Guiding Molecularly Imprinted Polymer Design by Pharmacophore Modeling
Abstract
:1. Introduction
2. Results and Discussion
2.1. Bulk Polymers
2.2. Core-Shell Polymers
2.3. Clean-Up of Ochratoxin A
3. Conclusions
4. Materials and Methods
4.1. Reagents and Materials
4.2. Pharmacophore Modeling
4.3. Bulk Polymer Synthesis
4.4. Core-Shell Polymer Synthesis
4.5. Cartridge Packing
4.6. Extraction and MISPE
4.7. Immunoaffinity Chromatography
4.8. Quantification of Citrinin and Ochratoxin A
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Appendix A
Clean-Up | Imprinting Surrogate | Recovery (%) | ||||
---|---|---|---|---|---|---|
Rice | Rice Crispies | Wheat Flour | Pasta | Oats | ||
MISPE | 2-naphthoic acid | 49.5 ± 6.6 | 71.1 ± 53.6 | 32.0 ± 2.2 | 66.4 ± 13.9 | 90.7 ± 2.1 |
1-hydroxy-2-naphthoic acid | 60.8 ± 15.9 | 119.1 ± 6.0 | 62.4 ± 20.9 | 72.8 ± 4.3 | 76.4 ± 5.0 | |
1,3-dihydroxy-2-naphthoic acid | 72.9 ± 4.4 | 59.2 ± 12.2 | 38.3 ± 15.0 | 99.8 ± 6.1 | 79.8 ± 2.5 | |
1,4-dihydroxy-2-naphthoic acid | 88.0 ± 1.7 | 88.7 ± 34.8 | 67.8 ± 17.2 | 125.9 ± 0.3 | 94.0 ± 3.8 | |
salicylic acid | 54.5 ± 4.4 | 120.8 ± 3.4 | 36.5 ± 13.3 | 120.8 ± 1.3 | 87.8 ± 0.9 | |
2-oxocyclohexane carboxylic acid | 51.6 ± 12.0 | 116.6 ± 2.7 | 30.2 ± 10.6 | 114.8 ± 2.9 | 77.2 ± 5.8 | |
rhodizonic acid dihydrate | 94.0 ± 1.2 | 118.4 ± 4.0 | 111.7 ± 2.6 | 127.4 ± 2.6 | 114.0 ± 0.8 | |
non-imprinted | 61.4 ± 6.5 | 126.5 ± 1.1 | 21.1 ± 18.8 | 91.5 ± 24.4 | 78.6 ± 3.4 | |
IAC | – | 97.9 ± 9.4 | 121.4 ± 2.4 | 87.1 ± 2.3 | 114.3 ± 10.5 | 96.5 ± 8.9 |
SPE (C18) | – | 50.9 ± 4.6 | 72.8 ± 17.9 | 45.3 ± 7.5 | 50.5 ± 13.8 | 39.4 ± 22.7 |
References
- BelBruno, J.J. Molecularly Imprinted Polymers. Chem. Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef] [PubMed]
- Turiel, E.; Martín-Esteban, A. Molecularly Imprinted Polymers for Sample Preparation: A Review. Anal. Chim. Acta 2010, 668, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Gao, Y.; Chen, G.; Huang, X.; Xu, X.; Lv, J.; Wang, J.; Xu, D.; Liu, G. Recent Advances and Future Trends in the Detection of Contaminants by Molecularly Imprinted Polymers in Food Samples. Front. Chem. 2020, 8, 616326. [Google Scholar] [CrossRef] [PubMed]
- Kralj Cigić, I.; Prosen, H. An Overview of Conventional and Emerging Analytical Methods for the Determination of Mycotoxins. Int. J. Mol. Sci. 2009, 10, 62–115. [Google Scholar] [CrossRef]
- Yang, S.-Y. Pharmacophore Modeling and Applications in Drug Discovery: Challenges and Recent Advances. Drug Discov. Today 2010, 15, 444–450. [Google Scholar] [CrossRef]
- López Sáncheza, P.; de Nijsa, M.; Spanjerb, M.; Pietric, A.; Bertuzzic, T.; Starski, A.; Postupolski, J.; Castellari, M.; Hortós, M. Generation of Occurrence Data on Citrinin in Food. EFSA Support. Publ. 2017, 14, 1177E. [Google Scholar] [CrossRef] [Green Version]
- Ambrose, A.M.; Deeds, F. Some Toxicological and Pharmacological Properties of Citrinin. J. Pharmacol. Exp. Ther. 1946, 88, 173–186. [Google Scholar]
- Gayathri, L.; Karthikeyan, B.S.; Rajalakshmi, M.; Dhanasekaran, D.; Li, A.P.; Akbarsha, M.A. Metabolism-Dependent Cytotoxicity of Citrinin and Ochratoxin A Alone and in Combination as Assessed Adopting Integrated Discrete Multiple Organ Co-Culture (IdMOC). Toxicol. In Vitro 2018, 46, 166–177. [Google Scholar] [CrossRef]
- Ostry, V.; Malir, F.; Ruprich, J. Producers and Important Dietary Sources of Ochratoxin A and Citrinin. Toxins 2013, 5, 1574–1586. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Scientific Opinion on the Risks for Public and Animal Health Related to the Presence of Citrinin in Food and Feed. EFSA J. 2012, 10, 2605. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No. 212/2014 Amending Regulation (EC) No. 1881/2006 as Regards Maximum Levels of the Contaminant Citrinin in Food Supplements Based on Rice Fermented with Red Yeast Monascus purpureus. 2014. Available online: https://eur-lex.europa.eu/eli/reg/2014/212/oj (accessed on 25 July 2021).
- Atapattu, S.N.; Poole, C.F. Recent Advances in Analytical Methods for the Determination of Citrinin in Food Matrices. J. Chromatogr. A 2020, 1627, 461399. [Google Scholar] [CrossRef] [PubMed]
- Marley, E.; Brown, P.; Leeman, D.; Donnelly, C. Analysis of Citrinin in Cereals, Red Yeast Rice Dietary Supplement, and Animal Feed by Immunoaffinity Column Cleanup and LC with Fluorescence Detection. J. AOAC Int. 2016, 99, 1025–1031. [Google Scholar] [CrossRef] [PubMed]
- Appell, M.; Jackson, M.A.; Wang, L.C.; Bosma, W.B. Determination of Citrinin Using Molecularly Imprinted Solid Phase Extraction Purification, HPLC Separation, and Fluorescence Detection. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 1815–1819. [Google Scholar] [CrossRef]
- Guo, B.-Y.; Wang, S.; Ren, B.; Li, X.; Qin, F.; Li, J. Citrinin Selective Molecularly Imprinted Polymers for SPE. J. Sep. Sci. 2010, 33, 1156–1160. [Google Scholar] [CrossRef] [PubMed]
- Urraca, J.L.; Huertas-Pérez, J.F.; Cazorla, G.A.; Gracia-Mora, J.; García-Campaña, A.M.; Moreno-Bondi, M.C. Development of Magnetic Molecularly Imprinted Polymers for Selective Extraction: Determination of Citrinin in Rice Samples by Liquid Chromatography with UV Diode Array Detection. Anal. Bioanal. Chem. 2016, 408, 3033–3042. [Google Scholar] [CrossRef] [PubMed]
- Lhotská, I.; Kholová, A.; Machyňáková, A.; Hroboňová, K.; Solich, P.; Švec, F.; Šatínský, D. Preparation of Citrinin-Selective Molecularly Imprinted Polymer and Its Use for on-Line Solid-Phase Extraction Coupled to Liquid Chromatography. Anal. Bioanal. Chem. 2019, 411, 2395–2404. [Google Scholar] [CrossRef]
- Fang, G.; Liu, G.; Yang, Y.; Wang, S. Quartz Crystal Microbalance Sensor Based on Molecularly Imprinted Polymer Membrane and Three-Dimensional Au Nanoparticles@mesoporous Carbon CMK-3 Functional Composite for Ultrasensitive and Specific Determination of Citrinin. Sens. Actuators B Chem. 2016, 230, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Sobiech, M.; Luliński, P.; Wieczorek, P.P.; Marć, M. Quantum and Carbon Dots Conjugated Molecularly Imprinted Polymers as Advanced Nanomaterials for Selective Recognition of Analytes in Environmental, Food and Biomedical Applications. Trends Anal. Chem. 2021, 142, 116306. [Google Scholar] [CrossRef]
- Akyıldırım, O.; Kardaş, F.; Beytur, M.; Yüksek, H.; Atar, N.; Yola, M.L. Palladium Nanoparticles Functionalized Graphene Quantum Dots with Molecularly Imprinted Polymer for Electrochemical Analysis of Citrinin. J. Mol. Liq. 2017, 243, 677–681. [Google Scholar] [CrossRef]
- Hu, X.; Liu, Y.; Xia, Y.; Zhao, F.; Zeng, B. A Novel Ratiometric Electrochemical Sensor for the Selective Detection of Citrinin Based on Molecularly Imprinted Poly(Thionine) on Ionic Liquid Decorated Boron and Nitrogen Co-Doped Hierarchical Porous Carbon. Food Chem. 2021, 363, 130385. [Google Scholar] [CrossRef] [PubMed]
- Qiao, F.; Sun, H.; Yan, H.; Row, K.H. Molecularly Imprinted Polymers for Solid Phase Extraction. Chromatographia 2006, 64, 625–634. [Google Scholar] [CrossRef]
- Vasapollo, G.; Sole, R.D.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly Imprinted Polymers. Int. J. Mol. Sci. 2011, 12, 5908–5945. [Google Scholar] [CrossRef] [Green Version]
- Whitcombe, M.J.; Kirsch, N.; Nicholls, I.A. Molecular Imprinting Science and Technology: A Survey of the Literature for the Years 2004–2011. J. Mol. Recognit. 2014, 27, 297–401. [Google Scholar] [CrossRef] [Green Version]
- Janczura, M.; Luliński, P.; Sobiech, M. Imprinting Technology for Effective Sorbent Fabrication: Current State-of-Art and Future Prospects. Materials 2021, 14, 1850. [Google Scholar] [CrossRef] [PubMed]
- Golker, K.; Olsson, G.D.; Nicholls, I.A. The Influence of a Methyl Substituent on Molecularly Imprinted Polymer Morphology and Recognition—Acrylic Acid versus Methacrylic Acid. Eur. Polym. J. 2017, 92, 137–149. [Google Scholar] [CrossRef]
- Janczura, M.; Sobiech, M.; Giebułtowicz, J.; Luliński, P. Computational and Experimental Designing of Imprinted Sorbent for the Determination of Nitroxidative Stress Products: An Analysis of 4-Hydroxyphenylacetic Acid Conversion. J. Mater. Sci. 2021, 56, 8439–8460. [Google Scholar] [CrossRef]
- Semong, O.; Batlokwa, B.S. Development of an Aflatoxin B1 Specific Molecularly Imprinted Solid Phase Extraction Sorbent for the Selective Pre-Concentration of Toxic Aflatoxin B1 from Child Weaning Food, Tsabana. Mol. Impr. 2017, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ye, L. Molecular Imprinting: Principles and Applications of Micro- and Nanostructured Polymers; Pan Stanford Publications: Singapore, 2013. [Google Scholar]
- Ramli, R.A.; Laftah, W.A.; Hashim, S. Core-Shell Polymers: A Review. RSC Adv. 2013, 3, 15543–15565. [Google Scholar] [CrossRef]
- Renkecz, T.; Horvarth, V.; Horvai, G. Molecularly imprinted polymers for chromatography and related techniques. In Handbook of Molecularly Imprinted Polymers; Alvarez-Lorenzo, C., Concheiro, A., Eds.; Smithers Rapra Technology: Shawbury, UK, 2013; pp. 141–196. [Google Scholar]
- Sunseri, J.; Koes, D.R. Pharmit: Interactive exploration of chemical space. Nucleic Acids Res. 2016, 44, W442–W448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolber, G.; Langer, T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model. 2005, 45, 160–169. [Google Scholar] [CrossRef]
- DIN 32645: Decision Limit, Detection Limit and Determination Limit under Repeatability Conditions: Terms, Methods, Evaluation. 2008. Available online: https://www.beuth.de/en/standard/din-32645/110729574 (accessed on 25 July 2021). [CrossRef]
- Wilson, D.M. Citrinin: Analysis and occurrence. In Mycotoxins, Wood Decay, Plant Stress, Biocorrosion, and General Biodeterioration; Llewellyn, G.C., Dashek, W.V., O’Rear, C.E., Eds.; Springer: Boston, MA, USA, 1994; pp. 65–73. [Google Scholar]
- Schneider, C. Vorkommen und Nachweis von Citrinin in Nahrungsmitteln Pflanzlicher Herkunft. Ph.D. Thesis, Ludwig Maximilian University, Munich, Germany, 2007. [Google Scholar]
- Cowen, T.; Busato, M.; Karim, K.; Piletsky, S.A. In Silico Synthesis of Synthetic Receptors: A Polymerization Algorithm. Macromol. Rapid Commun. 2016, 37, 2011–2016. [Google Scholar] [CrossRef]
- DIN EN 17203: Determination of Citrinin in Food by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). 2021. Available online: https://www.beuth.de/en/standard/din-en-17203/332186388 (accessed on 25 July 2021). [CrossRef]
- Koes, D.R.; Camacho, C.J. ZINCPharmer: Pharmacophore search of the ZINC database. Nucleic Acids Res. 2012, 40, W409–W414. [Google Scholar] [CrossRef] [PubMed]
- Feigl, F.; Suter, H.A. Analytical Use of Sodium Rhodizonate. Ind. Eng. Chem. Anal. Ed. 1942, 14, 840–842. [Google Scholar] [CrossRef]
- Jia, X.; Li, H.; Luo, J.; Lu, Q.; Peng, Y.; Shi, L.; Liu, L.; Du, S.; Zhang, G.; Chen, L. Rational Design of Core-Shell Molecularly Imprinted Polymer Based on Computational Simulation and Doehlert Experimental Optimization: Application to the Separation of Tanshinone IIA from Salvia Miltiorrhiza Bunge. Anal. Bioanal. Chem. 2012, 403, 2691–2703. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Ramström, O. Molecularly Imprinted Materials: Science and Technology; Yan, M., Ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Carro-Diaz, A.M.; Lorenzo-Ferreira, R.A. Molecularly imprinted polymers for sample preparation. In Handbook of Molecularly Imprinted Polymers; Alvarez-Lorenzo, C., Concheiro, A., Eds.; Smithers Rapra Technology: Shawbury, UK, 2013; pp. 87–127. [Google Scholar]
Surrogate | Pharmacophore Fit Score (%) |
---|---|
1,3-dihydroxy-2-naphthoic acid | 66.1 |
rhodizonic acid dihydrate | 65.9 |
1,4-dihydroxy-2-naphthoic acid | 65.7 |
1-hydroxy-2-naphthoic acid | 65.6 |
2-oxocyclohexane carboxylic acid | 56.2 |
2-naphthoic acid | 56.0 |
salicylic acid | 55.9 |
Matrix | LOD (mg/kg) | LOQ (mg/kg) |
---|---|---|
rice | 0.01 | 0.03 |
rice crispies | 0.02 | 0.08 |
wheat flour | 0.004 | 0.02 |
pasta | 0.003 | 0.01 |
oats | 0.1 | 0.5 |
Matrix | LOQ (mg/kg) | Recovery (%) | |||
---|---|---|---|---|---|
MISPE | IAC | ||||
1 a | 2 a | 3 a | |||
rice | 0.03 | 62.0 ± 4.8 | 75.9 ± 5.5 | 109.0 ± 3.6 | - |
rice crispies | 0.08 | 88.0 ± 3.8 | 78.4 ± 1.5 | 94.7 ± 18.2 | 41.5 ± 74.8 |
wheat flour | 0.02 | 71.0 ± 20.4 | 65.5 ± 7.1 | 137.2 ± 10.1 | - |
pasta | 0.01 | 55.0 ± 13.3 | 107.2 ± 7.1 | 144.2 ± 2.3 | 57.7 ± 29.9 |
oats | 0.5 | 96.5 ± 1.9 | 96.2 ± 0.9 | 89.3 ± 1.6 | 41.6 ± 74.7 |
Matrix | Polymer | Recovery (%) |
---|---|---|
methanol/water (70/30, v/v) | core-shell MIP | 97.5 ± 2.2 |
core-shell NIP | 105.5 ± 1.8 | |
bulk MIP (type II) | 103.2 ± 2.3 | |
bulk NIP (type II) | 103.0 ± 1.4 | |
oats | core-shell MIP | 97.0 ± 2.9 |
core-shell NIP | 96.9 ± 0.3 | |
bulk MIP (type II) | 92.0 ± 1.8 | |
bulk NIP (type II) | 90.0 ± 1.6 |
Matrix | Type | LOD (mg/kg) | LOQ (mg/kg) | Recovery (%) |
---|---|---|---|---|
pasta | MIP | 0.014 | 0.048 | 96.0 ± 1.3 |
NIP | 0.011 | 0.037 | 97.9 ± 3.4 | |
oats | MIP | 0.12 | 0.45 | 85.1 ± 1.8 |
NIP | 0.15 | 0.55 | 97.6 ± 1.1 |
Matrix | Type | Recovery (%) |
---|---|---|
methanol/water (70/30, v/v) | MIP | 82.7 ± 5.0 |
NIP | 95.8 ± 7.3 | |
oats | MIP | 76.8 ± 3.9 |
NIP | 88.6 ± 1.2 |
1. | 2. | 3. | 4. | 5. |
---|---|---|---|---|
methanol | water | methanol | water | acetone |
1 × 50 mL | 5 × 50 mL | 5 × 50 mL | 10 × 50 mL | 1 × 50 mL |
Polymer Type | Matrix | Calibration Range (mg/kg) |
---|---|---|
bulk MIP | rice | 0.025, 0.050, 0.075, 0.100, 0.125 |
rice crispies | 0.05, 0.10, 0.15, 0.20, 0.25 | |
wheat flour | 0.025, 0.050, 0.075, 0.100, 0.125 | |
pasta | 0.025, 0.050, 0.075, 0.100, 0.125 | |
oats | 0.5, 1.0, 1.5, 2.0, 2.5 | |
core-shell MIP/NIP | pasta | 0.025, 0.050, 0.075, 0.100, 0.125 |
oats | 0.5, 1.0, 1.5, 2.0, 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derz, W.; Fleischmann, M.; Elsinghorst, P.W. Guiding Molecularly Imprinted Polymer Design by Pharmacophore Modeling. Molecules 2021, 26, 5101. https://doi.org/10.3390/molecules26165101
Derz W, Fleischmann M, Elsinghorst PW. Guiding Molecularly Imprinted Polymer Design by Pharmacophore Modeling. Molecules. 2021; 26(16):5101. https://doi.org/10.3390/molecules26165101
Chicago/Turabian StyleDerz, Wiebke, Melita Fleischmann, and Paul W. Elsinghorst. 2021. "Guiding Molecularly Imprinted Polymer Design by Pharmacophore Modeling" Molecules 26, no. 16: 5101. https://doi.org/10.3390/molecules26165101
APA StyleDerz, W., Fleischmann, M., & Elsinghorst, P. W. (2021). Guiding Molecularly Imprinted Polymer Design by Pharmacophore Modeling. Molecules, 26(16), 5101. https://doi.org/10.3390/molecules26165101