40, 746–753. [Google Scholar] [CrossRef]
- McCauley, S.D.; Gilchrist, M.; Befus, A.D. Nitric oxide a major determinant of mast cell phenotype and function. Mem. Inst. Oswaldo Cruz 2005, 100, 11–14. [Google Scholar]
- Ridnour, L.A.; Sim, J.E.; Hayward, M.A.; Wink, D.A.; Martin, S.M.; Buettner, G.R.; Spittz, D.R. A Spectrophotometric method for the direct detection and quantitation of nitric oxide, nitrite and nitrate in cell culture media. Anal. Biochem. 2000, 281, 223–229. [Google Scholar]
- Gharavi, N.; El-Kadi, A.O.S. Measurement of nitric oxide in murine Hepatoma Hepa1c1c7 cells by reversed phase HPLC with fluorescence detection. J. Pharm. Pharm. Sci. 2003, 6, 302–307. [Google Scholar]
- Simpson, D.R.; Bull, D.L.; Lndquist, D.A. A semi-microtechnique for estimation of Ali esterase and cholinesterase activity in boll weevils. Ann. Entamol. Soc. Am. 1964, 57, 367–371. [Google Scholar]
- Sample Availability: Not available.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Li, X.-L.; Zhou, A.-G. Evaluation of the Immunity Activity of Glycyrrhizin in AR Mice. Molecules 2012, 17, 716-727. https://doi.org/10.3390/molecules17010716
Li X-L, Zhou A-G. Evaluation of the Immunity Activity of Glycyrrhizin in AR Mice. Molecules. 2012; 17(1):716-727. https://doi.org/10.3390/molecules17010716
Chicago/Turabian StyleLi, Xiao-Lan, and Ai-Guo Zhou. 2012. "Evaluation of the Immunity Activity of Glycyrrhizin in AR Mice" Molecules 17, no. 1: 716-727. https://doi.org/10.3390/molecules17010716
APA StyleLi, X.-L., & Zhou, A.-G. (2012). Evaluation of the Immunity Activity of Glycyrrhizin in AR Mice. Molecules, 17(1), 716-727. https://doi.org/10.3390/molecules17010716