Lipid Transport and Metabolism in Healthy and Osteoarthritic Cartilage
Abstract
:1. Introduction
2. Transporting Lipids through the Cartilage
2.1. Osteoarthritis and Lipid Availability
3. Lipids in Normal Cartilage
4. Lipids in Osteoathritic Cartilage
5. Lipids and Chondrocyte Metabolism
6. Conclusions
Altered cartilage permeability | Events related to OA | References |
---|---|---|
Causes | Increased protease activity | [25] |
Increased subchondral vessels invading calcified cartilage | [27] | |
Joint immobilization | [22] | |
Consequences | Loss of matrix components in the joint space | [10] |
Access of deleterious agents (toxins, immunoglobulins) | [10] | |
Access of proinflammatory plasma proteins | [26] |
Acknowledgments
Conflicts of Interest
References
- Stockwell, R.A. Lipid content of human costal and articular cartilage. Ann. Rheum. Dis 1967, 26, 481–486. [Google Scholar]
- Otte, P. Basic cell metabolism of articular cartilage. Manometric studies. Z. Rheumatol 1991, 50, 304–312. [Google Scholar]
- Gkretsi, V.; Simopoulou, T.; Tsezou, A. Lipid metabolism and osteoarthritis: Lessons from atherosclerosis. Prog. Lipid Res 2011, 50, 133–140. [Google Scholar]
- Bernstein, P.; Sticht, C.; Jacobi, A.; Liebers, C.; Manthey, S.; Stiehler, M. Expression pattern differences between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation. Osteoarthr. Cartil 2010, 18, 1596–1607. [Google Scholar]
- Ghadially, F.N.; Mehta, P.N.; Kirkaldy-Willis, W.H. Ultrastructure of articular cartilage in experimentally produced lipoarthrosis. J. Bone Jt. Surg. Am 1970, 52, 1147–1158. [Google Scholar]
- Roughley, P.J.; Lee, E.R. Cartilage proteoglycans: Structure and potential functions. Microsc. Res. Tech 1994, 28, 385–397. [Google Scholar]
- Cohen, N.P.; Foster, R.J.; Mow, V.C. Composition and dynamics of articular cartilage: Structure, function, and maintaining healthy state. J. Orthop. Sports Phys. Ther 1998, 28, 203–215. [Google Scholar]
- Maroudas, A. Transport of solutes through cartilage: Permeability to large molecules. J. Anat 1976, 122, 335–347. [Google Scholar]
- Gonsalves, M.; Macpherson, J.V.; O’Hare, D.; Winlove, C.P.; Unwin, P.R. High resolution imaging of the distribution and permeability of methyl viologen dication in bovine articular cartilage using scanning electrochemical microscopy. Biochim. Biophys. Acta 2001, 1524, 66–74. [Google Scholar]
- Lotke, P.A.; Granda, J.L. Alterations in the permeability of articular cartilage by proteolytic enzymes. Arthritis Rheum 1972, 15, 302–308. [Google Scholar]
- Arkill, K.P.; Winlove, C.P. Fatty acid transport in articular cartilage. Arch. Biochem. Biophys 2006, 456, 71–78. [Google Scholar]
- Torzilli, P.A.; Grande, D.A.; Arduino, J.M. Diffusive properties of immature articular cartilage. J. Biomed. Mater. Res 1998, 40, 132–138. [Google Scholar]
- Honner, R.; Thompson, R.C. The nutritional pathways of articular cartilage. An autoradiographic study in rabbits using 35S injected intravenously. J. Bone Jt. Surg. Am 1971, 53, 742–748. [Google Scholar]
- Hodge, J.A.; McKibbin, B. The nutrition of mature and immature cartilage in rabbits. An autoradiographic study. J. Bone Jt. Surg. Br 1969, 51, 140–147. [Google Scholar]
- Ogata, K.; Whiteside, L.A.; Lesker, P.A. Subchondral route for nutrition to articular cartilage in the rabbit. Measurement of diffusion with hydrogen gas in vivo. J. Bone Jt. Surg. Am. 1978, 60, 905–910. [Google Scholar]
- Pan, J.; Zhou, X.; Li, W.; Novotny, J.E.; Doty, S.B.; Wang, L. In situ measurement of transport between subchondral bone and articular cartilage. J. Orthop. Res 2009, 27, 1347–1352. [Google Scholar]
- Arkill, K.P.; Winlove, C.P. Solute transport in the deep and calcified zones of articular cartilage. Osteoarthr. Cartil 2008, 16, 708–714. [Google Scholar]
- Greenwald, A.S.; Haynes, D.W. A pathway for nutrients from the medullary cavity to the articular cartilage of the human femoral head. J. Bone Jt. Surg. Br 1969, 51, 747–753. [Google Scholar]
- Lyons, T.J.; McClure, S.F.; Stoddart, R.W.; McClure, J. The normal human chondro-osseous junctional region: Evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces. BMC Musculoskelet. Disord 2006. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, L.; Zeng, L.; He, D.; Wei, X. Nutrition and degeneration of articular cartilage. Knee Surg. Sports Traumatol. Arthrosc 2012, 21, 1751–1762. [Google Scholar]
- Levick, J.R. Microvascular architecture and exchange in synovial joints. Microcirculation 1995, 2, 217–233. [Google Scholar]
- Maroudas, A.; Bullough, P.; Swanson, S.A.; Freeman, M.A. The permeability of articular cartilage. J. Bone Jt. Surg. Br 1968, 50, 166–177. [Google Scholar]
- Garcia, A.M.; Frank, E.H.; Grimshaw, P.E.; Grodzinsky, A.J. Contributions of fluid convection and electrical migration to transport in cartilage: Relevance to loading. Arch. Biochem. Biophys 1996, 333, 317–325. [Google Scholar]
- O’Hara, B.P.; Urban, J.P.; Maroudas, A. Influence of cyclic loading on the nutrition of articular cartilage. Ann. Rheum. Dis 1990, 49, 536–539. [Google Scholar]
- Appleton, C.T.G.; Pitelka, V.; Henry, J.; Beier, F. Global analyses of gene expression in early experimental osteoarthritis. Arthritis Rheum 2007, 56, 1854–1868. [Google Scholar]
- Sohn, D.H.; Sokolove, J.; Sharpe, O.; Erhart, J.C.; Chandra, P.E.; Lahey, L.J.; Lindstrom, T.M.; Hwang, I.; Boyer, K.A.; Andriacchi, T.P.; et al. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4. Arthritis Res. Ther 2012. [Google Scholar] [CrossRef]
- Pan, J.; Wang, B.; Li, W.; Zhou, X.; Scherr, T.; Yang, Y.; Price, C.; Wang, L. Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints. Bone 2012, 51, 212–217. [Google Scholar]
- Wu, S.; de Luca, F. Role of cholesterol in the regulation of growth plate chondrogenesis and longitudinal bone growth. J. Biol. Chem 2004, 279, 4642–4647. [Google Scholar]
- Aguilar, A.; Wu, S.; de Luca, F. P450 oxidoreductase expressed in rat chondrocytes modulates chondrogenesis via cholesterol- and Indian hedgehog-dependent mechanisms. Endocrinology 2009, 150, 2732–2739. [Google Scholar]
- Simopoulou, T.; Malizos, K.N.; Tsezou, A. Lectin-like oxidized low density lipoprotein receptor 1 (LOX-1) expression in human articular chondrocytes. Clin. Exp. Rheumatol 2007, 25, 605–612. [Google Scholar]
- Tsezou, A.; Iliopoulos, D.; Malizos, K.N.; Simopoulou, T. Impaired expression of genes regulating cholesterol efflux in human osteoarthritic chondrocytes. J. Orthop. Res 2010, 28, 1033–1039. [Google Scholar]
- Prete, P.E.; Gurakar-Osborne, A.; Kashyap, M.L. Synovial fluid lipids and apolipoproteins: A contemporary perspective. Biorheology 1995, 32, 1–16. [Google Scholar]
- Oliviero, F.; Lo Nigro, A.; Bernardi, D.; Giunco, S.; Baldo, G.; Scanu, A.; Sfriso, P.; Ramonda, R.; Plebani, M.; Punzi, L. A comparative study of serum and synovial fluid lipoprotein levels in patients with various arthritides. Clin. Chim. Acta 2012, 413, 303–307. [Google Scholar]
- Cillero-Pastor, B.; Eijkel, G.; Kiss, A.; Blanco, F.J.; Heeren, R.M.A. Time-of-flight secondary ion mass spectrometry-based molecular distribution distinguishing healthy and osteoarthritic human cartilage. Anal. Chem 2012, 84, 8909–8916. [Google Scholar]
- Gabay, O.; Sanchez, C.; Salvat, C.; Chevy, F.; Breton, M.; Nourissat, G.; Wolf, C.; Jacques, C.; Berenbaum, F. Stigmasterol: A phytosterol with potential anti-osteoarthritic properties. Osteoarthr. Cartil 2010, 18, 106–116. [Google Scholar]
- Lippiello, L.; Walsh, T.; Fienhold, M. The association of lipid abnormalities with tissue pathology in human osteoarthritic articular cartilage. Metabolism 1991, 40, 571–576. [Google Scholar]
- Cleland, K.A.; James, M.J.; Neumann, M.A.; Gibson, R.A.; Cleland, L.G. Differences in fatty acid composition of immature and mature articular cartilage in humans and sheep. Lipids 1995, 30, 949–953. [Google Scholar]
- Le Lous, M.; Corvol, M.T.; Maroteaux, P. Lipid composition of two types of chondrocytes in primary culture. Calcif. Tissue Int 1981, 33, 403–407. [Google Scholar]
- Lippiello, L.; Fienhold, M.; Grandjean, C. Metabolic and ultrastructural changes in articular cartilage of rats fed dietary supplements of omega-3 fatty acids. Arthritis Rheum 1990, 33, 1029–1036. [Google Scholar]
- Xu, H.; Watkins, B.A.; Adkisson, H.D. Dietary lipids modify the fatty acid composition of cartilage, isolated chondrocytes and matrix vesicles. Lipids 1994, 29, 619–625. [Google Scholar]
- Nagao, M.; Ishii, S.; Murata, Y.; Akino, T. Effect of extracellular fatty acids on lipid metabolism in cultured rabbit articular chondrocytes. J. Orthop. Res 1991, 9, 341–347. [Google Scholar]
- Lopez, H.L. Nutritional interventions to prevent and treat osteoarthritis. Part I: Focus on fatty acids and macronutrients. PMR 2012, 4, S145–S154. [Google Scholar]
- Alvarez-Soria, M.A.; Largo, R.; Santillana, J.; Sánchez-Pernaute, O.; Calvo, E.; Hernández, M.; Egido, J.; Herrero-Beaumont, G. Long term NSAID treatment inhibits COX-2 synthesis in the knee synovial membrane of patients with osteoarthritis: Differential proinflammatory cytokine profile between celecoxib and aceclofenac. Ann. Rheum. Dis 2006, 65, 998–1005. [Google Scholar]
- Alvarez-Soria, M.A.; Herrero-Beaumont, G.; Moreno-Rubio, J.; Calvo, E.; Santillana, J.; Egido, J.; Largo, R. Long-term NSAID treatment directly decreases COX-2 and mPGES-1 production in the articular cartilage of patients with osteoarthritis. Osteoarthr. Cartil 2008, 16, 1484–1493. [Google Scholar]
- Simopoulos, A.P. The importance of the ω-6/ω-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med 2008, 233, 674–688. [Google Scholar]
- Sarma, A.V.; Powell, G.L.; LaBerge, M. Phospholipid composition of articular cartilage boundary lubricant. J. Orthop. Res 2001, 19, 671–676. [Google Scholar]
- Nagao, M.; Ishii, S.; Kitamura, K.; Akino, T. Arachidonic acid metabolism in articular chondrocytes. Clin. Orthop. Relat. Res 1991, 271, 288–295. [Google Scholar]
- Zhuo, Q.; Yang, W.; Chen, J.; Wang, Y. Metabolic syndrome meets osteoarthritis. Nat. Rev. Rheumatol 2012, 8, 729–737. [Google Scholar]
- Al-Arfaj, A.S. Radiographic osteoarthritis and serum cholesterol. Saudi Med. J 2003, 24, 745–747. [Google Scholar]
- Stürmer, T.; Sun, Y.; Sauerland, S.; Zeissig, I.; Günther, K.P.; Puhl, W.; Brenner, H. Serum cholesterol and osteoarthritis. The baseline examination of the Ulm Osteoarthritis Study. J. Rheumatol 1998, 25, 1827–1832. [Google Scholar]
- Hart, D.J.; Doyle, D.V.; Spector, T.D. Association between metabolic factors and knee osteoarthritis in women: The Chingford Study. J. Rheumatol 1995, 22, 1118–1123. [Google Scholar]
- Conaghan, P.G. The effects of statins on osteoarthritis structural progression: Another glimpse of the Holy Grail? Ann. Rheum. Dis 2012, 71, 633–634. [Google Scholar]
- Clockaerts, S.; van Osch, G.J.V.M.; Bastiaansen-Jenniskens, Y.M.; Verhaar, J.A.N.; van Glabbeek, F.; van Meurs, J.B.; Kerkhof, H.J.M.; Hofman, A.; Stricker, B.H.C.; Bierma-Zeinstra, S.M. Statin use is associated with reduced incidence and progression of knee osteoarthritis in the Rotterdam study. Ann. Rheum. Dis 2012, 71, 642–647. [Google Scholar]
- Kadam, U.T.; Blagojevic, M.; Belcher, J. Statin use and clinical osteoarthritis in the general population: A longitudinal study. J. Gen. Intern. Med 2013, 28, 943–949. [Google Scholar]
- Riddle, D.L.; Moxley, G.; Dumenci, L. Associations between statin use and changes in pain, function and structural progression: A longitudinal study of persons with knee osteoarthritis. Ann. Rheum. Dis 2013, 72, 196–203. [Google Scholar]
- Beattie, M.S.; Lane, N.E.; Hung, Y.-Y.; Nevitt, M.C. Association of statin use and development and progression of hip osteoarthritis in elderly women. J. Rheumatol 2005, 32, 106–110. [Google Scholar]
- Aktas, E.; Sener, E.; Gocun, P.U. Mechanically induced experimental knee osteoarthritis benefits from anti-inflammatory and immunomodulatory properties of simvastatin via inhibition of matrix metalloproteinase-3. J. Orthop. Traumatol 2011, 12, 145–151. [Google Scholar]
- Yudoh, K.; Karasawa, R. Statin prevents chondrocyte aging and degeneration of articular cartilage in osteoarthritis (OA). Aging 2010, 2, 990–998. [Google Scholar]
- Dombrecht, E.J.; van Offel, J.F.; Bridts, C.H.; Ebo, D.G.; Seynhaeve, V.; Schuerwegh, A.J.; Stevens, W.J.; de Clerck, L.S. Influence of simvastatin on the production of pro-inflammatory cytokines and nitric oxide by activated human chondrocytes. Clin. Exp. Rheumatol 2007, 25, 534–539. [Google Scholar]
- Barter, M.J.; Hui, W.; Lakey, R.L.; Catterall, J.B.; Cawston, T.E.; Young, D.A. Lipophilic statins prevent matrix metalloproteinase-mediated cartilage collagen breakdown by inhibiting protein geranylgeranylation. Ann. Rheum. Dis 2010, 69, 2189–2198. [Google Scholar]
- Lazzerini, P.E.; Capecchi, P.L.; Nerucci, F.; Fioravanti, A.; Chellini, F.; Piccini, M.; Bisogno, S.; Marcolongo, R.; Laghi Pasini, F. Simvastatin reduces MMP-3 level in interleukin 1β stimulated human chondrocyte culture. Ann. Rheum. Dis 2004, 63, 867–869. [Google Scholar]
- Sverdrup, F.M.; Yates, M.P.; Vickery, L.E.; Klover, J.A.; Song, L.R.-H.; Anglin, C.P.; Misko, T.P. Protein geranylgeranylation controls collagenase expression in osteoarthritic cartilage. Osteoarthr. Cartil 2010, 18, 948–955. [Google Scholar]
- Stammers, T.; Sibbald, B.; Freeling, P. Efficacy of cod liver oil as an adjunct to non-steroidal anti-inflammatory drug treatment in the management of osteoarthritis in general practice. Ann. Rheum. Dis 1992, 51, 128–129. [Google Scholar]
- Iacono, A.; Gómez, R.; Sperry, J.; Conde, J.; Bianco, G.; Meli, R.; Gómez-Reino, J.J.; Smith, A.B.; Gualillo, O. Effect of oleocanthal and its derivatives on inflammatory response induced by lipopolysaccharide in a murine chondrocyte cell line. Arthritis Rheum 2010, 62, 1675–1682. [Google Scholar]
- Wang, Y.; Wluka, A.E.; Hodge, A.M.; English, D.R.; Giles, G.G.; O’Sullivan, R.; Cicuttini, F.M. Effect of fatty acids on bone marrow lesions and knee cartilage in healthy, middle-aged subjects without clinical knee osteoarthritis. Osteoarthr. Cartil 2008, 16, 579–583. [Google Scholar]
- Baker, K.R.; Matthan, N.R.; Lichtenstein, A.H.; Niu, J.; Guermazi, A.; Roemer, F.; Grainger, A.; Nevitt, M.C.; Clancy, M.; Lewis, C.E.; et al. Association of plasma n-6 and n-3 polyunsaturated fatty acids with synovitis in the knee: The MOST study. Osteoarthr. Cartil 2012, 20, 382–387. [Google Scholar]
- Knott, L.; Avery, N.C.; Hollander, A.P.; Tarlton, J.F. Regulation of osteoarthritis by ω-3 (n-3) polyunsaturated fatty acids in a naturally occurring model of disease. Osteoarthr. Cartil 2011, 19, 1150–1157. [Google Scholar]
- Huang, M.-J.; Wang, L.; Jin, D.; Zhang, Z.-M.; Chen, T.-Y.; Jia, C.-H.; Wang, Y.; Zhen, X.-C.; Huang, B.; Yan, B.; et al. Enhancement of the synthesis of n-3 PUFAs in fat-1 transgenic mice inhibits mTORC1 signalling and delays surgically induced osteoarthritis in comparison with wild-type mice. Ann. Rheum. Dis 2013. [Google Scholar] [CrossRef]
- Kosinska, M.K.; Liebisch, G.; Lochnit, G.; Wilhelm, J.; Klein, H.; Kaesser, U.; Lasczkowski, G.; Rickert, M.; Schmitz, G.; Steinmeyer, J. A lipidomic study of phospholipid classes and species in human synovial fluid. Arthritis Rheum 2013, 65, 2323–2333. [Google Scholar]
- Parks, T.P.; Lukas, S.; Hoffman, A.F. Purification and characterization of a phospholipase A2 from human osteoarthritic synovial fluid. Adv. Exp. Med. Biol 1990, 275, 55–81. [Google Scholar]
- Pruzanski, W.; Bogoch, E.; Stefanski, E.; Wloch, M.; Vadas, P. Enzymatic activity and distribution of phospholipase A2 in human cartilage. Life Sci 1991, 48, 2457–2462. [Google Scholar]
- Chang, J.; Gilman, S.C.; Lewis, A.J. Interleukin 1 activates phospholipase A2 in rabbit chondrocytes: A possible signal for IL 1 action. J. Immunol 1986, 136, 1283–1287. [Google Scholar]
- Triantaphyllidou, I.-E.; Kalyvioti, E.; Karavia, E.; Lilis, I.; Kypreos, K.E.; Papachristou, D.J. Perturbations in the HDL metabolic pathway predispose to the development of osteoarthritis in mice following long-term exposure to western-type diet. Osteoarthr. Cartil 2013, 21, 322–330. [Google Scholar]
- Tiku, M.L.; Shah, R.; Allison, G.T. Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation. Possible role in cartilage aging and the pathogenesis of osteoarthritis. J. Biol. Chem 2000, 275, 20069–20076. [Google Scholar]
- Shah, R.; Raska, K.; Tiku, M.L. The presence of molecular markers of in vivo lipid peroxidation in osteoarthritic cartilage: A pathogenic role in osteoarthritis. Arthritis Rheum 2005, 52, 2799–2807. [Google Scholar]
- Morquette, B.; Shi, Q.; Lavigne, P.; Ranger, P.; Fernandes, J.C.; Benderdour, M. Production of lipid peroxidation products in osteoarthritic tissues: New evidence linking 4-hydroxynonenal to cartilage degradation. Arthritis Rheum 2006, 54, 271–281. [Google Scholar]
- Roman-Blas, J.A.; Contreras-Blasco, M.A.; Largo, R.; Alvarez-Soria, M.A.; Castañeda, S.; Herrero-Beaumont, G. Differential effects of the antioxidant N-acetylcysteine on the production of catabolic mediators in IL-1β-stimulated human osteoarthritic synoviocytes and chondrocytes. Eur. J. Pharmacol 2009, 623, 125–131. [Google Scholar]
- Gentili, C.; Tutolo, G.; Pianezzi, A.; Cancedda, R.; Descalzi Cancedda, F. Cholesterol secretion and homeostasis in chondrocytes: A liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein A1 expression. Matrix Biol 2005, 24, 35–44. [Google Scholar]
- Woods, A.; James, C.G.; Wang, G.; Dupuis, H.; Beier, F. Control of chondrocyte gene expression by actin dynamics: A novel role of cholesterol/Ror-α signalling in endochondral bone growth. J. Cell. Mol. Med 2009, 13, 3497–3516. [Google Scholar]
- Kakinuma, T.; Yasuda, T.; Nakagawa, T.; Hiramitsu, T.; Akiyoshi, M.; Akagi, M.; Sawamura, T.; Nakamura, T. Lectin-like oxidized low-density lipoprotein receptor 1 mediates matrix metalloproteinase 3 synthesis enhanced by oxidized low-density lipoprotein in rheumatoid arthritis cartilage. Arthritis Rheum 2004, 50, 3495–3503. [Google Scholar]
- Akagi, M.; Kanata, S.; Mori, S.; Itabe, H.; Sawamura, T.; Hamanishi, C. Possible involvement of the oxidized low-density lipoprotein/lectin-like oxidized low-density lipoprotein receptor-1 system in pathogenesis and progression of human osteoarthritis. Osteoarthr. Cartil 2007, 15, 281–290. [Google Scholar]
- Zushi, S.; Akagi, M.; Kishimoto, H.; Teramura, T.; Sawamura, T.; Hamanishi, C. Induction of bovine articular chondrocyte senescence with oxidized low-density lipoprotein through lectin-like oxidized low-density lipoprotein receptor 1. Arthritis Rheum 2009, 60, 3007–3016. [Google Scholar]
- Kishimoto, H.; Akagi, M.; Zushi, S.; Teramura, T.; Onodera, Y.; Sawamura, T.; Hamanishi, C. Induction of hypertrophic chondrocyte-like phenotypes by oxidized LDL in cultured bovine articular chondrocytes through increase in oxidative stress. Osteoarthr. Cartil 2010, 18, 1284–1290. [Google Scholar]
- Nishimura, S.; Akagi, M.; Yoshida, K.; Hayakawa, S.; Sawamura, T.; Munakata, H.; Hamanishi, C. Oxidized low-density lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1 (LOX-1) in cultured bovine articular chondrocytes increases production of intracellular reactive oxygen species (ROS) resulting in the activation of NF-κB. Osteoarthr. Cartil 2004, 12, 568–576. [Google Scholar]
- Akagi, M.; Ueda, A.; Teramura, T.; Kanata, S.; Sawamura, T.; Hamanishi, C. Oxidized LDL binding to LOX-1 enhances MCP-1 expression in cultured human articular chondrocytes. Osteoarthr. Cartil 2009, 17, 271–275. [Google Scholar]
- Lippiello, L. Lipid and cell metabolic changes associated with essential fatty acid enrichment of articular chondrocytes. Proc. Soc. Exp. Biol. Med 1990, 195, 282–287. [Google Scholar]
- Curtis, C.L.; Hughes, C.E.; Flannery, C.R.; Little, C.B.; Harwood, J.L.; Caterson, B. N-3 fatty acids specifically modulate catabolic factors involved in articular cartilage degradation. J. Biol. Chem 2000, 275, 721–724. [Google Scholar]
- Zainal, Z.; Longman, A.J.; Hurst, S.; Duggan, K.; Caterson, B.; Hughes, C.E.; Harwood, J.L. Relative efficacies of ω-3 polyunsaturated fatty acids in reducing expression of key proteins in a model system for studying osteoarthritis. Osteoarthr. Cartil 2009, 17, 896–905. [Google Scholar]
- Sabatini, M.; Rolland, G.; Léonce, S.; Thomas, M.; Lesur, C.; Pérez, V.; de Nanteuil, G.; Bonnet, J. Effects of ceramide on apoptosis, proteoglycan degradation, and matrix metalloproteinase expression in rabbit articular cartilage. Biochem. Biophys. Res. Commun 2000, 267, 438–444. [Google Scholar]
- Gilbert, S.J.; Blain, E.J.; Duance, V.C.; Mason, D.J. Sphingomyelinase decreases type II collagen expression in bovine articular cartilage chondrocytes via the ERK signaling pathway. Arthritis Rheum 2008, 58, 209–220. [Google Scholar]
- Gilbert, S.J.; Blain, E.J.; Jones, P.; Duance, V.C.; Mason, D.J. Exogenous sphingomyelinase increases collagen and sulphated glycosaminoglycan production by primary articular chondrocytes: An in vitro study. Arthritis Res. Ther 2006. [Google Scholar] [CrossRef]
- Simonaro, C.M.; Sachot, S.; Ge, Y.; He, X.; Deangelis, V.A.; Eliyahu, E.; Leong, D.J.; Sun, H.B.; Mason, J.B.; Haskins, M.E.; et al. Acid ceramidase maintains the chondrogenic phenotype of expanded primary chondrocytes and improves the chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. PLoS One 2013, 8, e62715. [Google Scholar]
- Laplante, M.; Sabatini, D.M. mTOR signaling at a glance. J. Cell Sci 2009, 122, 3589–3594. [Google Scholar]
- André, C.; Cota, D. Coupling nutrient sensing to metabolic homoeostasis: The role of the mammalian _target of rapamycin complex 1 pathway. Proc. Nutr. Soc 2012, 71, 502–510. [Google Scholar]
- Mordier, S.; Iynedjian, P.B. Activation of mammalian _target of rapamycin complex 1 and insulin resistance induced by palmitate in hepatocytes. Biochem. Biophys. Res. Commun 2007, 362, 206–211. [Google Scholar]
- Rivas, D.A.; Yaspelkis, B.B.; Hawley, J.A.; Lessard, S.J. Lipid-induced mTOR activation in rat skeletal muscle reversed by exercise and 5′-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside. J. Endocrinol 2009, 202, 441–451. [Google Scholar]
- Wen, Z.-H.; Su, Y.-C.; Lai, P.-L.; Zhang, Y.; Xu, Y.-F.; Zhao, A.; Yao, G.-Y.; Jia, C.-H.; Lin, J.; Xu, S.; et al. Critical role of arachidonic acid-activated mTOR signaling in breast carcinogenesis and angiogenesis. Oncogene 2013, 32, 160–170. [Google Scholar]
- Pattingre, S.; Bauvy, C.; Levade, T.; Levine, B.; Codogno, P. Ceramide-induced autophagy: To junk or to protect cells? Autophagy 2009, 5, 558–560. [Google Scholar]
- Mathis, A.S.; Jin, S.; Friedman, G.S.; Peng, F.; Carl, S.M.; Knipp, G.T. The pharmacodynamic effects of sirolimus and sirolimus-calcineurin inhibitor combinations on macrophage scavenger and nuclear hormone receptors. J. Pharm. Sci 2007, 96, 209–222. [Google Scholar]
- Xu, J.; Dang, Y.; Ren, Y.R.; Liu, J.O. Cholesterol trafficking is required for mTOR activation in endothelial cells. Proc. Natl. Acad. Sci. USA 2010, 107, 4764–4769. [Google Scholar]
- Srinivas, V.; Bohensky, J.; Shapiro, I.M. Autophagy: A new phase in the maturation of growth plate chondrocytes is regulated by HIF, mTOR and AMP kinase. Cells Tissues Organs 2009, 189, 88–92. [Google Scholar]
- Phornphutkul, C.; Wu, K.-Y.; Auyeung, V.; Chen, Q.; Gruppuso, P.A. mTOR signaling contributes to chondrocyte differentiation. Dev. Dyn 2008, 237, 702–712. [Google Scholar]
- Caramés, B.; Taniguchi, N.; Otsuki, S.; Blanco, F.J.; Lotz, M. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum 2010, 62, 791–801. [Google Scholar]
- Caramés, B.; Hasegawa, A.; Taniguchi, N.; Miyaki, S.; Blanco, F.J.; Lotz, M. Autophagy activation by rapamycin reduces severity of experimental osteoarthritis. Ann. Rheum. Dis 2012, 71, 575–581. [Google Scholar]
- Sasaki, H.; Takayama, K.; Matsushita, T.; Ishida, K.; Kubo, S.; Matsumoto, T.; Fujita, N.; Oka, S.; Kurosaka, M.; Kuroda, R. Autophagy modulates osteoarthritis-related gene expression in human chondrocytes. Arthritis Rheum 2012, 64, 1920–1928. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Villalvilla, A.; Gómez, R.; Largo, R.; Herrero-Beaumont, G. Lipid Transport and Metabolism in Healthy and Osteoarthritic Cartilage. Int. J. Mol. Sci. 2013, 14, 20793-20808. https://doi.org/10.3390/ijms141020793
Villalvilla A, Gómez R, Largo R, Herrero-Beaumont G. Lipid Transport and Metabolism in Healthy and Osteoarthritic Cartilage. International Journal of Molecular Sciences. 2013; 14(10):20793-20808. https://doi.org/10.3390/ijms141020793
Chicago/Turabian StyleVillalvilla, Amanda, Rodolfo Gómez, Raquel Largo, and Gabriel Herrero-Beaumont. 2013. "Lipid Transport and Metabolism in Healthy and Osteoarthritic Cartilage" International Journal of Molecular Sciences 14, no. 10: 20793-20808. https://doi.org/10.3390/ijms141020793
APA StyleVillalvilla, A., Gómez, R., Largo, R., & Herrero-Beaumont, G. (2013). Lipid Transport and Metabolism in Healthy and Osteoarthritic Cartilage. International Journal of Molecular Sciences, 14(10), 20793-20808. https://doi.org/10.3390/ijms141020793