Blood Oxidative Stress Modulates Alveolar Bone Loss in Chronically Stressed Rats
Abstract
:1. Introduction
2. Results
2.1. Chronic Immobilization Stress Promotes Anxiogenic-Like Effects in Rats Exposed or Not to Experimental Periodontitis
2.2. Effects of Chronic Stress and Periodontitis Induced Experimentally on Blood Biochemical Parameters of Adult Rats
2.3. Induced Chronic Stress is Associated with Changes on Alveolar Bone in Rats Exposed or Not to Experimental Periodontitis
3. Discussion
4. Methods
4.1. Animals and Experimental Design
4.2. Chronic Stress Exposure
4.3. Experimental Periodontitis: Alveolar Bone Loss Induction
4.4. Behavioral Testing by Elevated Plus Maze (EPM) Analysis
4.5. Oxidative Biochemical Analysis
4.5.1. Sample Preparation
4.5.2. Reduced Glutathione Content Measurements (GSH)
4.5.3. Measurement of Thiobarbituric Acid Reactive Substances (TBARS)
4.5.4. Nitric Oxide (NO) Concentrations
4.6. Analysis of the Alveolar Bone Loss (ABL)
4.6.1. Immunohistochemical Investigation for RANK and RANK-L
4.6.2. Micro-CT Analysis
4.6.3. Morphological Analyses
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ABC | Alveolar bone crest |
CEJ | Cementoenamel junction |
CS | Chronic stress |
EDTA | Ethylenediamine tetraacetic acid |
EPM | Elevated plus maze |
EP | Experimental periodontitis |
GSH | Glutathione |
IHC score | Immunohistochemistry score |
NO | Nitric oxide |
RANK | NF-κB |
RANKL | NF-κB ligand |
TBARS | Thiobarbituric acid reactive substances levels |
References
- Fink, G. Stress: Concepts, Definition and History. In Reference Module in Neuroscience and Biobehavioral Psychology; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Hannibal, K.E.; Bishop, M.D. Chronic stress, cortisol dysfunction, and pain: A psychoneuroendocrine rationale for stress management in pain rehabilitation. Phys. Ther. 2014, 94, 1816–1825. [Google Scholar] [CrossRef]
- Selye, H. The Stress of Life; McGraw-Hill: New York, NY, USA, 1956. [Google Scholar]
- Boyapati, L.; Wang, H.L. The role of stress in periodontal disease and wound healing. Periodontol. 2000 2007, 44, 195–210. [Google Scholar] [CrossRef]
- Lee, D.Y.; Kim, E.; Choi, M.H. Technical and clinical aspects of cortisol as a biochemical marker of chronic stress. BMB Rep. 2015, 48, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Tsigos, C.; Chrousos, G.P. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychos. Res. 2002, 53, 865–871. [Google Scholar] [CrossRef] [Green Version]
- Duric, V.; Clayton, S.; Leong, M.L.; Yuan, L.L. Comorbidity Factors and Brain Mechanisms Linking Chronic Stress and Systemic Illness. Neural Plast. 2016, 2016, 5460732. [Google Scholar] [CrossRef] [Green Version]
- Herbet, M.; Korga, A.; Gawronska-Grzywacz, M.; Izdebska, M.; Piatkowska-Chmiel, I.; Poleszak, E.; Wrobel, A.; Matysiak, W.; Jodlowska-Jedrych, B.; Dudka, J. Chronic Variable Stress Is Responsible for Lipid and DNA Oxidative Disorders and Activation of Oxidative Stress Response Genes in the Brain of Rats. Oxid. Med. Cell. Longev. 2017, 2017, 7313090. [Google Scholar] [CrossRef] [Green Version]
- Hilgert, J.B.; Hugo, F.N.; Bandeira, D.R.; Bozzetti, M.C. Stress, cortisol, and periodontitis in a population aged 50 years and over. J. Dent. Res. 2006, 85, 324–328. [Google Scholar] [CrossRef]
- Genco, R.J.; Ho, A.W.; Kopman, J.; Grossi, S.G.; Dunford, R.G.; Tedesco, L.A. Models to evaluate the role of stress in periodontal disease. Ann. Periodontol. 1998, 3, 288–302. [Google Scholar] [CrossRef]
- Castro, M.M.L.; Ferreira, R.O.; Fagundes, N.C.F.; Almeida, A.P.C.; Maia, L.C.; Lima, R.R. Association between Psychological Stress and Periodontitis: A Systematic Review. Eur. J. Dent. 2020, 14, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Isola, G.; Polizzi, A.; Alibrandi, A.; Indelicato, F.; Ferlito, S. Analysis of Endothelin-1 Concentrations in Individuals with Periodontitis. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Isola, G.; Polizzi, A.; Muraglie, S.; Leonardi, R.; Lo Giudice, A. Assessment of Vitamin C and Antioxidant Profiles in Saliva and Serum in Patients with Periodontitis and Ischemic Heart Disease. Nutrients 2019, 11, 956. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Cabrera, J.; Fernandez-Prada, M.; Iribar-Ibabe, C.; Peinado, J.M. Acute and chronic stress increase salivary cortisol: A study in the real-life setting of a national examination undertaken by medical graduates. Stress 2014, 17, 149–156. [Google Scholar] [CrossRef]
- Oppermann, R.V.; Alchieri, J.C.; Castro, G.D.d. Efeitos do estresse sobre a imunidade e a doença periodontal. R. Fac. Odontol. 2002, 43, 52–59. Available online: http://hdl.handle.net/10183/23854 (accessed on 16 March 2020).
- Goyal, S.; Gupta, G.; Thomas, B.; Bhat, K.M.; Bhat, G.S. Stress and periodontal disease: The link and logic!! Ind. Psychiatry J. 2013, 22, 4–11. [Google Scholar] [CrossRef]
- Lu, H.; Xu, M.; Wang, F.; Liu, S.; Gu, J.; Lin, S. Chronic stress enhances progression of periodontitis via alpha1-adrenergic signaling: A potential _target for periodontal disease therapy. Exp. Mol. Med. 2014, 46, e118. [Google Scholar] [CrossRef] [Green Version]
- Peruzzo, D.C.; Benatti, B.B.; Antunes, I.B.; Andersen, M.L.; Sallum, E.A.; Casati, M.Z.; Nociti, F.H.; Nogueira-Filho, G.R. Chronic stress may modulate periodontal disease: A study in rats. J. Periodontol. 2008, 79, 697–704. [Google Scholar] [CrossRef]
- Susin, C.; Rosing, C.K. Effect of variable moderate chronic stress on ligature-induced periodontal disease in Wistar rats. Acta Odontol. Scand. 2003, 61, 273–277. [Google Scholar] [CrossRef]
- Mitra, R.; Jadhav, S.; McEwen, B.S.; Vyas, A.; Chattarji, S. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc. Natl. Acad. Sci. USA 2005, 102, 9371–9376. [Google Scholar] [CrossRef] [Green Version]
- Webster Marketon, J.I.; Glaser, R. Stress hormones and immune function. Cell. Immunol. 2008, 252, 16–26. [Google Scholar] [CrossRef]
- Dantas, F.T.; Martins, S.H.L.; Dantas, A.T.d.M.; Gnoatto, N. Associação entre o estresse psicológico e a doença periodontal: Revisão da literatura / Stress and periodontal disease: A literature review. Periodontia 2016, 26, 19–28. Available online: https://pesquisa.bvsalud.org/portal/resource/pt/biblio-837001 (accessed on 16 March 2020).
- Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef] [Green Version]
- Ryter, S.W.; Kim, H.P.; Hoetzel, A.; Park, J.W.; Nakahira, K.; Wang, X.; Choi, A.M. Mechanisms of cell death in oxidative stress. Antioxid. Redox Signal. 2007, 9, 49–89. [Google Scholar] [CrossRef]
- Bergamini, C.M.; Gambetti, S.; Dondi, A.; Cervellati, C. Oxygen, reactive oxygen species and tissue damage. Curr. Pharm. Des. 2004, 10, 1611–1626. [Google Scholar] [CrossRef]
- Marletta, M.A. Nitric oxide: Biosynthesis and biological significance. Trends Biochem. Sci. 1989, 14, 488–492. [Google Scholar] [CrossRef] [Green Version]
- Spiers, J.G.; Chen, H.C.; Bourgognon, J.M.; Steinert, J.R. Dysregulation of stress systems and nitric oxide signaling underlies neuronal dysfunction in Alzheimer’s disease. Free Radic. Biol. Med. 2019, 134, 468–483. [Google Scholar] [CrossRef]
- Tothova, L.; Celec, P. Oxidative Stress and Antioxidants in the Diagnosis and Therapy of Periodontitis. Front. Physiol. 2017, 8, 1055. [Google Scholar] [CrossRef] [Green Version]
- Naresh, C.K.; Rao, S.; Shetty, P.; Ranganath, V.; Patil, A.; Anu, A.J. Salivary antioxidant enzymes and lipid peroxidation product malondialdehyde and sialic acid levels among smokers and non-smokers with chronic periodontitis-A clinico-biochemical study. J. Fam. Med. Primary Care 2019, 8, 2960–2964. [Google Scholar] [CrossRef]
- Silveira, A.S.; Aydos, R.D.; Ramalho, R.T.; Silva, I.S.; Caldas, R.d.A.; Santos Neto, A.T.d.; Rodrigues, C.T. Oxidative stress effects in the uterus, placenta and fetus of pregnant rats submitted to acute and chronic stress. Acta Cir. Bras. 2018, 33, 806–815. [Google Scholar] [CrossRef]
- Tothova, L.; Kamodyova, N.; Cervenka, T.; Celec, P. Salivary markers of oxidative stress in oral diseases. Front. Cell. Infect. Microbiol. 2015, 5, 73. [Google Scholar] [CrossRef] [Green Version]
- Callaway, D.A.; Jiang, J.X. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J. Bone Miner. Metab. 2015, 33, 359–370. [Google Scholar] [CrossRef]
- Sareila, O.; Kelkka, T.; Pizzolla, A.; Hultqvist, M.; Holmdahl, R. NOX2 complex-derived ROS as immune regulators. Antioxid. Redox Signal 2011, 15, 2197–2208. [Google Scholar] [CrossRef] [PubMed]
- Garrett, I.R.; Boyce, B.F.; Oreffo, R.O.; Bonewald, L.; Poser, J.; Mundy, G.R. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J. Clin. Investig. 1990, 85, 632–639. [Google Scholar] [CrossRef] [Green Version]
- McCauley, L.K.; Nohutcu, R.M. Mediators of periodontal osseous destruction and remodeling: Principles and implications for diagnosis and therapy. J. Periodontol. 2002, 73, 1377–1391. [Google Scholar] [CrossRef] [PubMed]
- de Molon, R.S.; Park, C.H.; Jin, Q.; Sugai, J.; Cirelli, J.A. Characterization of ligature-induced experimental periodontitis. Microsc. Res. Tech. 2018, 81, 1412–1421. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Sanchez, P.K.; Moro, M.G.; Santos, F.A.D.; Anbinder, A.L.; Kreich, E.; Moraes, R.M.; Padilha, L.; Kusiak, C.; Scomparin, D.X.; Franco, G.C.N. Agreement, correlation, and kinetics of the alveolar bone-loss measurement methodologies in a ligature-induced periodontitis animal model. J. Appl. Oral Sci. 2017, 25, 490–497. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Lu, F.; Zhang, Z.; Yang, X.; Chen, Y. The role of psychologic stress-induced hypoxia-inducible factor-1alpha in rat experimental periodontitis. J. Periodontol. 2011, 82, 934–941. [Google Scholar] [CrossRef]
- Irwin, M.; Patterson, T.; Smith, T.L.; Caldwell, C.; Brown, S.A.; Gillin, J.C.; Grant, I. Reduction of immune function in life stress and depression. Biol. Psychiatry. 1990, 27, 22–30. [Google Scholar] [CrossRef]
- Ishisaka, A.; Ansai, T.; Soh, I.; Inenaga, K.; Awano, S.; Yoshida, A.; Hamasaki, T.; Sonoki, K.; Takata, Y.; Nishihara, T.; et al. Association of cortisol and dehydroepiandrosterone sulphate levels in serum with periodontal status in older Japanese adults. J. Clin. Periodontol. 2008, 35, 853–861. [Google Scholar] [CrossRef]
- Semenoff-Segundo, A.; Porto, A.N.; Semenoff, T.A.; Cortelli, J.R.; Costa, F.O.; Cortelli, S.C.; Bosco, A.F. Effects of two chronic stress models on ligature-induced periodontitis in Wistar rats. Arch. Oral Biol. 2012, 57, 66–72. [Google Scholar] [CrossRef]
- de Molon, R.S.; Mascarenhas, V.I.; de Avila, E.D.; Finoti, L.S.; Toffoli, G.B.; Spolidorio, D.M.; Scarel-Caminaga, R.M.; Tetradis, S.; Cirelli, J.A. Long-term evaluation of oral gavage with periodontopathogens or ligature induction of experimental periodontal disease in mice. Clin. Oral Investig. 2016, 20, 1203–1216. [Google Scholar] [CrossRef]
- Castro, M.M.L.; Duarte, N.N.; Nascimento, P.C.; Magno, M.B.; Fagundes, N.C.F.; Flores-Mir, C.; Monteiro, M.C.; Rosing, C.K.; Maia, L.C.; Lima, R.R. Antioxidants as Adjuvants in Periodontitis Treatment: A Systematic Review and Meta-Analysis. Oxid. Med. Cell. Longev. 2019, 2019, 9187978. [Google Scholar] [CrossRef] [PubMed]
- Porto, A.N.; Semenoff Segundo, A.; Vedove Semenoff, T.A.; Pedro, F.M.; Borges, A.H.; Cortelli, J.R.; Costa Fde, O.; Cortelli, S.C. Effects of forced alcohol intake associated with chronic stress on the severity of periodontitis: An animal model study. Int. J. Dent. 2012, 2012, 465698. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, L.M.P.; Cartagenes, S.C.; Barros, M.A.; Carvalheiro, T.; Castro, N.C.F.; Schamne, M.G.; Lima, R.R.; Prediger, R.D.; Monteiro, M.C.; Fontes-Junior, E.A.; et al. Repeated cycles of binge-like ethanol exposure induce immediate and delayed neurobehavioral changes and hippocampal dysfunction in adolescent female rats. Behav. Brain Res. 2018, 350, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Miranda, G.H.N.; Gomes, B.A.Q.; Bittencourt, L.O.; Aragao, W.A.B.; Nogueira, L.S.; Dionizio, A.S.; Buzalaf, M.A.R.; Monteiro, M.C.; Lima, R.R. Chronic Exposure to Sodium Fluoride Triggers Oxidative Biochemistry Misbalance in Mice: Effects on Peripheral Blood Circulation. Oxid. Med. Cell. Longev. 2018, 2018, 8379123. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Kohn, H.I.; Liversedge, M. On a New Aerobic Metabolite Whose Production by Brain Is Inhibited by Apomorphine, Emetine, Ergotamine, Epinephrine, and Menadione. J. Pharmacol. Exp. Ther. 1944, 82, 292–300. Available online: http://jpet.aspetjournals.org/content/82/3/292.short (accessed on 16 March 2020).
- Percário, S. Dosagem das LDLs modificadas através da peroxidação lipídica: Correlação com o risco aterogênico. Anais Médicos dos Hospitais e da Faculdade de Ciências Médicas da Santa Casa de São Paulo 1994, 13, 7–9. [Google Scholar]
- Granger, D.L.; Anstey, N.M.; Miller, W.C.; Weinberg, J.B. Measuring nitric oxide production in human clinical studies. Methods Enzymol. 1999, 301, 49–61. [Google Scholar] [CrossRef]
- Araújo, A.A.d.; Morais, H.B.d.; Medeiros, C.A.C.X.d.; Brito, G.A.d.C.; Guedes, P.M.M.; Hiyari, S.; Pirih, F.Q.; Araújo, R.F.d., Jr. Gliclazide reduced oxidative stress, inflammation, and bone loss in an experimental periodontal disease model. J. Appl. Oral Sci. 2019, 27, 1678–7765. [Google Scholar]
- Doube, M.; Klosowski, M.M.; Arganda-Carreras, I.; Cordelieres, F.P.; Dougherty, R.P.; Jackson, J.S.; Schmid, B.; Hutchinson, J.R.; Shefelbine, S.J. BoneJ: Free and extensible bone image analysis in ImageJ. Bone 2010, 47, 1076–1079. [Google Scholar] [CrossRef] [Green Version]
- Balbinot, G.S.; Leitune, V.C.B.; Ponzoni, D.; Collares, F.M. Bone healing with niobium-containing bioactive glass composition in rat femur model: A micro-CT study. Dent. Mater. 2019, 35, 1490–1497. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes Castro, M.M.; Nascimento, P.C.; Souza-Monteiro, D.; Santos, S.M.; Arouck, M.B.; Garcia, V.B.; Araújo, R.F.d., Jr.; de Araujo, A.A.; Balbinot, G.d.S.; Collares, F.M.; et al. Blood Oxidative Stress Modulates Alveolar Bone Loss in Chronically Stressed Rats. Int. J. Mol. Sci. 2020, 21, 3728. https://doi.org/10.3390/ijms21103728
Lopes Castro MM, Nascimento PC, Souza-Monteiro D, Santos SM, Arouck MB, Garcia VB, Araújo RFd Jr., de Araujo AA, Balbinot GdS, Collares FM, et al. Blood Oxidative Stress Modulates Alveolar Bone Loss in Chronically Stressed Rats. International Journal of Molecular Sciences. 2020; 21(10):3728. https://doi.org/10.3390/ijms21103728
Chicago/Turabian StyleLopes Castro, Micaele Maria, Priscila Cunha Nascimento, Deiweson Souza-Monteiro, Sávio Monteiro Santos, Mayra Barros Arouck, Vinicius Barreto Garcia, Raimundo Fernandes de Araújo, Jr., Aurigena Antunes de Araujo, Gabriela de Souza Balbinot, Fabrício Mezzomo Collares, and et al. 2020. "Blood Oxidative Stress Modulates Alveolar Bone Loss in Chronically Stressed Rats" International Journal of Molecular Sciences 21, no. 10: 3728. https://doi.org/10.3390/ijms21103728
APA StyleLopes Castro, M. M., Nascimento, P. C., Souza-Monteiro, D., Santos, S. M., Arouck, M. B., Garcia, V. B., Araújo, R. F. d., Jr., de Araujo, A. A., Balbinot, G. d. S., Collares, F. M., Rosing, C. K., Monteiro, M. C., Ferraz Maia, C. S., & Lima, R. R. (2020). Blood Oxidative Stress Modulates Alveolar Bone Loss in Chronically Stressed Rats. International Journal of Molecular Sciences, 21(10), 3728. https://doi.org/10.3390/ijms21103728