Highly Sensitive, Robust, and Recyclable TiO2/AgNP Substrate for SERS Detection
Abstract
:1. Introduction
2. Results and Discussion
2.1. Surface Morphologies of TiO2/AgNP Substrates
2.2. Structure Analysis of TiO2/AgNP Substrates
2.3. SERS of TiO2/AgNP Substrates
2.4. Uniformity, Reproducibility, and Recyclability Tests of TiO2/AgNP Substrates
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- VanEngelenburg, S.B.; Palmer, A.E. Fluorescent biosensors of protein function. Curr. Opin. Chem. Biol. 2008, 12, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Webb, M.R. Development of fluorescent biosensors for probing the function of motor proteins. Mol. Biosyst. 2007, 3, 249–256. [Google Scholar] [CrossRef]
- Sun, Y.S.; Landry, J.P.; Fei, Y.Y.; Zhu, X.D. Effect of fluorescently labeling protein probes on kinetics of protein-ligand reactions. Langmuir 2008, 24, 13399–13405. [Google Scholar] [CrossRef]
- Fei, Y.Y.; Sun, Y.S.; Li, Y.H.; Lau, K.; Yu, H.; Chokhawala, H.A.; Huang, S.S.; Landry, J.P.; Chen, X.; Zhu, X.D. Fluorescent labeling agents change binding profiles of glycan-binding proteins. Mol. Biosyst. 2011, 7, 3343–3352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, R.S.; Agrawal, Y.K. Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc. 2011, 57, 163–176. [Google Scholar] [CrossRef]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Schatz, G.C.; Young, M.A.; Van Duyne, R.P. Electromagnetic mechanism of SERS. Top. Appl. Phys. 2006, 103, 19–45. [Google Scholar]
- Xia, L.X.; Chen, M.D.; Zhao, X.M.; Zhang, Z.L.; Xia, J.R.; Xu, H.X.; Sun, M.T. Visualized method of chemical enhancement mechanism on SERS and TERS. J. Raman. Spectrosc. 2014, 45, 533–540. [Google Scholar] [CrossRef]
- Haynes, C.L.; McFarland, A.D.; Van Duyne, R.P. Surface-enhanced Raman spectroscopy. Anal. Chem. 2005, 77, 338a–346a. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, S.; Watanabe, S.; Fujii, S.; Nishino, T.; Kiguchi, M. The practical electromagnetic effect in surface-enhanced Raman scattering observed by the lithographically fabricated gold nanosquare dimers. Aip. Adv. 2020, 10, 025301. [Google Scholar] [CrossRef]
- Xu, H.X.; Aizpurua, J.; Kall, M.; Apell, P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E 2000, 62, 4318–4324. [Google Scholar] [CrossRef]
- Camden, J.P.; Dieringer, J.A.; Wang, Y.; Masiello, D.J.; Marks, L.D.; Schatz, G.C.; Van Duyne, R.P. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 2008, 130, 12616–12617. [Google Scholar] [CrossRef]
- Moskovits, M. Imaging spot the hotspot. Nature 2011, 469, 307–308. [Google Scholar] [CrossRef]
- Shiohara, A.; Wang, Y.S.; Liz-Marzan, L.M. Recent approaches toward creation of hot spots for SERS detection. J. Photoch. Photobiol. C 2014, 21, 2–25. [Google Scholar] [CrossRef]
- Shachaf, C.; Elchuri, S.; Zhu, J.; Nguyen, L.; Zhang, J.W.; Sun, L.; Chang, S.; Nolan, G. Detection of surface molecules and phosphorylation events by surface enhanced Raman scattering (SERS) using composite organic-inorganic nanoparticles (coins) in single cells. Cancer Res. 2008, 68, 4742. [Google Scholar]
- Kneipp, J.; Kneipp, H.; Kneipp, K. Sers—A single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev. 2008, 37, 1052–1060. [Google Scholar] [CrossRef]
- Moisoiu, V.; Iancu, S.D.; Stefancu, A.; Moisoiu, T.; Pardini, B.; Dragomir, M.P.; Crisan, N.; Avram, L.; Crisan, D.; Andras, I. Sers liquid biopsy: An emerging tool for medical diagnosis. Colloid Surf. B 2021, 208, 112064. [Google Scholar] [CrossRef]
- Yang, S.K.; Dai, X.M.; Stogin, B.B.; Wong, T.S. Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc. Natl. Acad. Sci. USA 2016, 113, 268–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Hassan, M.M.; Ali, S.; Li, H.H.; Sheng, R.; Chen, Q.S. Evolving trends in SERS-based techniques for food quality and safety: A review. Trends Food Sci. Tech. 2021, 112, 225–240. [Google Scholar] [CrossRef]
- Hudson, S.D.; Chumanov, G. Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy). Anal. Bioanal Chem. 2009, 394, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Matikainen, A.; Nuutinen, T.; Itkonen, T.; Heinilehto, S.; Puustinen, J.; Hiltunen, J.; Lappalainen, J.; Karioja, P.; Vahimaa, P. Atmospheric oxidation and carbon contamination of silver and its effect on surface-enhanced Raman spectroscopy (SERS). Sci. Rep. UK 2016, 6, 37192. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Song, G.; Zhou, L.; Wang, X.Y.; You, L.J.; Li, J.M. Highly sensitively detecting tetramethylthiuram disulfide based on synergistic contribution of metal and semiconductor in stable Ag/TiO2 core-shell SERS substrates. Appl. Surf. Sci. 2021, 539, 147744. [Google Scholar] [CrossRef]
- Leiterer, C.; Zopf, D.; Seise, B.; Jahn, F.; Weber, K.; Popp, J.; Cialla-May, D.; Fritzsche, W. Fast self-assembly of silver nanoparticle monolayer in hydrophobic environment and its application as SERS substrate. J. Nanopart. Res. 2014, 16, 2467. [Google Scholar] [CrossRef]
- Suresh, V.; Ding, L.; Chew, A.B.; Yap, F.L. Fabrication of large-area flexible SERS substrates by nanoimprint lithography. ACS Appl. Nano Mater. 2018, 1, 886–893. [Google Scholar] [CrossRef]
- Kohut, A.; Keri, A.; Horvath, V.; Kopniczky, J.; Ajtai, T.; Hopp, B.; Galbacs, G.; Geretovszky, Z. Facile and versatile substrate fabrication for surface enhanced Raman spectroscopy using spark discharge generation of Au/Ag nanoparticles. Appl. Surf. Sci. 2020, 531, 147268. [Google Scholar] [CrossRef]
- Chu, F.J.; Yan, S.; Zheng, J.G.; Zhang, L.J.; Zhang, H.Y.; Yu, K.K.; Sun, X.N.; Liu, A.P.; Huang, Y.Z. A simple laser ablation-assisted method for fabrication of superhydrophobic SERS substrate on teflon film. Nanoscale Res. Lett. 2018, 13, 244. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.L.; Bai, S.H.; Tu, X.L.; Li, Z.; Zhang, Y.P.; Wang, W.M.; Lu, J.; He, D.N. Highly sensitive and stable SERS substrate fabricated by co-sputtering and atomic layer deposition. Nanoscale Res. Lett. 2019, 14, 168. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Lian, X.; Lv, Y.; Liu, Y.; Xu, C.; Dai, J.; Wu, Y.; Wang, G. Effect of annealing on the microstructure and SERS performance of mo-48.2% Ag films. Materials 2020, 13, 4205. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.Y.; Tang, J.Q.; Ou, Q.H.; Yan, X.Q.; Liu, L.; Liu, Y.K. Recyclable Ag-deposited TiO2 SERS substrate for ultrasensitive malachite green detection. ACS Omega 2021, 6, 27271–27278. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, Z.K.; Zhang, J. TiO2/AgNPs SERS substrate for the detection of multi-molecules with a self-cleaning and high enhancement factor using the uv-induced method. Opt. Mater. Express. 2022, 12, 1010–1018. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Li, S.; Wang, J.Y.; Shao, Y.P.; Mei, L.Y. A recyclable graphene/Ag/TiO2 SERS substrate with high stability and reproducibility for detection of dye molecules. New. J. Chem. 2022. [Google Scholar] [CrossRef]
- Jiang, L.; Wei, W.Y.; Liu, S.S.; Haruna, S.A.; Zareef, M.; Ahmad, W.; Hassan, M.M.; Li, H.H.; Chen, Q.S. A tailorable and recyclable TiO2 NFSF/Ti@AgNPs SERS substrate fabricated by a facile method and its applications in prohibited fish drugs detection. J. Food Meas. Charact. 2022, 16, 2890–2898. [Google Scholar] [CrossRef]
- Das, S.; Saxena, K.; Goswami, L.P.; Gayathri, J.; Mehta, D.S. Mesoporous Ag-TiO2 based nanocage like structure as sensitive and recyclable low-cost SERS substrate for biosensing applications. Opt. Mater. 2022, 125, 111994. [Google Scholar] [CrossRef]
- Wu, H.Y.; Lin, H.C.; Hung, G.Y.; Tu, C.S.; Liu, T.Y.; Hong, C.H.; Yu, G.; Hsu, J.C. High sensitivity SERS substrate of a few nanometers single-layer silver thickness fabricated by dc magnetron sputtering technology. Nanomaterials 2022, 12, 2742. [Google Scholar] [CrossRef]
- Degioanni, S.; Jurdyc, A.M.; Bessueille, F.; Coulm, J.; Champagnon, B.; Vouagner, D. Surface-enhanced Raman scattering of amorphous tio2 thin films by gold nanostructures: Revealing first layer effect with thickness variation. J. Appl. Phys. 2013, 114, 234307. [Google Scholar] [CrossRef]
- Wang, C.; Guo, X.F.; Fu, Q. Tio2 thickness-dependent charge transfer in an ordered Ag/TiO2/Ni nanopillar arrays based on surface-enhanced Raman scattering. Materials 2022, 15, 3716. [Google Scholar] [CrossRef]
- Rastogi, R.; Foli, E.A.D.; Vincent, R.; Adam, P.M.; Krishnamoorthy, S. Engineering electromagnetic hot-spots in nanoparticle cluster arrays on reflective substrates for highly sensitive detection of (bio)molecular analytes. ACS Appl. Mater. Inter. 2021, 13, 32653–32661. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.C.; Lee, C.C.; Chen, H.L.; Kuo, C.C.; Wang, P.W. Investigation of thin TiO2 films cosputtered with Si species. Appl. Surf. Sci. 2009, 255, 4852–4858. [Google Scholar] [CrossRef]
- El-Deen, S.S.; Hashem, A.M.; Abdel Ghany, A.E.; Indris, S.; Ehrenberg, H.; Mauger, A.; Julien, C.M. Anatase TiO2 nanoparticles for lithium-ion batteries. Ionics 2018, 24, 2925–2934. [Google Scholar] [CrossRef]
- Jensen, L.; Schatz, G.C. Resonance Raman scattering of rhodamine 6g as calculated using time-dependent density functional theory. J. Phys. Chem. A 2006, 110, 5973–5977. [Google Scholar] [CrossRef]
- He, X.N.; Gao, Y.; Mahjouri-Samani, M.; Black, P.N.; Allen, J.; Mitchell, M.; Xiong, W.; Zhou, Y.S.; Jiang, L.; Lu, Y.F. Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes. Nanotechnology 2012, 23, 205702. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.W.; Tian, Q.K.; Chen, Z.H.; Zhao, C.C.; Chai, H.S.; Wu, Q.; Li, W.G.; Chen, X.H.; Deng, Y.D.; Song, Y.J. Arrayed nanopore silver thin films for surface-enhanced Raman scattering. RSC Adv. 2020, 10, 23908–23915. [Google Scholar] [CrossRef] [PubMed]
- Tieu, D.T.; Trang, T.N.Q.; Hung, L.T.; Thu, V.T.H. Assembly engineering of Ag@ZnO hierarchical nanorod arrays as a pathway for highly reproducible surface-enhanced Raman spectroscopy applications. J. Alloy Compd. 2019, 808, 151735. [Google Scholar] [CrossRef]
- Zheng, Z.H.; Cong, S.; Gong, W.B.; Xuan, J.N.; Li, G.H.; Lu, W.B.; Geng, F.X.; Zhao, Z.G. Semiconductor SERS enhancement enabled by oxygen incorporation. Nat. Commun. 2017, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.; Liu, L.; Dai, Z.G.; Liu, J.H.; Yang, S.L.; Zhou, L.; Xiao, X.H.; Jiang, C.Z.; Roy, V.A.L. Low-cost, disposable, flexible and highly reproducible screen printed SERS substrates for the detection of various chemicals (vol 5, 10208, 2015). Sci. Rep. UK 2015, 5, 10208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.P.; Chen, S.; Jiang, Z.L.; Shi, Z.Y.; Wang, J.L.; Du, L.T. Highly sensitive and reproducible SERS substrates based on ordered micropyramid array and silver nanoparticles. ACS Appl. Mater. Inter. 2021, 13, 29222–29229. [Google Scholar] [CrossRef]
- Chen, F.H.; Zhao, Y.P.; Zhang, S.X.; Wei, S.H.; Ming, A.J.; Mao, C.H. Hydrophobic wafer-scale high-reproducibility SERS sensor based on silicon nanorods arrays decorated with Au nanoparticles for pesticide residue detection. Biosensors 2022, 12, 273. [Google Scholar] [CrossRef]
- Wang, K.Q.; Sun, D.W.; Pu, H.B.; Wei, Q.Y.; Huang, L.J. Stable, flexible, and high-performance SERS chip enabled by a ternary film-packaged plasmonic nanoparticle array. ACS Appl. Mater. Inter. 2019, 11, 29177–29186. [Google Scholar] [CrossRef]
- Zhao, X.M.; Zhang, B.H.; Ai, K.L.; Zhang, G.; Cao, L.Y.; Liu, X.J.; Sun, H.M.; Wang, H.S.; Lu, L.H. Monitoring catalytic degradation of dye molecules on silver-coated zno nanowire arrays by surface-enhanced Raman spectroscopy. J. Mater. Chem. 2009, 19, 5547–5553. [Google Scholar] [CrossRef]
- Zhang, X.L.; Wang, N.; Liu, R.J.; Wang, X.Y.; Zhu, Y.; Zhang, J. SERS and the photo-catalytic performance of Ag/TiO2/graphene composites. Opt. Mater. Express 2018, 8, 704–717. [Google Scholar] [CrossRef]
- Xie, Y.B. Fabrication of highly ordered Ag/TiO2 nanopore array as a self-cleaning and recycling SERS substrate. Aust. J. Chem. 2021, 74, 715–721. [Google Scholar] [CrossRef]
- Chin, H.K.; Lin, P.Y.; Chen, J.D.; Kirankumar, R.; Wen, Z.H.; Hsieh, S.C. Polydopamine-mediated Ag and ZnO as an active and recyclable SERS substrate for rhodamine b with significantly improved enhancement factor and efficient photocatalytic degradation. Appl. Sci. 2021, 11, 4914. [Google Scholar] [CrossRef]
- Samriti; Rajput, V.; Gupta, R.K.; Prakash, J. Engineering metal oxide semiconductor nanostructures for enhanced charge transfer: Fundamentals and emerging SERS applications. J. Mater. Chem. C 2021, 10, 73–95. [Google Scholar]
- Wang, X.Z.; Wang, Z.; Zhang, M.; Jiang, X.S.; Wang, Y.F.; Lv, J.G.; He, G.; Sun, Z.Q. Three-dimensional hierarchical anatase@rutile TiO2 nanotree array films decorated by silver nanoparticles as ultrasensitive recyclable surface-enhanced Raman scattering substrates. J. Alloy Compd. 2017, 725, 1166–1174. [Google Scholar] [CrossRef]
- Bian, L.L.; Liu, Y.J.; Zhu, G.X.; Yan, C.; Zhang, J.H.; Yuan, A.H. Ag@CoFe2O4/Fe2O3 nanorod arrays on carbon fiber cloth as SERS substrate and photo-fenton catalyst for detection and degradation of r6g. Ceram. Int. 2018, 44, 7580–7587. [Google Scholar] [CrossRef]
- Bonneh-Barkay, D.; Reaney, S.H.; Langston, W.J.; Di Monte, D.A. Redox cycling of the herbicide paraquat in microglial cultures. Brain Res. Mol. Brain Res. 2005, 134, 52–56. [Google Scholar] [CrossRef]
- Berry, C.; La Vecchia, C.; Nicotera, P. Paraquat and parkinson’s disease. Cell Death Differ. 2010, 17, 1115–1125. [Google Scholar] [CrossRef] [Green Version]
- Botta, R.; Eiamchai, P.; Horprathum, M.; Limwichean, S.; Chananonnawathorn, C.; Patthanasettakul, V.; Maezono, R.; Jomphoak, A.; Nuntawong, N. 3d structured laser engraves decorated with gold nanoparticle SERS chips for paraquat herbicide detection in environments. Sensor Actuat. B Chem. 2020, 304, 127327. [Google Scholar] [CrossRef]
- Luo, H.R.; Wang, X.H.; Huang, Y.Q.; Lai, K.Q.; Rasco, B.A.; Fan, Y.X. Rapid and sensitive surface-enhanced Raman spectroscopy (SERS) method combined with gold nanoparticles for determination of paraquat in apple juice. J. Sci. Food Agr. 2018, 98, 3892–3898. [Google Scholar] [CrossRef]
- Bohnen, N.I.; Albin, R.L. The cholinergic system and parkinson disease. Behav. Brain Res. 2011, 221, 564–573. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.Y.; Wang, E.A.; Cepeda, C.; Levine, M.S. Dopamine imbalance in huntington’s disease: A mechanism for the lack of behavioral flexibility. Front. Neurosci. Switz 2013, 7, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todd, R.D.; Lobos, E.A.; Sun, L.W.; Neuman, R.J. Mutational analysis of the nicotinic acetylcholine receptor alpha 4 subunit gene in attention deficit/hyperactivity disorder: Evidence for association of an intronic polymorphism with attention problems. Mol. Psychiatr. 2003, 8, 103–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.; Kang, B.H.; Yang, H.; Park, M.; Kwak, J.H.; Chung, T.; Jeong, Y.; Kim, B.K.; Jeong, K.H. Spread spectrum SERS allows label-free detection of attomolar neurotransmitters. Nat. Commun. 2021, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.M.; Chen, S.N.; Chen, Y.J.; Wu, S.; Xie, W.L.; Yan, W.Q.; Wang, S.; Liao, B.; Zhang, S. Super-hard and anti-corrosion (AlCrMoSiTi)Nx high entropy nitride coatings by multi-arc cathodic vacuum magnetic filtration deposition. Vacuum 2022, 195, 110685. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.-Y.; Lin, H.-C.; Liu, Y.-H.; Chen, K.-L.; Wang, Y.-H.; Sun, Y.-S.; Hsu, J.-C. Highly Sensitive, Robust, and Recyclable TiO2/AgNP Substrate for SERS Detection. Molecules 2022, 27, 6755. https://doi.org/10.3390/molecules27196755
Wu H-Y, Lin H-C, Liu Y-H, Chen K-L, Wang Y-H, Sun Y-S, Hsu J-C. Highly Sensitive, Robust, and Recyclable TiO2/AgNP Substrate for SERS Detection. Molecules. 2022; 27(19):6755. https://doi.org/10.3390/molecules27196755
Chicago/Turabian StyleWu, Hsing-Yu, Hung-Chun Lin, Yung-Hsien Liu, Kai-Lin Chen, Yu-Hsun Wang, Yung-Shin Sun, and Jin-Cherng Hsu. 2022. "Highly Sensitive, Robust, and Recyclable TiO2/AgNP Substrate for SERS Detection" Molecules 27, no. 19: 6755. https://doi.org/10.3390/molecules27196755
APA StyleWu, H.-Y., Lin, H.-C., Liu, Y.-H., Chen, K.-L., Wang, Y.-H., Sun, Y.-S., & Hsu, J.-C. (2022). Highly Sensitive, Robust, and Recyclable TiO2/AgNP Substrate for SERS Detection. Molecules, 27(19), 6755. https://doi.org/10.3390/molecules27196755