Isolation and Identification of Putative Protein Substrates of the AAA+ Molecular Chaperone ClpB from the Pathogenic Spirochaete Leptospira interrogans
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Leptospira Strain, Growth Conditions, and Cell Lysate Preparation
3.2. Construction of ClpBLi-Trap Mutant
3.3. Purification of ClpBLi-Trap (E281A/E683A)
3.4. Affinity Pull-Down Assay and MS Analysis
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zolkiewski, M. ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. J. Biol. Chem. 1999, 274, 28083–28086. [Google Scholar] [CrossRef] [PubMed]
- Goloubinoff, P.; Mogk, A.; Ben-Zvi, A.P; Tomoyasu, T.; Bukau, B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 1999, 96, 13732–13737. [Google Scholar] [CrossRef] [PubMed]
- Mogk, A.; Tomoyasu, T.; Goloubinoff, P.; Rűdiger, S.; Röder, D.; Langen, H.; Bukau, B. Identification of thermolabile Escherichia coli proteins: Prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 1999, 18, 6934–6949. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Sowa, M.E.; Watanabe, Y.; Sigler, P.B.; Chiu, W.; Yoshida, M.; Tsai, F.T. The structure of ClpB: A molecular chaperone that rescues proteins from an aggregated state. Cell 2003, 115, 229–240. [Google Scholar] [CrossRef]
- Weibezahn, J.; Tessarz, P.; Schlieker, C.; Zahn, R.; Maglica, Z.; Lee, S.; Zentgraf, H.; Weber-Ban, E.U.; Dougan, D.A; Tsai, F.T.; et al. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 2004, 119, 653–665. [Google Scholar] [CrossRef] [PubMed]
- Barnett, M.E.; Nagy, M.; Kedzierska, S.; Zolkiewski, M. The amino-terminal domain of ClpB supports binding to strongly aggregated proteins. J. Biol. Chem. 2005, 280, 34940–34945. [Google Scholar] [CrossRef] [PubMed]
- Nagy, M.; Guenther, I.; Akoyev, V.; Barnett, M.E.; Zavodszky, M.I.; Kedzierska-Mieszkowska, S.; Zolkiewski, M. Synergistic cooperation between two ClpB isoforms in aggregate reactivation. J. Mol. Biol. 2010, 396, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Akoev, V.; Gogol, E.P.; Barnett, M.E.; Zolkiewski, M. Nucleotide-induced switch in oligomerization of the AAA+ ATPase ClpB. Protein Sci. 2004, 13, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, R.; Farber, P.; Velvis, A.; Rennella, E.; Latham, M.P.; Kay, L.E. ClpB N-terminal domain plays a regulatory role in protein disaggregation. Proc. Natl. Acad. Sci. USA 2015, 112, E6872–E6881. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, M.E.; Shorter, J. The elusive middle domain of Hsp104 and ClpB: Location and function. Biochim. Biophys. Acta 2012, 1823, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Kedzierska, S.; Akoev, V.; Barnett, M.E.; Zolkiewski, M. Structure and function of the middle domain of ClpB from Escherichia coli. Biochemistry 2003, 42, 14242–14248. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Weaver, C.L.; Lin, J.; Duran, E.C.; Miller, J.M.; Lucius, A.L. Escherichia coli ClpB is a no-n-processive polypeptide translocase. Biochem. J. 2015, 470, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Squires, C.L.; Pedersen, S.; Ross, B.M.; Squires, C. ClpB is the Escherichia coli heat shock protein F84.1. J. Bacteriol. 1991, 173, 4254–4262. [Google Scholar] [CrossRef] [PubMed]
- Kannan, T.R.; Musatovova, O.; Gowda, P.; Baseman, J.B. Characterization of a unique ClpB protein of Mycoplasma pneumoniae and its impact on growth. Infect. Immun. 2008, 76, 5082–5092. [Google Scholar] [CrossRef] [PubMed]
- Capestany, C.A.; Tribble, G.D.; Maeda, K.; Demuth, D.R.; Lament, R.J. Role of the Clp system in stress tolerance, biofilm formation, and intracellular invasion in Porphyromonas gingivalis. J. Bacteriol. 2008, 190, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- Chastanet, A.; Derre, I.; Nair, S.; Msadek, T. ClpB, a novel number of the Listeria monocytogenes CtsR regulon, is involved in virulence but not in general stress tolerance. J. Bacteriol. 2004, 186, 1165–1174. [Google Scholar] [CrossRef] [PubMed]
- Meibom, K.L.; Dubail, I.; Dupuis, M.; Barel, M.; Lenco, J.; Stulik, J.; Golovliov, I.; Sjöstedt, A.; Charbit, A. The heat-shock protein ClpB of Francisella tularensis is involved in stress tolerance and is required for multiplication in _target organs of infected mice. Mol. Microbiol. 2008, 67, 1384–1401. [Google Scholar] [CrossRef] [PubMed]
- Lourdault, K.; Cerqueira, G.M.; Wunder, E.A., Jr.; Picardeau, M. Inactivation of clpB in the pathogen Leptospira interrogans reduces virulence and resistance to stress conditions. Infect. Immun. 2011, 79, 3711–3717. [Google Scholar] [CrossRef] [PubMed]
- Adler, B.; Lo, M.; Seemann, T.; Murray, G.L. Pathogenesis of leptospirosis: The influence of genomics. Vet. Mirobiol. 2011, 153, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Picardeau, M. Virulence of the zoonotic agent of leptospirosis: Still terra incognita? Nat. Rev. Microbiol. 2017, 15, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Ryan, E.G.; Nola, L.; O’Grady, L.; More, S.J.; Doherty, L.M. Seroprevalence of Leptospira Hardjo in the Irish suckler cattle population. Ir. Vet. J. 2012, 65, 8. [Google Scholar] [CrossRef] [PubMed]
- Arent, Z.; Kędzierska-Mieszkowska, S. Seroprevalence study of leptospirosis in horses in northern Poland. Vet. Rec. 2013, 172, 269. [Google Scholar] [CrossRef] [PubMed]
- Arent, Z.; Frizzell, C.; Gilmore, C.; Mackie, D.; Ellis, W.A. Isolation of leptospires from genital tract of sheep. Vet. Rec. 2013, 173, 582. [Google Scholar] [CrossRef] [PubMed]
- Arent, Z.J.; Andrews, S.; Adamama-Moraitou, K.; Gilmore, C.; Pardali, D.; Ellis, W.A. Emergence of novel Leptospira serovars: A need for adjusting vaccination policies for dogs? Epidemiol. Infect. 2013, 141, 1148–1153. [Google Scholar] [CrossRef] [PubMed]
- Ristow, P.; Bourhy, P.; da McBride, F.W.; Figueira, C.P.; Huerre, M.; Ave, P.; Girons, I.S.; Ko, A.I.; Picardeau, M. The OmpA-like protein Loa22 is essential for leptospiral virulence. PLoS Pathog. 2007, 3, e97. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Sun, A.; Ojcius, D.; Wu, S.; Zhao, J.; Yan, J. Inactivation of the fliY gene encoding a flagellar motor switch protein attenuates mobility and virulence of Leptospira interrogans strain Lai. BMC Microbiol. 2009, 9, 253. [Google Scholar] [CrossRef] [PubMed]
- Lambert, A.; Picardeau, M.; Haake, D.A.; Sermswan, R.W.; Srikram, A.; Adler, B.; Murray, G.L. FlaA proteins in Leptospira interrogans are essential for motility and virulence but are not required for formation of the flagellum sheath. Infect. Immun. 2012, 80, 2019–2025. [Google Scholar] [CrossRef] [PubMed]
- Eshghi, A.; Becam, J.; Lambert, A.; Sismeiro, O.; Dillies, M.A.; Jagla, B.; Wunder, E.A., Jr.; Ko, I.; Coppee, J.Y.; Goaran, C.; et al. A putative regulatory genetic locus modulates virulence in the pathogen Leptospira interrogans. Infect. Immun. 2014, 82, 2542–2552. [Google Scholar] [CrossRef] [PubMed]
- Murray, G.L.; Srikram, A.; Henry, R.; Puapairoj, A.; Sermswan, R.W.; Adler, B. Leptospira interrogans requires heme oxygenase for disease pathogenesis. Microbes Infect. 2009, 11, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Eshghi, A.; Lourdault, K.; Murray, G.L.; Bartpho, T.; Sermswan, R.W.; Picardeau, M.; Adler, B.; Snarr, B.; Zuerner, R.L.; Cameron, C.E. Leptospira interrogans catalase is required for resistance to H2O2 and for virulence. Infect. Immun. 2012, 80, 3892–3899. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.F.; Chen, H.H.; Ojcius, D.M.; Zhao, X.; Sun, D.; Ge, Y.M.; Zheng, L.L.; Lin, X.; Li, L.J.; Yan, J. Identification of Leptospira interrogans phospholipase C as a novel virulence factor responsible for intracellular free calcium ion elevation during macrophage death. PLoS ONE 2013, 8, e75652. [Google Scholar] [CrossRef] [PubMed]
- King, A.M.; Pretre, G.; Bartpho, T.; Sermswan, R.W.; Toma, C.; Suzuki, T.; Eshgh, A.; Picardeau, M.; Adler, B.; Murray, G.L. High-temperature protein G is an essential virulence factor of Leptospira interrogans. Infect. Immun. 2014, 82, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Murray, G.L.; Srikram, A.; Henry, R.; Hartskeerl, R.A.; Sermswan, R.W.; Adler, B. Mutations affecting Leptospira interrogans lipopolysaccharide attenuate virulence. Mol. Microbiol. 2010, 78, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Krajewska, J.; Arent, Z.; Więckowski, D.; Zolkiewski, M.; Kędzierska-Mieszkowska, S. Immunoreactivity of the AAA+ chaperone ClpB from Leptospira interrogans with sera from Leptospira-infected animals. BMC Microbiol. 2016, 16, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Hu, W.; Me, Y.; Ojcius, D.M.; Lin, X.; Yan, J. A leptospiral AAA+ chaperone-Ntn peptidase complex, HslUV, contributes to the intracellular survival of Leptospira interrogans in hosts and the transmission of leptospirosis. Emerg. Microbes Infect. 2017, 6, e105. [Google Scholar] [CrossRef] [PubMed]
- Krajewska, J.; Modrak-Wójcik, A.; Arent, Z.; Więckowski, D.; Zolkiewski, M.; Bzowska, A.; Kędzierska-Mieszkowska, S. Characterization of the molecular chaperone ClpB from the pathogenic spirochaete Leptospira interrogans. PLoS ONE 2017, 12, e0181118. [Google Scholar] [CrossRef] [PubMed]
- Kool, J.; Jonker, N.; Irth, H.; Niessen, W.M.A. Studing protein-protein affinity and immobilized ligand protein affinity interactions using MS-based methods. Anal. Bioanal. Chem. 2011, 401, 1109–1125. [Google Scholar] [CrossRef] [PubMed]
- Weibezahn, J.; Schlieker, S.; Bukau, B.; Mogk, A. Characterization of a trap mutant of the AAA+ chaperone ClpB. J. Biol. Chem. 2003, 278, 32608–32617. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, A.L.T.O.; Verjovski-Almeida, S.; Van Sluys, M.A.; Monteiro-Vitorello, C.B.; Camargo, L.E.A.; Digiampietri, L.A.; Harstkeerl, R.A.; Ho, P.L.; Marques, M.V.; Oliveira, M.C.; et al. Genome features of Leptospira interrogans serovar Copenhageni. Braz. J. Med. Biol. Res. 2004, 37, 459–477. [Google Scholar] [CrossRef] [PubMed]
- Matuszewska, E. ATPaza ClpB a usuwanie termicznie zdenaturowanych białek z komórek Escherichia coli. Ph.D. Thesis, University of Gdańsk, Gdańsk, Poland, 2004. [Google Scholar]
- Charon, N.W.; Cockburn, A.; Li, C.; Liu, J.; Miller, K.A.; Miller, M.R.; Motaleb, M.; Wolgemuth, C.W. The unique paradigm of spirochete motility and chemotaxis. Annu. Rev. Microbiol. 2012, 66, 349–370. [Google Scholar] [CrossRef] [PubMed]
- Bender, T.; Lewrenz, I.; Franken, S.; Baitzel, C.; Voos, W. Mitochondrial enzymes are protected from stress-induced aggregation by mitochondrial chaperones and Pim1/LON protease. Mol. Biol. Cell 2011, 22, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Fischer, F.; Langer, J.D.; Osiewicz, H.D. Identification of potential mitochondrial ClpXP protease interactions and substrates suggests its central role in energy metabolism. Sci. Rep. 2015, 5, 18375. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.W.; Lei, M.G.; Lee, C.Y. Trapping and identification of cellular substrates of the Staphylococcus aureus ClpC chaperone. J. Bacteriol. 2013, 195, 4506–4516. [Google Scholar] [CrossRef] [PubMed]
- Arifuzzaman, M.; Maeda, M.; Itoh, A.; Nishikata, K.; Takita, C.; Saito, R.; Ara, T.; Nakahigashi, K.; Huang, H.C.; Hirai, A.; et al. Large-scale identification of protein-protein interaction of Escherichia coli K-12. Genome Res. 2006, 16, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Pinne, M.; Haake, D.A. A comprehensive approach to identification of surface-exposed outer membrane-spanning proteins of Leptospira interrogans. PLoS ONE 2009, 4, e6071. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for quantition of proteins utilizing the principles of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of the structural protein during assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: New York, NY, USA, 2005; pp. 571–607. [Google Scholar]
Protein Name | Gene ID a/Gene Name Accession Number | Molecular Mass (kDa) b | Sequence Coverage (%) | Matched Peptides | Score c |
---|---|---|---|---|---|
50S ribosomal protein L19 | LIC11559/rplS gi|446995403 | 15.5 | 13 | 2 | 56 |
Succinate dehydrogenase flavoprotein subunit | LIC12002/sdhA gi|45657855 | 70.9 | 5 | 4 | 287 |
Hypothetical protein | gi|446175654 | 15.3 | 9 | 2 | 65 |
LipL45 | LIC10123 gi|45600754 | 42.3 | 6 | 2 | 173 |
LipL46 | LIC11885 gi|447001777 | 34.7 | 30 | 8 | 380 |
Conserved hypothetical protein | LIC11848 gi|45600951 | 32.1 | 9 | 2 | 102 |
Function and Protein Name | Gene ID a/Gene Name Accession Number | Molecular Mass (kDa) b | Sequence Coverage (%) 37/42 °C | Matched Peptides 37/42 °C | Score c 37/42 °C |
---|---|---|---|---|---|
Energy metabolism (16) * | |||||
Fructose-bisphosphate aldolase | LIC12233 gi|45658082 | 37.8 | 14/- | 3/- | 180/- |
Triosephosphate isomerase | LIC12094/tpiA gi|45601183 | 27.4 | 11/- | 3/- | 128/- |
Alcohol dehydrogenase | LIC10253/adh gi|45599391 | 45.9 | 25/4 | 10/2 | 351/114 |
Putative citrate lyase | LIC11194 gi|45600315 | 38.4 | 9/- | 3/- | 146/- |
Aconitate hydratase | LIC20249/acnA GI:45655824 | 82.3 | 12/5 | 9/4 | 375/212 |
Type II citrate synthase | LIC12925/gltA gi|45601997 | 48.6 | -/4 | -/2 | -/118 |
Matate dehydrogenase | LIC11781/mdh gi|45600887 | 35.1 | 37/19 | 8/4 | 830/273 |
Succinate dehydrogenase flavoprotein subunit | LIC12002/sdhA gi|45657855 | 71.0 | 11/2 | 5/2 | 229/95 |
Acyl-CoA hydrolase, thioesterase family protein | LIC11758 gi|45600864 | 16.0 | 17/- | 2/- | 119/- |
2,4-dienoyl-CoA reductase | LIC11729/fadH gi|45600834 | 73.8 | 9/- | 4/- | 283/- |
Electron transfer flavoprotein subunit alpha | LIC10360/etfA gi|45656263 | 28.2 | 43/13 | 9/2 | 611/142 |
Acyl-CoA dehydrogenase | LIC10583/acd gi|45599716 | 48.7 | 5/- | 3/- | 185/- |
Acyl-CoA dehydrogenase | LIC13009/acd gi|447196883 | 55.7 | -/8 | -/3 | -/106 |
Acetyl CoA C-acetyltransferase | LIC12795/phbA gi|446701619 | 48.0 | 10/- | 3/- | 127/- |
Succinyl-CoA ligase/synthetase subunit β | LIC12573/sucC gi|446613340 | 40.4 | 14/17 | 5/3 | 247/165 |
2-oxoglutarate dehydrogenase E1 component | LIC12474/odhA | 103.6 | 5/7 | 7/9 | 275/360 |
Amino acid metabolism (10) * | |||||
Acetolactate synthase small subunit | LIC11410/ilvH gi|45600525 | 18.0 | 15/- | 2/- | 65/- |
N-acetyl-gamma-glutamyl-phosphate reductase | LIC11746/argC gi|45600852 | 37.8 | 5/- | 2/- | 55/- |
S-adenosyl-l-homocysteine hydrolase | LIC20083/ahcY gi|45655666 | 48.7 | 4/5 | 2/2 | 88/73 |
Putative branched-chain amino acid aminotransferase | LIC13496/ilvE gi|45602553 | 35.1 | 17/- | 4/- | 207/- |
Pyridoxal phosphate-dependent aspartate aminotransferase superfamily (ABHA synthase) | LIC12168/aspC gi|45601258 | 44.6 | -/6 | -/2 | -/95 |
B12-dependent methionine synthase | LIC20085/metH gi|45655668 | 142.5 | 1/1 | 2/2 | 48/79 |
3-isopropylmalate dehydrogenase | LIC11768/leuB gi|45657634 | 39.0 | 19/- | 6/- | 355/- |
d-3-phosphoglycerate dehydrogenase/4-phosphoerythronate dehydrogenase | LIC11992/serA gi|45601085 | 42.3 | 13/- | 3/- | 152/- |
Cysteine desulfurase | LIC20204/csdB gi|45655784 | 43.8 | 15/- | 3/- | 130/- |
Ketol-acid reductoisomerase | LIC13393/ilvC gi|45602456 | 35.4 | 16/13 | 5/4 | 271/189 |
Cysteine synthase | LIC12082/cysK gi|446567601 | 33.2 | 14/- | 2/- | 104/- |
Nucleotide biosynthesis (1) * | |||||
Inosine-5′-monophosphate dehydrogenase | LIC11919/guaB gi|45601019 | 56.0 | 6/- | 2/- | 67/- |
Fatty acid biosynthesis (2) * | |||||
FAD dependent oxidoreductase/glycerol-3-phosphate dehydrogenase | LIC11699/glpD gi|45600804 | 62.0 | 7/3 | 3/2 | 168/95 |
Biotin carboxylase | LIC11518/accC gi|446487065 | 102.4 | -/2 | -/2 | -/68 |
Inorganic ion transport, homeostasis (1) * | |||||
Potassium transporter TrkA | LIC13175/trkA gi|45602242 | 26.7 | 8/- | 2/- | 107/- |
Protein degradation (4) | |||||
Cysteine protease (papain family cysteine protease) | LIC20197 gi|45602748 | 87.8 | 6/5 | 3/2 | 192/118 |
Aminopeptidase N | LIC12591/pepN gi|45601672 | 102.2 | 6/- | 3/- | 68/- |
PDZ domain protein, trypsin-like peptidase domain protein/Serine protease MucD precursor | LIC12812/mucD gi|45601887 | 41.2 | 23/12 | 5/2 | 257/176 |
ATP-dependent ClpP protease ATP-binding subunit ClpX | LIC11418/clpX gi|456986981 | 46.7 | 3/- | 2/- | 168/- |
Oxidation-reduction processes (3) | |||||
Molybdopterin oxidoreductase (4Fe-4S-cluster domain protein) | LIC10874 gi|45656765 | 113.6 | 21/- | 14/- | 713/- |
GMC family oxidoreductase | LIC10037 gi|45655951 | 58.6 | 3/- | 2/- | 69/- |
Rubrerythrin domain protein | LIC20205 gi|446945174 | 30.6 | 11/21 | 6/12 | 323/535 |
DNA metabolism (2) * | |||||
DNA-binding ferritin-like protein | LIC10606/dps gi|45599739 | 18.2 | 47/23 | 5/3 | 397/228 |
Recombinase RecA | LIC11745/recA gi|446426865 | 39.8 | 6/3 | 5/6 | 240/371 |
Transcription (4) * | |||||
ArsR family transcriptional regulator | LIC11617 gi|45600728 | 11.2 | 32/35 | 2/2 | 75/206 |
DNA-directed RNA polymerase subunit alpha | LIC12846/rpoA gi|45601920 | 36.7 | 36/8 | 13/2 | 474/165 |
Polyribonucleotide nucleotidyltransferase/polynucleotide phosphorylase | LIC12701/pnpA gi|45601779 | 76.6 | 21/4 | 14/2 | 748/130 |
Transcription termination factor Rho | LIC12636/rho gi|45601716 | 53.8 | 12/2 | 6/2 | 375/129 |
Ribosome structure/biogenesis, translation and protein folding (4)* | |||||
30S ribosomal protein S15 | LIC12702/rpsO gi|45601780 | 10.3 | -/27 | -/2 | -/78 |
30S ribosomal protein S4 | LIC12847/rpsD gi|446057405 | 24.1 | 7/- | 4/- | 133/- |
30S ribosomal S3 | LIC12867/rpsC gi|446452098 | 25.7 | 14/- | 2/- | 86/- |
Elongation factor 4/LepA | LIC12010/lepA gi|45601104 | 67.3 | 11/- | 6/- | 339/- |
Regulatory function (1) * | |||||
SAM-dependent methyltransferase | LIC12190/smtA gi|45601280 | 26.1 | 17/- | 2/- | 109/- |
Cell wall/membrane biogenesis (3) * | |||||
2-dehydro-3-deoxyphosphooctonate aldolase/3-deoxy-8-phosphooctulonate synthase | LIC11541/kdsA gi|45600653 | 32.2 | 16/- | 3/- | 190/- |
LipL71/LruA | LIC11003/lipL71 gi|45600127 | 62.1 | 16/6 | 6/3 | 237/199 |
Rod shape-determining protein/cell shape determining protein, MreB/Mrl family | LIC11258/mreB gi|456985405 | 37.0 | 9/- | 4/- | 275/- |
Chemotaxis, motility (2) * | |||||
Chemotaxis protein | LIC12456/cheA gi|476492777 | 120.0 | 6/- | 6/- | 275/- |
Methyl-accepting chemotaxis protein | LIC12921/mcpA gi|45601994 | 76.8 | 15/- | 10/- | 605/- |
Hypothetical proteins (15) | |||||
Conserved hypothetical protein (with the CBS domain) | LIC12236 gi|45601326 | 16.6 | 29/- | 3/- | 142/- |
Conserved hypothetical protein (metallo-beta-lactamase superfamily hydrolase) | LIC12478 gi|4560156 | 35.4 | 10/- | 2/- | 76/- |
Conserved hypothetical protein (with PIN domain) | LIC10215 gi|45656120 | 37.0 | 10/14 | 3/2 | 185/270 |
Hypothetical protein (TPR protein) | LIC10125 gi|45656035 | 135.3 | 4/3 | 4/3 | 186/212 |
Conserved hypothetical protein (helicase C-terminal domain protein) | LIC11405 gi|45600520 | 76.9 | 5/3 | 3/2 | 162/124 |
Conserved hypothetical protein | LIC11274 gi|45600394 | 43.2 | 5/- | 2/- | 94/- |
Conserved hypothetical protein (region ClpX-like) | LIC10558 gi|45599691 | 17.3 | 15/- | 2/- | 115/- |
Conserved hypothetical protein (carbohydrate-binding protein, F5/8 type C domain protein) | LIC20001 gi|45602557 | 91.0 | 9/- | 5/- | 205/- |
Hypothetical protein | LIC13428 gi|45659245 | 54.9 | 15/10 | 6/5 | 438/284 |
Conserved hypothetical protein | LIC10017 gi|45599164 | 34.3 | -/3 | -/2 | -/88 |
Conserved hypothetical protein (PaaI family thioesterase) | LIC11209 gi|446570840 | 15.1 | -/23 | -/2 | -/127 |
Hypothetical protein (aminotransferase) | LIC12198 gi|45601288 | 41.6 | 9/- | 2/- | 144/- |
Hypothetical protein | LIC10235 gi|45656140 | 10.9 | 22/- | 2/- | 126/204 |
Hypothetical protein (HEAT repeat domain-containing protein) | LIC10411 gi|446594877 | 17.2 | 14/- | 2/- | 140/- |
Conserved hypothetical protein (ATPase) | LIC12581 gi|45601662 | 18.3 | 30/- | 2/- | 151/- |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krajewska, J.; Arent, Z.; Zolkiewski, M.; Kędzierska-Mieszkowska, S. Isolation and Identification of Putative Protein Substrates of the AAA+ Molecular Chaperone ClpB from the Pathogenic Spirochaete Leptospira interrogans. Int. J. Mol. Sci. 2018, 19, 1234. https://doi.org/10.3390/ijms19041234
Krajewska J, Arent Z, Zolkiewski M, Kędzierska-Mieszkowska S. Isolation and Identification of Putative Protein Substrates of the AAA+ Molecular Chaperone ClpB from the Pathogenic Spirochaete Leptospira interrogans. International Journal of Molecular Sciences. 2018; 19(4):1234. https://doi.org/10.3390/ijms19041234
Chicago/Turabian StyleKrajewska, Joanna, Zbigniew Arent, Michal Zolkiewski, and Sabina Kędzierska-Mieszkowska. 2018. "Isolation and Identification of Putative Protein Substrates of the AAA+ Molecular Chaperone ClpB from the Pathogenic Spirochaete Leptospira interrogans" International Journal of Molecular Sciences 19, no. 4: 1234. https://doi.org/10.3390/ijms19041234
APA StyleKrajewska, J., Arent, Z., Zolkiewski, M., & Kędzierska-Mieszkowska, S. (2018). Isolation and Identification of Putative Protein Substrates of the AAA+ Molecular Chaperone ClpB from the Pathogenic Spirochaete Leptospira interrogans. International Journal of Molecular Sciences, 19(4), 1234. https://doi.org/10.3390/ijms19041234