The RNA-Binding Protein SMN as a Novel Player in Laryngeal Squamous Cell Carcinoma
Abstract
:1. Introduction
2. Results
2.1. SMN Is Upregulated in LSSC
2.2. SMN Knockdown Affects Cancer-Relevant Behaviors of HLaC-79 Cells
2.3. SMN Impacts on the Regulatory Proteins of Cell Migration and Adhesion
2.4. SMN Interacts with EGFR in LSCC
3. Discussion
4. Materials and Methods
4.1. Antibodies and Reagents
4.2. Patients
4.3. Cell Cultures and Transfections
4.4. MTT Assay
4.5. Colony Formation Assay
4.6. Wound Healing Assay
4.7. Immunofluorescence
4.8. Padlock Assay
4.9. In Situ Proximity Ligation Assay (PLA)
4.10. Tissue Protein Extraction
4.11. Cellular Protein Extraction
4.12. Western Blot Analysis
4.13. Co-Immunoprecipitation
4.14. RNA Extraction, Retrotranscription, and Semiquantitative PCR
4.15. Droplet Digital PCR Expression Analysis
4.16. Quantification and Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 2020, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Koroulakis, A.; Agarwal, M. Laryngeal Cancer. Available online: https://www.ncbi.nlm.nih.gov/books/NBK526076 (accessed on 15 March 2022).
- Megwalu, U.C.; Sikora, A.G. Survival Outcomes in Advanced Laryngeal Cancer. JAMA Otolaryngol. Neck Surg. 2014, 140, 855–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boffetta, P.; Hashibe, M. Alcohol and cancer. Lancet Oncol. 2006, 7, 149–156. [Google Scholar] [CrossRef]
- Steuer, C.E.; El-Deiry, M.; Parks, J.R.; Higgins, K.A.; Saba, N.F. An update on larynx cancer. CA Cancer J. Clin. 2016, 67, 31–50. [Google Scholar] [CrossRef] [Green Version]
- Ferraguti, G.; Terracina, S.; Petrella, C.; Greco, A.; Minni, A.; Lucarelli, M.; Agostinelli, E.; Ralli, M.; de Vincentiis, M.; Raponi, G.; et al. Alcohol and Head and Neck Cancer: Updates on the Role of Oxidative Stress, Genetic, Epigenetics, Oral Microbiota, Antioxidants, and Alkylating Agents. Antioxidants 2022, 11, 145. [Google Scholar] [CrossRef]
- Santuray, R.T.; Johnson, D.E.; Grandis, J.R. New Therapies in Head and Neck Cancer. Trends Cancer 2018, 4, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Lee, Y.; Lee, J.-S. RNA-Binding Proteins in Cancer: Functional and Therapeutic Perspectives. Cancers 2020, 12, 2699. [Google Scholar] [CrossRef]
- Levidou, G.; Kotta-Loizou, I.; Tasoulas, J.; Papadopoulos, T.; Theocharis, S. Clinical Significance and Biological Role of HuR in Head and Neck Carcinomas. Dis. Markers 2018, 2018, 4020937. [Google Scholar] [CrossRef] [Green Version]
- Goldson, T.M.; Turner, K.L.; Huang, Y.; Carlson, G.E.; Caggiano, E.G.; Oberhauser, A.F.; Fennewald, S.M.; Burdick, M.M.; Resto, V.A. Nucleolin mediates the binding of cancer cells to L-selectin under conditions of lymphodynamic shear stress. Am. J. Physiol. Physiol. 2020, 318, C83–C93. [Google Scholar] [CrossRef]
- Weiße, J.; Rosemann, J.; Krauspe, V.; Kappler, M.; Eckert, A.W.; Haemmerle, M.; Gutschner, T. RNA-Binding Proteins as Regulators of Migration, Invasion and Metastasis in Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2020, 21, 6835. [Google Scholar] [CrossRef]
- Singh, R.N.; Howell, M.D.; Ottesen, E.W.; Singh, N.N. Diverse role of survival motor neuron protein. Biochim. Biophys. Acta 2017, 1860, 299–315. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, S.; Bürglen, L.; Reboullet, S.; Clermont, O.; Burlet, P.; Viollet, L.; Benichou, B.; Cruaud, C.; Millasseau, P.; Zeviani, M.; et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995, 80, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Mercuri, E.; Sumner, C.J.; Muntoni, F.; Darras, B.T.; Finkel, R.S. Spinal muscular atrophy. Nat. Rev. Dis. Prim. 2022, 8, 52. [Google Scholar] [CrossRef]
- Shababi, M.; Lorson, C.L.; Rudnik-Schöneborn, S.S. Spinal muscular atrophy: A motor neuron disorder or a multi-organ disease? J. Anat. 2013, 224, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Francesca, G.; Cinzia, P.; Antonella, B.; Stefano, F.-V.; Teresa, C.M.; Tiziano, I.; Annalisa, O.; Martine, A.-T.; Nicoletta, C.; Nadia, C.; et al. SMN affects membrane remodelling and anchoring of the protein synthesis machinery. J. Cell Sci. 2016, 129, 804–816. [Google Scholar] [CrossRef] [Green Version]
- Gabanella, F.; Onori, A.; Ralli, M.; Greco, A.; Passananti, C.; Di Certo, M.G. SMN protein promotes membrane compartmentalization of ribosomal protein S6 transcript in human fibroblasts. Sci. Rep. 2020, 10, 19000. [Google Scholar] [CrossRef]
- Bouhaddou, M.; Lee, R.H.; Li, H.; Bhola, N.E.; O’Keefe, R.A.; Naser, M.; Zhu, T.R.; Nwachuku, K.; Duvvuri, U.; Olshen, A.B.; et al. Caveolin-1 and Sox-2 are predictive biomarkers of cetuximab response in head and neck cancer. J. Clin. Investig. 2021, 6, e151982. [Google Scholar] [CrossRef]
- Gabanella, F.; Barbato, C.; Fiore, M.; Petrella, C.; de Vincentiis, M.; Greco, A.; Minni, A.; Corbi, N.; Passananti, C.; Di Certo, M.G. Fine-Tuning of mTOR mRNA and Nucleolin Complexes by SMN. Cells 2021, 10, 3015. [Google Scholar] [CrossRef]
- Huang, C.; Chen, L.; Savage, S.R.; Eguez, R.V.; Dou, Y.; Li, Y.; da Veiga Leprevost, F.; Jaehnig, E.J.; Lei, J.T.; Wen, B.; et al. Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell 2021, 39, 361–379.e16. [Google Scholar] [CrossRef]
- Zou, J.; Yang, H.; Chen, F.; Zhao, H.; Lin, P.; Zhang, J.; Ye, H.; Wang, L.; Liu, S. Prognostic significance of fascin-1 and E-cadherin expression in laryngeal squamous cell carcinoma. Eur. J. Cancer Prev. 2010, 19, 11–17. [Google Scholar] [CrossRef]
- Dumitru, C.S.; Ceausu, A.R.; Comsa, S.; Raica, M. Loss of E-Cadherin Expression Correlates with Ki-67 in Head and Neck Squamous Cell Carcinoma. Vivo 2022, 36, 1150–1154. [Google Scholar] [CrossRef] [PubMed]
- Bustelo, X.R.; Dosil, M. Ribosome biogenesis and cancer: Basic and translational challenges. Curr. Opin. Genet. Dev. 2018, 48, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.W.; You, K.S.; Park, J.-S.; Lee, S.-G.; Seong, Y.-S. Ribosomal Protein S6: A Potential Therapeutic _target against Cancer? Int. J. Mol. Sci. 2021, 23, 48. [Google Scholar] [CrossRef] [PubMed]
- Lauria, F.; Bernabò, P.; Tebaldi, T.; Groen, E.J.N.; Perenthaler, E.; Maniscalco, F.; Rossi, A.; Donzel, D.; Clamer, M.; Marchioretto, M.; et al. SMN-primed ribosomes modulate the translation of transcripts related to spinal muscular atrophy. Nature 2020, 22, 1239–1251. [Google Scholar] [CrossRef] [PubMed]
- Hindson, C.M.; Chevillet, J.R.; Briggs, H.A.; Gallichotte, E.N.; Ruf, I.K.; Hindson, B.J.; Vessella, R.L.; Tewari, M. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods 2013, 10, 1003–1005. [Google Scholar] [CrossRef]
- Gerdes, J.; Schwab, U.; Lemke, H.; Stein, H. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int. J. Cancer 1983, 31, 13–20. [Google Scholar] [CrossRef]
- Dowsett, M.; Nielsen, T.O.; A’hern, R.; Bartlett, J.; Coombes, R.C.; Cuzick, J.; Ellis, M.; Henry, N.L.; Hugh, J.C.; Lively, T.; et al. Assessment of Ki67 in breast cancer: Recommendations from the International Ki67 in breast cancer working group. J. Natl. Cancer Inst. 2011, 103, 1656–1664. [Google Scholar] [CrossRef] [Green Version]
- Bansal, S.; Mittal, S. Expression of Ki-67 in early glottic carcinoma and its relation to oncological outcomes following CO2 laser microsurgery. J. Carcinog. 2020, 19, 7. [Google Scholar] [CrossRef]
- Saussez, S.; Duray, A.; Descamps, G.; Arafa, M.; Decaestecker, C.; Remmelink, M.; Sirtaine, N.; Ernoux-Neufcoeur, P.; Mutijima, E.; Somja, J.; et al. High incidence of high-risk HPV in benign and malignant lesions of the larynx. Int. J. Oncol. 2011, 39, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Gabanella, F.; Barbato, C.; Corbi, N.; Fiore, M.; Petrella, C.; de Vincentiis, M.; Greco, A.; Ferraguti, G.; Corsi, A.; Ralli, M.; et al. Exploring Mitochondrial Localization of SARS-CoV-2 RNA by Padlock Assay: A Pilot Study in Human Placenta. Int. J. Mol. Sci. 2022, 23, 2100. [Google Scholar] [CrossRef]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Schuler, P.; Trellakis, S.; Greve, J.; Bas, M.; Bergmann, C.; Bölke, E.; Lehnerdt, G.; Mattheis, S.; Albers, A.; Brandau, S.; et al. In vitro chemosensitivity of head and neck cancer cell lines. Eur. J. Med. Res. 2010, 15, 337–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.; Polednik, C.; Roller, J.; Hagen, R. Cytotoxicity of herbal extracts used for treatment of prostatic disease on head and neck carcinoma cell lines and non-malignant primary mucosal cells. Oncol. Rep. 2012, 29, 628–636. [Google Scholar] [CrossRef] [Green Version]
- Bunnell, T.M.; Burbach, B.J.; Shimizu, Y.; Ervasti, J.M. β-Actin specifically controls cell growth, migration, and the G-actin pool. Mol. Biol. Cell 2011, 22, 4047–4058. [Google Scholar] [CrossRef] [PubMed]
- Vedula, P.; Kurosaka, S.; MacTaggart, B.; Ni, Q.; Papoian, G.; Jiang, Y.; Dong, D.W.; Kashina, A.; Department of Biomedical Sciences; School of Veterinary Medicine; et al. Different translation dynamics of β- and γ-actin regulates cell migration. Elife 2021, 10, e68712. [Google Scholar] [CrossRef]
- Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 2009, 119, 1420–1428. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Lo, H.-W. Landscape of EGFR signaling network in human cancers: Biology and therapeutic response in relation to receptor subcellular locations. Cancer Lett. 2012, 318, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Castello, A.; Fischer, B.; Eichelbaum, K.; Horos, R.; Beckmann, B.M.; Strein, C.; Davey, N.E.; Humphreys, D.T.; Preiss, T.; Steinmetz, L.M.; et al. Insights into RNA Biology from an Atlas of Mammalian mRNA-Binding Proteins. Cell 2012, 149, 1393–1406. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Han, B.; Zhang, R.; Su, Y.; Hosseini, D.K.; Wu, H.; Yang, M.; Sun, H. Development and validation of a RNA binding protein-associated prognostic model for head and neck squamous cell carcinoma. Aging 2021, 13, 7975–7997. [Google Scholar] [CrossRef]
- Chang, W.-F.; Xu, J.; Chang, C.-C.; Yang, S.-H.; Li, H.-Y.; Hsieh-Li, H.M.; Tsai, M.-H.; Wu, S.-C.; Cheng, W.T.K.; Liu, J.-L.; et al. SMN is required for the maintenance of embryonic stem cells and neuronal differentiation in mice. Anat. Embryol. 2014, 220, 1539–1553. [Google Scholar] [CrossRef]
- Chang, W.-F.; Lin, T.-Y.; Peng, M.; Chang, C.-C.; Xu, J.; Hsieh-Li, H.M.; Liu, J.-L.; Sung, L.-Y. SMN Enhances Pluripotent Genes Expression and Facilitates Cell Reprogramming. Stem Cells Dev. 2022. [Google Scholar] [CrossRef]
- A Elkashty, O.; Abu Elghanam, G.; Su, X.; Liu, Y.; Chauvin, P.J.; Tran, S.D.; Elkashty, O. Cancer stem cells enrichment with surface markers CD271 and CD44 in human head and neck squamous cell carcinomas. Carcinogenesis 2019, 41, 458–466. [Google Scholar] [CrossRef]
- Bernabò, P.; Tebaldi, T.; Groen, E.J.; Lane, F.M.; Perenthaler, E.; Mattedi, F.; Newbery, H.J.; Zhou, H.; Zuccotti, P.; Potrich, V.; et al. In Vivo Translatome Profiling in Spinal Muscular Atrophy Reveals a Role for SMN Protein in Ribosome Biology. Cell Rep. 2017, 21, 953–965. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-J.; Zhang, G.-H.; Yang, X.-M.; Li, S.-S.; Liu, X.; Yang, Q.-T.; Li, Y.; Ye, J. Reduced E-cadherin expression is associated with lymph node metastases in laryngeal squamous cell carcinoma. Auris Nasus Larynx 2012, 39, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Nardi, C.E.; Dedivitis, R.A.; de Almeida, R.C.; de Matos, L.L.; Cernea, C.R. The role of E-cadherin and β-catenin in laryngeal cancer. Onco_target 2018, 9, 30199–30209. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.Y.; Gish, G.; Braunschweig, U.; Li, Y.; Ni, Z.; Schmitges, F.W.; Zhong, G.; Liu, K.; Li, W.; Moffat, J.; et al. SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination. Nature 2015, 529, 48–53. [Google Scholar] [CrossRef]
- Thomas, M.; White, R.L.; Davis, R.W. Hybridization of RNA to double-stranded DNA: Formation of R-loops. Proc. Natl. Acad. Sci. USA 1976, 73, 2294–2298. [Google Scholar] [CrossRef] [Green Version]
- Skourti-Stathaki, K.; Proudfoot, N.J. A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev. 2014, 28, 1384–1396. [Google Scholar] [CrossRef] [Green Version]
- Al-Hadid, Q.; Yang, Y. R-loop: An emerging regulator of chromatin dynamics. Acta Biochim. Biophys. Sin. 2016, 48, 623–631. [Google Scholar] [CrossRef] [Green Version]
- Wells, J.P.; White, J.; Stirling, P.C. R Loops and Their Composite Cancer Connections. Trends Cancer 2019, 5, 619–631. [Google Scholar] [CrossRef]
- Tanoue, T.; Takeichi, M. Mammalian Fat1 cadherin regulates actin dynamics and cell-cell contact. J. Cell Biol. 2004, 165, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Rübsam, M.; Mertz, A.F.; Kubo, A.; Marg, S.; Jüngst, C.; Goranci-Buzhala, G.; Schauss, A.C.; Horsley, V.; Dufresne, E.R.; Moser, M.; et al. E-cadherin integrates mechanotransduction and EGFR signaling to control junctional tissue polarization and tight junction positioning. Nat. Commun. 2017, 8, 1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, M.R.; Bulgakova, N.A. The Cross-Talk Between EGFR and E-Cadherin. Front. Cell Dev. Biol. 2022, 9, 828673. [Google Scholar] [CrossRef] [PubMed]
# | Gender | Age | Tumour Location | pTNM Stage | AJCC Stage | G | Exposure to Risk Factors: Alcohol | Exposure to Risk Factors: Tobacco |
---|---|---|---|---|---|---|---|---|
1 | M | 63 | Glottis | pT4aN0M0 | IVA | G2 | NO | 25 PACK-YEARS |
2 | M | 59 | Glottis | pT3N1M0 | III | G2 | 8.4 AUPW | 70 PACK-YEARS |
3 | M | 71 | Glottis | pT4aN0M0 | IVA | G2 | NO | 27.5 PACK-YEARS |
4 | M | 62 | Supraglottis | pT4aN3bM0 | IVB | G3 | 63 AUPW | 60 PACK-YEARS |
5 | F | 75 | Supraglottis | pT3N0M0 | III | G2 | NO | 40 PACK-YEARS |
6 | M | 77 | Supraglottis | pT4aN0M0 | IVA | G2 | NO | 45PACK-YEARS |
7 | M | 61 | Supraglottis | pT4aN1M0 | IVA | G3 | 29.4 AUPW | 40 PACK-YEARS |
8 | M | 78 | Glottis | pT3N0M0 | III | G2 | NO | NO |
9 | M | 78 | Supraglottis | pT3N3bM0 | IVB | G2 | 10.5 AUPW | 45PACK-YEARS |
10 | M | 68 | Glottis | pT4aN2bM0 | IVA | G2 | 29.4 AUPW | 40 PACK-YEARS |
11 | M | 58 | Glottis | pT3N3bM0 | IVB | G2 | 52.5 AUPW | 100 PACK YEARS |
12 | F | 77 | Glottis | pT3N0M0 | III | G2 | NO | 7.5 PACK-YEARS |
13 | M | 63 | Glottis | pT4aN2aM0 | IVA | G2 | 29.4 AUPW | 157.5 PACK YEARS |
14 | M | 56 | Supraglottis | pT4aN1M0 | IVA | G2 | 86.8 AUPW | 35 PACK YEARS |
15 | M | 73 | Supraglottis | pT3N3bM0 | IVB | G2 | NO | 62.5 PACK-YEARS |
16 | F | 62 | Supraglottis | pT2N0M0 | II | G2 | NO | 40 PACK-YEARS |
17 | M | 69 | Glottis | pT4aN0M0 | IVA | G2 | 29.4 AUPW | 62.5 PACK-YEARS |
18 | M | 76 | Glottis | pT2N0M0 | II | G2 | NO | 60 PACK-YEARS |
19 | M | 65 | Subglottis | pT4aN2bM0 | IVA | G3 | 1.4 AUPW | 45PACK-YEARS |
20 | M | 60 | Glottis | pT4aN3bM0 | IVB | G3 | NO | 70PACK-YEARS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabanella, F.; Colizza, A.; Mottola, M.C.; Francati, S.; Blaconà, G.; Petrella, C.; Barbato, C.; Greco, A.; Ralli, M.; Fiore, M.; et al. The RNA-Binding Protein SMN as a Novel Player in Laryngeal Squamous Cell Carcinoma. Int. J. Mol. Sci. 2023, 24, 1794. https://doi.org/10.3390/ijms24021794
Gabanella F, Colizza A, Mottola MC, Francati S, Blaconà G, Petrella C, Barbato C, Greco A, Ralli M, Fiore M, et al. The RNA-Binding Protein SMN as a Novel Player in Laryngeal Squamous Cell Carcinoma. International Journal of Molecular Sciences. 2023; 24(2):1794. https://doi.org/10.3390/ijms24021794
Chicago/Turabian StyleGabanella, Francesca, Andrea Colizza, Maria Chiara Mottola, Silvia Francati, Giovanna Blaconà, Carla Petrella, Christian Barbato, Antonio Greco, Massimo Ralli, Marco Fiore, and et al. 2023. "The RNA-Binding Protein SMN as a Novel Player in Laryngeal Squamous Cell Carcinoma" International Journal of Molecular Sciences 24, no. 2: 1794. https://doi.org/10.3390/ijms24021794
APA StyleGabanella, F., Colizza, A., Mottola, M. C., Francati, S., Blaconà, G., Petrella, C., Barbato, C., Greco, A., Ralli, M., Fiore, M., Corbi, N., Ferraguti, G., Corsi, A., Minni, A., de Vincentiis, M., Passananti, C., & Di Certo, M. G. (2023). The RNA-Binding Protein SMN as a Novel Player in Laryngeal Squamous Cell Carcinoma. International Journal of Molecular Sciences, 24(2), 1794. https://doi.org/10.3390/ijms24021794