Genetic Marker Discovery in Complex Traits: A Field Example on Fat Content and Composition in Pigs
Abstract
:1. Meat Quality as a Complex Trait
2. Relationship between IMF and Other Fat Depots in Pigs
3. Improving IMF Content and Composition through Selection
4. The Molecular Basis of IMF Content and Composition
4.1. The Polygenic Structure Is Evidenced by Genome-Wide Association Studies
4.2. Molecular Markers Associated with IMF Content and Composition
4.3. The Contribution of Functional and Massive Sequencing Data
5. The Use of Molecular Markers to Improve Meat Quality: An Example with Field Data
5.1. Method A: Genomic Prediction Using Bayes B
5.2. Method B: BLUP without Genotypic Information
5.3. Method C: BLUP Accounting for SCD and LEPR Genotypes
5.4. Practical Implications
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Joo, S.T.; Kim, G.D.; Hwang, Y.H.; Ryu, Y.C. Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Sci. 2013, 95, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Lonergan, S.M.; Stalder, K.J.; Huff-Lonergan, E.; Knight, T.J.; Goodwin, R.N.; Prusa, K.J.; Beitz, D.C. Influence of lipid content on pork sensory quality within pH classification. J. Anim. Sci. 2007, 85, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- Hocquette, J.F.; Gondret, F.; Baeza, E.; Medale, F.; Jurie, C.; Pethick, D.W. Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Animal 2010, 4, 303–319. [Google Scholar] [CrossRef] [PubMed]
- Monziols, M.; Collewet, G.; Bonneau, M.; Mariette, F.; Davenel, A.; Kouba, M. Quantification of muscle, subcutaneous fat and intermuscular fat in pig carcasses and cuts by magnetic resonance imaging. Meat Sci. 2006, 72, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Lindner, J.P.; Baulain, U. Influence on intramuscular fat content of pork. Fleischwirtschaft 2010, 90, 96–102. [Google Scholar]
- Ros-Freixedes, R.; Reixach, J.; Bosch, L.; Tor, M.; Estany, J. Genetic correlations of intramuscular fat content and fatty acid composition among muscles and with subcutaneous fat in duroc pigs. J. Anim. Sci. 2014, 92, 5417–5425. [Google Scholar] [CrossRef] [PubMed]
- Rincker, P.J.; Killefer, J.; Ellis, M.; Brewer, M.S.; McKeith, F.K. Intramuscular fat content has little influence on the eating quality of fresh pork loin chops. J. Anim. Sci. 2008, 86, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, X.; Monin, G.; Talmant, A.; Mourot, J.; Lebret, B. Influence of intramuscular fat content on the quality of pig meat—1. Composition of the lipid fraction and sensory characteristics of m. longissimus lumborum. Meat Sci. 1999, 53, 59–65. [Google Scholar] [CrossRef]
- Kouba, M.; Sellier, P. A review of the factors influencing the development of intermuscular adipose tissue in the growing pig. Meat Sci. 2011, 88, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Davies, A.S.; Pryor, W.J. Growth changes in distribution of dissectable and intramuscular fat in pigs. J. Agric. Sci. 1977, 89, 257–266. [Google Scholar] [CrossRef]
- Hauser, N.; Mourot, J.; de Clercq, L.; Genart, C.; Remacle, C. The cellularity of developing adipose tissues in pietrain and meishan pigs. Reprod. Nutr. Dev. 1997, 37, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.B.; Kauffman, R.G. Cellular and enzymatic changes in porcine adipose tissue during growth. J. Lipid Res. 1973, 14, 160–168. [Google Scholar] [PubMed]
- Gardan, D.; Gondret, F.; Louveau, I. Lipid metabolism and secretory function of porcine intramuscular adipocytes compared with subcutaneous and perirenal adipocytes. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E372–E380. [Google Scholar] [CrossRef] [PubMed]
- Kociucka, B.; Jackowiak, H.; Kamyczek, M.; Szydlowski, M.; Szczerbal, I. The relationship between adipocyte size and the transcript levels of SNAP23, BSCL2 and COPA genes in pigs. Meat Sci. 2016, 121, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Komolka, K.; Albrecht, E.; Wimmers, K.; Michal, J.J.; Maak, S. Molecular heterogeneities of adipose depots—Potential effects on adipose-muscle cross-talk in humans, mice and farm animals. J. Genom. 2014, 2, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Ros-Freixedes, R.; Reixach, J.; Tor, M.; Estany, J. Expected genetic response for oleic acid content in pork. J. Anim. Sci. 2012, 90, 4230–4238. [Google Scholar] [CrossRef] [PubMed]
- Solanes, F.X.; Reixach, J.; Tor, M.; Tibau, J.; Estany, J. Genetic correlations and expected response for intramuscular fat content in a duroc pig line. Livest. Sci. 2009, 123, 63–69. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Cilla, I.; Altarriba, J.; Guerrero, L.; Gispert, M.; Martínez, L.; Moreno, C.; Beltrán, J.A.; Guàrdia, M.D.; Diestre, A.; Arnau, J.; et al. Effect of different duroc lines on carcass composition, meat quality and dry-cured ham acceptability. Meat Sci. 2006, 72, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Ros-Freixedes, R.; Gol, S.; Pena, R.N.; Tor, M.; Ibanez-Escriche, N.; Dekkers, J.C.; Estany, J. Genome-wide association study singles out SCD and LEPR as the two main loci influencing intramuscular fat content and fatty acid composition in duroc pigs. PLoS ONE 2016, 11, e0152496. [Google Scholar] [CrossRef] [PubMed]
- Sellier, P. Genetics of meat and carcass traits. In The Genetics of the Pig; Rothschild, M.F., Ruvinsky, A., Eds.; CAB International: New York, NY, USA, 1998; pp. 463–510. [Google Scholar]
- Oksbjerg, N.; Petersen, J.S.; Sørensen, I.L.; Henckel, P.; Vestergaard, M.; Ertbjerg, P.; Møller, A.J.; Bejerholm, C.; Støier, S. Long-term changes in performance and meat quality of danish landrace pigs: A study on a current compared with an unimproved genotype. Anim. Sci. 2000, 71, 81–92. [Google Scholar] [CrossRef]
- Tribout, T.; Caritez, J.C.; Goguè, J.; Gruand, J.; Bouffaud, M.; Billon, Y.; Péry, C.; Griffon, H.; Brenot, S.; Tiran, M.H.L.; et al. Estimation, par utilisation de semence congelée, de progrès génétique réalisé en france entre 1977 et 1998 dans le race porcine large white: Résultats pour quelques caractères de production et de qualité des tissus gras et maigres. J. Rech. Porc. 2004, 36, 275–282. (In French) [Google Scholar]
- Schwab, C.R.; Baas, T.J.; Stalder, K.J.; Nettleton, D. Results from six generations of selection for intramuscular fat in duroc swine using real-time ultrasound. I. Direct and correlated phenotypic responses to selection. J. Anim. Sci. 2009, 87, 2774–2780. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.S.; Ros-Freixedes, R.; Pena, R.N.; Baas, T.J.; Estany, J.; Rothschild, M.F. Identification of signatures of selection for intramuscular fat and backfat thickness in two duroc populations. J. Anim. Sci. 2015, 93, 3292–3302. [Google Scholar] [CrossRef] [PubMed]
- Ros-Freixedes, R.; Pena, R.; Tor, M.; Estany, J. Expresión del gen estearoil-coa desaturasa y desaturación de la grasa intramuscular en porcino. In XVI Reunion Nacional de Mejora Genética Animal; Sociedad Española de Genética: Ciutadella de Menorca, Spain, 2012. [Google Scholar]
- Suzuki, K.; Irie, M.; Kadowaki, H.; Shibata, T.; Kumagai, M.; Nishida, A. Genetic parameter estimates of meat quality traits in duroc pigs selected for average daily gain, longissimus muscle area, backfat thickness, and intramuscular fat content. J. Anim. Sci. 2005, 83, 2058–2065. [Google Scholar] [CrossRef] [PubMed]
- Ros-Freixedes, R.; Reixach, J.; Bosch, L.; Tor, M.; Estany, J. Response to selection for decreased backfat thickness at restrained intramuscular fat content in duroc pigs. J. Anim. Sci. 2013, 91, 3514–3521. [Google Scholar] [CrossRef] [PubMed]
- Burkett, J.L. The Effect of Selection for Intramuscular Fat on Fatty Acid Composition in Duroc Pigs. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2009. [Google Scholar]
- Ros-Freixedes, R. Genetic Analysis and Selection for Intramuscular Fat and Oleic Acid Content in Pigs. Ph.D. Thesis, University of Lleida, Lleida, Spain, 2014. [Google Scholar]
- Gjerlaug-Enger, E.; Nordbø, Ø.; Grindflek, E. Genomic Selection in Pig Breeding for Improved Meat Quality. In Proceedings of the 10th World Congress of Genetics Applied to Livestock Production, Vancoucer, BC, Canada, 17–22 August 2014.
- Tribout, T.; Larzul, C.; Phocas, F. Economic aspects of implementing genomic evaluations in a pig sire line breeding scheme. Genet. Sel. Evol. 2013. [Google Scholar] [CrossRef] [PubMed]
- Quintanilla, R.; Pena, R.N.; Gallardo, D.; Canovas, A.; Ramirez, O.; Diaz, I.; Noguera, J.L.; Amills, M. Porcine intramuscular fat content and composition are regulated by quantitative trait loci with muscle-specific effects. J. Anim. Sci. 2011, 89, 2963–2971. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Ren, J.; Yang, K.; Ma, J.; Zhang, Z.; Huang, L. Quantitative trait loci for fatty acid composition in longissimus dorsi and abdominal fat: Results from a white duroc X erhualian intercross F2 population. Anim. Genet. 2009, 40, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Nii, M.; Hayashi, T.; Tani, F.; Niki, A.; Mori, N.; Fujishima-Kanaya, N.; Komatsu, M.; Aikawa, K.; Awata, T.; Mikawa, S. Quantitative trait loci mapping for fatty acid composition traits in perirenal and back fat using a japanese wild boar x large white intercross. Anim. Genet. 2006, 37, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Casellas, J.; Martinez-Giner, M.; Pena, R.N.; Balcells, I.; Fernandez-Rodriguez, A.; Ibanez-Escriche, N.; Noguera, J.L. Variability-specific differential gene expression across reproductive stages in sows. Animal 2013, 7, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Estany, J.; Ros-Freixedes, R.; Tor, M.; Pena, R.N. A functional variant in the stearoyl-coa desaturase gene promoter enhances fatty acid desaturation in pork. PLoS ONE 2014, 9, e86177. [Google Scholar] [CrossRef] [PubMed]
- Uemoto, Y.; Soma, Y.; Sato, S.; Ishida, M.; Shibata, T.; Kadowaki, H.; Kobayashi, E.; Suzuki, K. Genome-wide mapping for fatty acid composition and melting point of fat in a purebred duroc pig population. Anim. Genet. 2012, 43, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Ovilo, C.; Fernandez, A.; Noguera, J.L.; Barragan, C.; Leton, R.; Rodriguez, C.; Mercade, A.; Alves, E.; Folch, J.M.; Varona, L.; et al. Fine mapping of porcine chromosome 6 QTL and LEPR effects on body composition in multiple generations of an iberian by landrace intercross. Genet. Res. 2005, 85, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Ramayo-Caldas, Y.; Mercade, A.; Castello, A.; Yang, B.; Rodriguez, C.; Alves, E.; Diaz, I.; Ibanez-Escriche, N.; Noguera, J.L.; Perez-Enciso, M.; et al. Genome-wide association study for intramuscular fatty acid composition in an iberian x landrace cross. J. Anim. Sci. 2012, 90, 2883–2893. [Google Scholar] [CrossRef] [PubMed]
- Munoz, M.; Rodriguez, M.C.; Alves, E.; Folch, J.M.; Ibanez-Escriche, N.; Silio, L.; Fernandez, A.I. Genome-wide analysis of porcine backfat and intramuscular fat fatty acid composition using high-density genotyping and expression data. BMC Genom. 2013. [Google Scholar] [CrossRef]
- Ballester, M.; Revilla, M.; Puig-Oliveras, A.; Marchesi, J.A.; Castello, A.; Corominas, J.; Fernandez, A.I.; Folch, J.M. Analysis of the porcine APOA2 gene expression in liver, polymorphism identification and association with fatty acid composition traits. Anim. Genet. 2016, 47, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Corominas, J.; Marchesi, J.A.; Puig-Oliveras, A.; Revilla, M.; Estelle, J.; Alves, E.; Folch, J.M.; Ballester, M. Epigenetic regulation of the ELOVL6 gene is associated with a major QTL effect on fatty acid composition in pigs. Genet. Sel. Evol. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corominas, J.; Ramayo-Caldas, Y.; Puig-Oliveras, A.; Perez-Montarelo, D.; Noguera, J.L.; Folch, J.M.; Ballester, M. Polymorphism in the ELOVL6 gene is associated with a major QTL effect on fatty acid composition in pigs. PLoS ONE 2013, 8, e53687. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Ishida, M.; Kadowaki, H.; Shibata, T.; Uchida, H.; Nishida, A. Genetic correlations among fatty acid compositions in different sites of fat tissues, meat production, and meat quality traits in duroc pigs. J. Anim. Sci. 2006, 84, 2026–2034. [Google Scholar] [CrossRef] [PubMed]
- Munoz, R.; Tor, M.; Estany, J. Relationship between blood lipid indicators and fat content and composition in duroc pigs. Livest. Sci. 2012, 148, 95–102. [Google Scholar] [CrossRef]
- Kim, K.S.; Larsen, N.; Short, T.; Plastow, G.; Rothschild, M.F. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mamm. Genome 2000, 11, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Fontanesi, L.; Galimberti, G.; Calo, D.G.; Fronza, R.; Martelli, P.L.; Scotti, E.; Colombo, M.; Schiavo, G.; Casadio, R.; Buttazzoni, L.; et al. Identification and association analysis of several hundred single nucleotide polymorphisms within candidate genes for back fat thickness in italian large white pigs using a selective genotyping approach. J. Anim. Sci. 2012, 90, 2450–2464. [Google Scholar] [CrossRef] [PubMed]
- Krashes, M.J.; Lowell, B.B.; Garfield, A.S. Melanocortin-4 receptor-regulated energy homeostasis. Nat. Neurosci. 2016, 19, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Schwab, C.R.; Mote, B.E.; Du, Z.Q.; Amoako, R.; Baas, T.J.; Rothschild, M.F. An evaluation of four candidate genes for use in selection programmes aimed at increased intramuscular fat in duroc swine. J. Anim. Breed. Genet. 2009, 126, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Jin, S.K.; Jeong, Y.H.; Jung, Y.C.; Jung, J.H.; Shim, K.S.; Choi, Y.I. Relationships between single nucleotide polymorphism markers and meat quality traits of duroc breeding stocks in korea. Asian Australas. J. Anim. Sci. 2016, 29, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Van den Maagdenberg, K.; Stinckens, A.; Claeys, E.; Seynaeve, M.; Clinquart, A.; Georges, M.; Buys, N.; de Smet, S. The asp298asn missense mutation in the porcine melanocortin-4 receptor (MC4R) gene can be used to affect growth and carcass traits without an effect on meat quality. Animal 2007, 1, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Munoz, G.; Alcazar, E.; Fernandez, A.; Barragan, C.; Carrasco, A.; de Pedro, E.; Silio, L.; Sanchez, J.L.; Rodriguez, M.C. Effects of porcine MC4R and LEPR polymorphisms, gender and duroc sire line on economic traits in duroc x iberian crossbred pigs. Meat Sci. 2011, 88, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.H.; Kim, M.J.; Jeon, G.J.; Chung, H.Y. Association of genetic variants for FABP3 gene with back fat thickness and intramuscular fat content in pig. Mol. Biol. Rep. 2011, 38, 2161–2166. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, T.; O’Halloran, A.M.; Hamill, R.M.; Davey, G.C.; Gil, M.; Southwood, O.I.; Ryan, M.T. Novel variation in the FABP3 promoter and its association with fatness traits in pigs. Meat Sci. 2015, 100, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Serao, N.V.; Veroneze, R.; Ribeiro, A.M.; Verardo, L.L.; Braccini Neto, J.; Gasparino, E.; Campos, C.F.; Lopes, P.S.; Guimaraes, S.E. Candidate gene expression and intramuscular fat content in pigs. J. Anim. Breed. Genet. 2011, 128, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Tyra, M.; Ropka-Molik, K.; Terman, A.; Piorkowska, K.; Oczkowicz, M.; Bereta, A. Association between subcutaneous and intramuscular fat content in porcine ham and loin depending on age, breed and FABP3 and LEPR genes transcript abundance. Mol. Biol. Rep. 2013, 40, 2301–2308. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Buesa, P.; Burgos, C.; Galve, A.; Varona, L. Joint analysis of additive, dominant and first-order epistatic effects of four genes (IGF2, MC4R, PRKAG3 and LEPR) with known effects on fat content and fat distribution in pigs. Anim. Genet. 2014, 45, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Balatsky, V.; Bankovska, I.; Pena, R.N.; Saienko, A.; Buslyk, T.; Korinnyi, S.; Doran, O. Polymorphisms of the porcine cathepsins, growth hormone-releasing hormone and leptin receptor genes and their association with meat quality traits in ukrainian large white breed. Mol. Biol. Rep. 2016, 43, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Switonski, M.; Stachowiak, M.; Cieslak, J.; Bartz, M.; Grzes, M. Genetics of fat tissue accumulation in pigs: A comparative approach. J. Appl. Genet. 2010, 51, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Stachowiak, M.; Szczerbal, I.; Switonski, M. Genetics of adiposity in large animal models for human obesity-studies on pigs and dogs. Prog. Mol. Biol. Trans. Sci. 2016, 140, 233–270. [Google Scholar]
- Latorre, P.; Burgos, C.; Hidalgo, J.; Varona, L.; Carrodeguas, J.A.; Lopez-Buesa, P.C. A2456c-substitution in pck1 changes the enzyme kinetic and functional properties modifying fat distribution in pigs. Sci. Rep. 2016, 6, 19617. [Google Scholar] [CrossRef] [PubMed]
- Clop, A.; Ovilo, C.; Perez-Enciso, M.; Cercos, A.; Tomas, A.; Fernandez, A.; Coll, A.; Folch, J.M.; Barragan, C.; Diaz, I.; et al. Detection of qtl affecting fatty acid composition in the pig. Mamm. Genome 2003, 14, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Navarro, N.; Noguera, J.L.; Munoz, M.; Guo, T.F.; Yang, K.X.; Ma, J.W.; Folch, J.M.; Huang, L.S.; Perez-Enciso, M. Building phenotype networks to improve QTL detection: A comparative analysis of fatty acid and fat traits in pigs. J. Anim. Breed. Genet. 2011, 128, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Tejeda, J.F.; Gandemer, G.; Antequera, T.; Viau, M.; Garcia, C. Lipid traits of muscles as related to genotype and fattening diet in iberian pigs: Total intramuscular lipids and triacylglycerols. Meat Sci. 2002, 60, 357–363. [Google Scholar] [CrossRef]
- Henriquez-Rodriguez, E.; Tor, M.; Pena, R.N.; Estany, J. A polymorphism in the stearoyl-coa desaturase gene promoter increases monounsaturated fatty acid content in dry-cured ham. Meat Sci. 2015, 106, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Henriquez-Rodriguez, E.; Bosch, L.; Tor, M.; Pena, R.N.; Estany, J. The effect of SCD and LEPR genetic polymorphisms on fat content and composition is maintained throughout fattening in duroc pigs. Meat Sci. 2016, 121, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Pena, R.N.; Quintanilla, R.; Manunza, A.; Gallardo, D.; Casellas, J.; Amills, M. Application of the microarray technology to the transcriptional analysis of muscle phenotypes in pigs. Anim. Genet. 2014, 45, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xu, X.L.; Ma, H.M.; Jiang, J. Integrative analysis of transcriptomics and proteomics of skeletal muscles of the chinese indigenous shaziling pig compared with the yorkshire breed. BMC Genet. 2016. [Google Scholar] [CrossRef] [PubMed]
- Li, X.J.; Zhou, J.; Liu, L.Q.; Qian, K.; Wang, C.L. Identification of genes in longissimus dorsi muscle differentially expressed between wannanhua and yorkshire pigs using RNA-sequencing. Anim. Genet. 2016, 47, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yang, Q.; Harris, C.L.; Nelson, M.L.; Busboom, J.R.; Zhu, M.J.; Du, M. Nutrigenomic regulation of adipose tissue development—Role of retinoic acid: A review. Meat Sci. 2016, 120, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, S.S.; Song, K.D.; Ghosh, M.; Sharma, N.; Lee, S.J.; Kim, J.H.; Kim, N.; Mongre, R.K.; Adhikari, P.; Kim, J.Y.; et al. Comparative transcriptomic analysis by RNA-seq to discern differential expression of genes in liver and muscle tissues of adult berkshire and jeju native pig. Gene 2014, 546, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Ayuso, M.; Fernandez, A.; Nunez, Y.; Benitez, R.; Isabel, B.; Barragan, C.; Fernandez, A.I.; Rey, A.I.; Medrano, J.F.; Canovas, A.; et al. Comparative analysis of muscle transcriptome between pig genotypes identifies genes and regulatory mechanisms associated to growth, fatness and metabolism. PLoS ONE 2015, 10, e0145162. [Google Scholar] [CrossRef] [PubMed]
- Ropka-Molik, K.; Zukowski, K.; Eckert, R.; Gurgul, A.; Piorkowska, K.; Oczkowicz, M. Comprehensive analysis of the whole transcriptomes from two different pig breeds using RNA-seq method. Anim. Genet. 2014, 45, 674–684. [Google Scholar] [CrossRef] [PubMed]
- Puig-Oliveras, A.; Ramayo-Caldas, Y.; Corominas, J.; Estelle, J.; Perez-Montarelo, D.; Hudson, N.J.; Casellas, J.; Folch, J.M.; Ballester, M. Differences in muscle transcriptome among pigs phenotypically extreme for fatty acid composition. PLoS ONE 2014, 9, e99720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, S.; Du, M.; Jiang, Z.; Hausman, G.J.; Zhang, L.; Dodson, M.V. Long noncoding RNAs in regulating adipogenesis: New RNAs shed lights on obesity. Cell. Mol. Life Sci. 2016, 73, 2079–2087. [Google Scholar] [CrossRef] [PubMed]
- Luan, A.; Paik, K.J.; Li, J.; Zielins, E.R.; Atashroo, D.A.; Spencley, A.; Momeni, A.; Longaker, M.T.; Wang, K.C.; Wan, D.C. Rna sequencing for identification of differentially expressed noncoding transcripts during adipogenic differentiation of adipose-derived stromal cells. Plast. Reconstr. Surg. 2015, 136, 752–763. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z. Progress and prospects of long noncoding RNAs in lipid homeostasis. Mol. Metab. 2016, 5, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Eirin, A.; Riester, S.M.; Zhu, X.Y.; Tang, H.; Evans, J.M.; O’Brien, D.; van Wijnen, A.J.; Lerman, L.O. Microrna and mRNA cargo of extracellular vesicles from porcine adipose tissue-derived mesenchymal stem cells. Gene 2014, 551, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Eirin, A.; Zhu, X.Y.; Puranik, A.S.; Woollard, J.R.; Tang, H.; Dasari, S.; Lerman, A.; van Wijnen, A.J.; Lerman, L.O. Comparative proteomic analysis of extracellular vesicles isolated from porcine adipose tissue-derived mesenchymal stem/stromal cells. Sci. Rep. 2016, 6, 36120. [Google Scholar] [CrossRef] [PubMed]
- Ayuso, M.; Garrayo, J.; Fernández, A.; Núñez, Y.; Benítez, R.; Isabel, B.; Fernández, A.I.; Rey, A.I.; Gonzalez-Bulnes, A.; Medrano, J.F.; et al. Identification of regulatory genes involved in longissimus dorsi transcriptomic differences between pig genotypes. In Proceedings of the 35th International Society for Animal Genetics Conference (ISAG 2016), Salt Lake City, UT, USA, 23–27 July 2016; p. 66.
- Jiang, S.; Wei, H.; Song, T.; Yang, Y.; Peng, J.; Jiang, S. Transcriptome comparison between porcine subcutaneous and intramuscular stromal vascular cells during adipogenic differentiation. PLoS ONE 2013, 8, e77094. [Google Scholar] [CrossRef] [PubMed]
- Coppola, C.J.; Ramaker, R.C.; Mendenhall, E.M. Identification and function of enhancers in the human genome. Hum. Mol. Genet. 2016, 25, R190–R197. [Google Scholar] [CrossRef] [PubMed]
- Andersson, L.; Archibald, A.L.; Bottema, C.D.; Brauning, R.; Burgess, S.C.; Burt, D.W.; Casas, E.; Cheng, H.H.; Clarke, L.; Couldrey, C.; et al. Coordinated international action to accelerate genome-to-phenome with faang, the functional annotation of animal genomes project. Genome Biol. 2015, 16, 57. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Montes, A.M.; Fernandez, A.; Perez-Montarelo, D.; Alves, E.; Benitez, R.M.; Nunez, Y.; Ovilo, C.; Ibanez-Escriche, N.; Folch, J.M.; Fernandez, A.I. Using RNA-Seq SNP data to reveal potential causal mutations related to pig production traits and rna editing. Anim. Genet. 2016. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.; Tellam, R.L.; Kijas, J.; Barendse, W.; Dalrymple, B.P. Predicting regulatory snps within enhancers and promoters in cattle. In Proceedings of the 35th International Society for Animal Genetics Conference (ISAG 2016), Salt Lake City, UT, USA, 23–27 July 2016.
- Villar, D.; Berthelot, C.; Aldridge, S.; Rayner, T.F.; Lukk, M.; Pignatelli, M.; Park, T.J.; Deaville, R.; Erichsen, J.T.; Jasinska, A.J.; et al. Enhancer evolution across 20 mammalian species. Cell 2015, 160, 554–566. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.W.; Jung, Y.L.; Liu, T.; Alver, B.H.; Lee, S.; Ikegami, K.; Sohn, K.A.; Minoda, A.; Tolstorukov, M.Y.; Appert, A.; et al. Comparative analysis of metazoan chromatin organization. Nature 2014, 512, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Ernst, J.; Melnikov, A.; Zhang, X.; Wang, L.; Rogov, P.; Mikkelsen, T.S.; Kellis, M. Genome-scale high-resolution mapping of activating and repressive nucleotides in regulatory regions. Nat. Biotechnol. 2016, 34, 1180–1190. [Google Scholar] [CrossRef] [PubMed]
- Blasco, A.; Toro, M.A. A short critical history of the application of genomics to animal breeding. Livest. Sci. 2014, 166, 4–9. [Google Scholar] [CrossRef]
- Meuwissen, T.H.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [PubMed]
- Gonzalez-Martin, I.; Gonzalez-Perez, C.; Alvarez-Garcia, N.; Gonzalez-Cabrera, J.M. On-line determination of fatty acid composition in intramuscular fat of iberian pork loin by nirs with a remote reflectance fibre optic probe. Meat Sci. 2005, 69, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Weigel, K.A.; de los Campos, G.; Gonzalez-Recio, O.; Naya, H.; Wu, X.L.; Long, N.; Rosa, G.J.; Gianola, D. Predictive ability of direct genomic values for lifetime net merit of holstein sires using selected subsets of single nucleotide polymorphism markers. J. Dairy Sci. 2009, 92, 5248–5257. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, M.A.; Hickey, J.M. Practical implementation of cost-effective genomic selection in commercial pig breeding using imputation. J. Anim. Sci. 2013, 91, 3583–3592. [Google Scholar] [CrossRef] [PubMed]
Fatty Acid | BF | LD | GM |
---|---|---|---|
14:0 | 1.51 ± 0.02 | 1.51 ± 0.03 | 1.57 ± 0.02 |
16:0 | 21.75 ± 0.13 b | 25.45 ± 0.17 a | 25.51 ± 0.13 a |
16:1 | 2.34 ± 0.06 c | 3.69 ± 0.08 a | 3.39 ± 0.06 b |
18:0 | 10.28 ± 0.18 b | 12.78 ± 0.24 a | 12.59 ± 0.18 a |
18:1 | 46.69 ± 0.22 a | 45.74 ± 0.29 a,b | 45.41 ± 0.21 b |
18:2 | 14.14 ± 0.17 a | 7.22 ± 0.23 c | 8.36 ± 0.17 b |
18:3 | 1.02 ± 0.01 a | 0.34 ± 0.02 c | 0.46 ± 0.01 b |
20:0 | 0.15 ± 0.01 b | 0.19 ± 0.01 a | 0.15 ± 0.01 b |
20:1 | 0.99 ± 0.01 a | 0.73 ± 0.01 b | 0.73 ± 0.01 b |
20:2 | 0.77 ± 0.01 a | 0.33 ± 0.01 c | 0.39 ± 0.01 b |
20:4 | 0.32 ± 0.10 c | 1.97 ± 0.14 a | 1.38 ± 0.10 b |
SFA | 33.70 ± 0.24 b | 39.90 ± 0.33 a | 39.84 ± 0.24 a |
MUFA | 50.02 ± 0.24 | 49.93 ± 0.33 | 49.51 ± 0.24 |
PUFA | 16.26 ± 0.26 a | 9.87 ± 0.35 b | 10.61 ± 0.26 b |
16:1/16:0 | 0.10 ± 0.01 b | 0.14 ± 0.01 a | 0.13 ± 0.01 a |
18:1/18:0 | 4.30 ± 0.04 a | 3.27 ± 0.05 b | 3.31 ± 0.04 b |
MUFA/SFA | 1.49 ± 0.01 a | 1.25 ± 0.02 b | 1.24 ± 0.01 b |
Trait 1 | |||||||
---|---|---|---|---|---|---|---|
Method | IMF | SFA | MUFA | 18:1 | PUFA | 18:1/18:0 | SFA/PUFA |
(A) Genomic prediction using Bayes B 2 | |||||||
36 k | 0.04 | 0.48 | 0.50 | 0.28 | 0.07 | 0.60 | 0.10 |
LEPR/SCD | 0.46 | 0.48 | 0.43 | 0.36 | 0.49 | 0.54 | 0.47 |
Rest of chip | 0.03 | 0.17 | 0.14 | 0.14 | 0.04 | 0.04 | 0.03 |
(B) BLUP 3 | |||||||
U, NL | 0.11 | 0.11 | 0.08 | 0.12 | 0.16 | 0.07 | 0.13 |
U, L | 0.31 | 0.15 | 0.32 | 0.32 | 0.39 | 0.14 | 0.39 |
M, NL | 0.41 | 0.39 | 0.30 | 0.29 | 0.61 | 0.08 | 0.60 |
M, L | 0.42 | 0.41 | 0.40 | 0.38 | 0.67 | 0.15 | 0.67 |
(C) BLUP accounting for SCD and LEPR 3 | |||||||
U, NL | 0.34 | 0.50 | 0.39 | 0.31 | 0.41 | 0.51 | 0.41 |
U, L | 0.42 | 0.52 | 0.51 | 0.44 | 0.51 | 0.53 | 0.51 |
M, NL | 0.47 | 0.59 | 0.48 | 0.41 | 0.65 | 0.50 | 0.63 |
M, L | 0.47 | 0.62 | 0.55 | 0.48 | 0.70 | 0.53 | 0.70 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pena, R.N.; Ros-Freixedes, R.; Tor, M.; Estany, J. Genetic Marker Discovery in Complex Traits: A Field Example on Fat Content and Composition in Pigs. Int. J. Mol. Sci. 2016, 17, 2100. https://doi.org/10.3390/ijms17122100
Pena RN, Ros-Freixedes R, Tor M, Estany J. Genetic Marker Discovery in Complex Traits: A Field Example on Fat Content and Composition in Pigs. International Journal of Molecular Sciences. 2016; 17(12):2100. https://doi.org/10.3390/ijms17122100
Chicago/Turabian StylePena, Ramona Natacha, Roger Ros-Freixedes, Marc Tor, and Joan Estany. 2016. "Genetic Marker Discovery in Complex Traits: A Field Example on Fat Content and Composition in Pigs" International Journal of Molecular Sciences 17, no. 12: 2100. https://doi.org/10.3390/ijms17122100
APA StylePena, R. N., Ros-Freixedes, R., Tor, M., & Estany, J. (2016). Genetic Marker Discovery in Complex Traits: A Field Example on Fat Content and Composition in Pigs. International Journal of Molecular Sciences, 17(12), 2100. https://doi.org/10.3390/ijms17122100