Leucine-Rich Alpha-2 Glycoprotein 1 Accumulates in Complicated Atherosclerosis and Promotes Calcification
Abstract
:1. Introduction
2. Results
2.1. LRG1 Is Localized in Calcified Regions of Atherosclerotic Plaques in Mouse and Human
2.2. LRG1 Expression Is Induced in Endothelial Cells by Pro-Inflammatory Cytokines
2.3. LRG1 Promotes VSMC Trans-Differentiation and Calcification
2.4. LRG1 Potentiates TGFβ-Induced SMAD1/5 Signaling in VSMC
3. Discussion
4. Materials and Methods
4.1. Mouse Model
4.2. Histological Analysis and Immunohistochemical Staining
4.3. Cell Culture
4.4. Quantification of Calcium Deposition
4.5. Real-Time Quantitative PCR
4.6. Capillary Western Blot Analysis
4.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lusis, A.J. Atherosclerosis. Nature 2000, 407, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Redgrave, J.N.; Gallagher, P.; Lovett, J.K.; Rothwell, P.M. Critical Cap Thickness and Rupture in Symptomatic Carotid Plaques. Stroke 2008, 39, 1722–1729. [Google Scholar] [CrossRef] [PubMed]
- Bentzon, J.F.; Otsuka, F.; Virmani, R.; Falk, E. Mechanisms of Plaque Formation and Rupture. Circ. Res. 2014, 114, 1852–1866. [Google Scholar] [CrossRef] [PubMed]
- Hutcheson, J.; Maldonado, N.; Aikawa, E. Small Entities with Large Impact: Microcalcifications and Atherosclerotic Plaque Vulnerability. Curr. Opin. Lipidol. 2014, 25, 327–332. [Google Scholar] [CrossRef]
- Van Rosendael, A.R.; Narula, J.; Lin, F.Y.; van den Hoogen, I.J.; Gianni, U.; Al Hussein Alawamlh, O.; Dunham, P.C.; Peña, J.M.; Lee, S.-E.; Andreini, D.; et al. Association of High-Density Calcified 1K Plaque with Risk of Acute Coronary Syndrome. JAMA Cardiol. 2020, 5, 282–290. [Google Scholar] [CrossRef]
- Kelly-Arnold, A.; Maldonado, N.; Laudier, D.; Aikawa, E.; Cardoso, L.; Weinbaum, S. Revised Microcalcification Hypothesis for Fibrous Cap Rupture in Human Coronary Arteries. Proc. Natl. Acad. Sci. USA 2013, 110, 10741–10746. [Google Scholar] [CrossRef]
- Joshi, N.V.; Vesey, A.T.; Williams, M.C.; Shah, A.S.V.; Calvert, P.A.; Craighead, F.H.M.; Yeoh, S.E.; Wallace, W.; Salter, D.; Fletcher, A.M.; et al. 18F-Fluoride Positron Emission Tomography for Identification of Ruptured and High-Risk Coronary Atherosclerotic Plaques: A Prospective Clinical Trial. Lancet 2014, 383, 705–713. [Google Scholar] [CrossRef]
- Sakamoto, A.; Kawakami, R.; Mori, M.; Guo, L.; Paek, K.H.; Mosquera, J.V.; Cornelissen, A.; Ghosh, S.K.B.; Kawai, K.; Konishi, T.; et al. CD163+ Macrophages Restrain Vascular Calcification, Promoting the Development of High-Risk Plaque. JCI Insight 2023, 8, e154922. [Google Scholar] [CrossRef]
- Karlöf, E.; Seime, T.; Dias, N.; Lengquist, M.; Witasp, A.; Almqvist, H.; Kronqvist, M.; Gådin, J.R.; Odeberg, J.; Maegdefessel, L.; et al. Correlation of Computed Tomography with Carotid Plaque Transcriptomes Associates Calcification with Lesion-Stabilization. Atherosclerosis 2019, 288, 175–185. [Google Scholar] [CrossRef]
- Huang, H.; Virmani, R.; Younis, H.; Burke, A.P.; Kamm, R.D.; Lee, R.T. The Impact of Calcification on the Biomechanical Stability of Atherosclerotic Plaques. Circulation 2001, 103, 1051–1056. [Google Scholar] [CrossRef]
- Guo, J.; Fujiyoshi, A.; Willcox, B.; Choo, J.; Vishnu, A.; Hisamatsu, T.; Ahuja, V.; Takashima, N.; Barinas-Mitchell, E.; Kadota, A.; et al. Increased Aortic Calcification Is Associated with Arterial Stiffness Progression in Multiethnic Middle-Aged Men. Hypertension 2017, 69, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Blacher, J.; Guerin, A.P.; Pannier, B.; Marchais, S.J.; London, G.M. Arterial Calcifications, Arterial Stiffness, and Cardiovascular Risk in End-Stage Renal Disease. Hypertension 2001, 38, 938–942. [Google Scholar] [CrossRef]
- Rennenberg, R.J.M.W.; Kessels, A.G.H.; Schurgers, L.J.; van Engelshoven, J.M.A.; de Leeuw, P.W.; Kroon, A.A. Vascular Calcifications as a Marker of Increased Cardiovascular Risk: A Meta-Analysis. Vasc. Health Risk Manag. 2009, 5, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.Y.; Shanahan, C.M. Medial Arterial Calcification: An Overlooked Player in Peripheral Arterial Disease. Arter. Thromb. Vasc. Biol. 2016, 36, 1475–1482. [Google Scholar] [CrossRef]
- Li, M.; Wang, Z.-W.; Fang, L.-J.; Cheng, S.-Q.; Wang, X.; Liu, N.-F. Programmed Cell Death in Atherosclerosis and Vascular Calcification. Cell Death Dis. 2022, 13, 467. [Google Scholar] [CrossRef]
- Voelkl, J.; Lang, F.; Eckardt, K.-U.; Amann, K.; Kuro-O, M.; Pasch, A.; Pieske, B.; Alesutan, I. Signaling Pathways Involved in Vascular Smooth Muscle Cell Calcification during Hyperphosphatemia. Cell Mol. Life Sci. 2019, 76, 2077–2091. [Google Scholar] [CrossRef]
- Checkouri, E.; Blanchard, V.; Meilhac, O. Macrophages in Atherosclerosis, First or Second Row Players? Biomedicines 2021, 9, 1214. [Google Scholar] [CrossRef] [PubMed]
- Glorieux, G.; Mullen, W.; Duranton, F.; Filip, S.; Gayrard, N.; Husi, H.; Schepers, E.; Neirynck, N.; Schanstra, J.P.; Jankowski, J.; et al. New Insights in Molecular Mechanisms Involved in Chronic Kidney Disease Using High-Resolution Plasma Proteome Analysis. Nephrol. Dial. Transpl. 2015, 30, 1842–1852. [Google Scholar] [CrossRef]
- Pek, S.L.T.; Tavintharan, S.; Wang, X.; Lim, S.C.; Woon, K.; Yeoh, L.Y.; Ng, X.; Liu, J.; Sum, C.F. Elevation of a Novel Angiogenic Factor, Leucine-Rich-A2-Glycoprotein (LRG1), Is Associated With Arterial Stiffness, Endothelial Dysfunction, and Peripheral Arterial Disease in Patients With Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2015, 100, 1586–1593. [Google Scholar] [CrossRef]
- Hong, Q.; Zhang, L.; Fu, J.; Verghese, D.A.; Chauhan, K.; Nadkarni, G.N.; Li, Z.; Ju, W.; Kretzler, M.; Cai, G.-Y.; et al. LRG1 Promotes Diabetic Kidney Disease Progression by Enhancing TGF-β–Induced Angiogenesis. J. Am. Soc. Nephrol. 2019, 30, 546–562. [Google Scholar] [CrossRef]
- Wang, X.; Abraham, S.; McKenzie, J.A.G.; Jeffs, N.; Swire, M.; Tripathi, V.B.; Luhmann, U.F.O.; Lange, C.A.K.; Zhai, Z.; Arthur, H.M.; et al. LRG1 Promotes Angiogenesis by Modulating Endothelial TGF-β Signalling. Nature 2013, 499, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.-J.; Hsieh, C.-Y.; Shu, K.-H.; Chen, I.-Y.; Pan, S.-Y.; Chuang, Y.-F.; Chiu, Y.-L.; Yang, W.-S. Plasma Leucine-Rich α-2-Glycoprotein 1 Predicts Cardiovascular Disease Risk in End-Stage Renal Disease. Sci. Rep. 2020, 10, 5988. [Google Scholar] [CrossRef]
- Bos, S.; Phillips, M.; Watts, G.F.; Verhoeven, A.J.M.; Sijbrands, E.J.G.; Ward, N.C. Novel Protein Biomarkers Associated with Coronary Artery Disease in Statin-Treated Patients with Familial Hypercholesterolemia. J. Clin. Lipidol. 2017, 11, 682–693. [Google Scholar] [CrossRef] [PubMed]
- Hong, Q.; Cai, H.; Zhang, L.; Li, Z.; Zhong, F.; Ni, Z.; Cai, G.; Chen, X.-M.; He, J.C.; Lee, K. Modulation of Transforming Growth Factor-β-Induced Kidney Fibrosis by Leucine-Rich ⍺-2 Glycoprotein-1. Kidney Int. 2021, 101, 299–314. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, X.; Friesel, R.E.; Vary, C.P.H.; Liaw, L. Mechanisms of TGF-β-Induced Differentiation in Human Vascular Smooth Muscle Cells. J. Vasc. Res. 2011, 48, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Halloran, B.G.; Prorok, G.D.; So, B.J.; Baxter, B.T. Transforming Growth Factor-Beta 1 Inhibits Human Arterial Smooth-Muscle Cell Proliferation in a Growth-Rate-Dependent Manner. Am. J. Surg. 1995, 170, 193–197. [Google Scholar] [CrossRef]
- Cecelja, M.; Jiang, B.; Bevan, L.; Frost, M.L.; Spector, T.D.; Chowienczyk, P.J. Arterial Stiffening Relates to Arterial Calcification But Not to Noncalcified Atheroma in Women. J. Am. Coll. Cardiol. 2011, 57, 1480–1486. [Google Scholar] [CrossRef]
- Van der Toorn, J.E.; Bos, D.; Arshi, B.; Leening, M.J.G.; Vernooij, M.W.; Ikram, M.A.; Ikram, M.K.; Kavousi, M. Arterial Calcification at Different Sites and Prediction of Atherosclerotic Cardiovascular Disease among Women and Men. Atherosclerosis 2021, 337, 27–34. [Google Scholar] [CrossRef]
- Haupt, H.; Baudner, S. Isolation and characterization of an unknown, leucine-rich 3.1-S-alpha2-glycoprotein from human serum (author’s transl). Hoppe-Seyler’s Z. Physiol. Chem. 1977, 358, 639–646. [Google Scholar] [CrossRef]
- Wang, S.; Wang, E.; Chen, Q.; Yang, Y.; Xu, L.; Zhang, X.; Wu, R.; Hu, X.; Wu, Z. Uncovering Potential lncRNAs and mRNAs in the Progression From Acute Myocardial Infarction to Myocardial Fibrosis to Heart Failure. Front. Cardiovasc. Med. 2021, 8, 719. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, Q.; Wang, N.; Hu, F.; Jin, H.; Ge, T.; Wang, C.; Qin, W. LRG1 Suppresses the Migration and Invasion of Hepatocellular Carcinoma Cells. Med. Oncol. 2015, 32, 146. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, L.C.; Druhan, L.J.; Avalos, B.R. Molecular Characterization and Expression Analysis of Leucine-Rich Alpha2-Glycoprotein, a Novel Marker of Granulocytic Differentiation. J. Leukoc. Biol. 2002, 72, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Camilli, C.; Hoeh, A.E.; De Rossi, G.; Moss, S.E.; Greenwood, J. LRG1: An Emerging Player in Disease Pathogenesis. J. Biomed. Sci. 2022, 29, 6. [Google Scholar] [CrossRef] [PubMed]
- Kallenberg, D.; Tripathi, V.; Javaid, F.; Pilotti, C.; George, J.; Davis, S.; Blackburn, J.W.; O’Connor, M.; Dowsett, L.; Bowers, C.E.; et al. A Humanized Antibody against LRG1 That Inhibits Angiogenesis and Reduces Retinal Vascular Leakage. bioRxiv 2021. [Google Scholar] [CrossRef]
- Javaid, F.; Pilotti, C.; Camilli, C.; Kallenberg, D.; Bahou, C.; Blackburn, J.; R Baker, J.; Greenwood, J.; Moss, S.E.; Chudasama, V. Leucine-Rich Alpha-2-Glycoprotein 1 (LRG1) as a Novel ADC _target. RSC Chem. Biol. 2021, 2, 1206–1220. [Google Scholar] [CrossRef]
- Scallan, J.P.; Hill, M.A.; Davis, M.J. Lymphatic Vascular Integrity Is Disrupted in Type 2 Diabetes Due to Impaired Nitric Oxide Signalling. Cardiovasc. Res. 2015, 107, 89–97. [Google Scholar] [CrossRef]
- Jiang, W.; Xu, C.; Xu, S.; Su, W.; Du, C.; Dong, J.; Feng, R.; Huang, C.; Li, J.; Ma, T. Macrophage-Derived, LRG1-Enriched Extracellular Vesicles Exacerbate Aristolochic Acid Nephropathy in a TGFβR1-Dependent Manner. Cell Biol. Toxicol. 2021, 38, 629–648. [Google Scholar] [CrossRef]
- Druhan, L.J.; Lance, A.; Li, S.; Price, A.E.; Emerson, J.T.; Baxter, S.A.; Gerber, J.M.; Avalos, B.R. Leucine Rich α-2 Glycoprotein: A Novel Neutrophil Granule Protein and Modulator of Myelopoiesis. PLoS ONE 2017, 12, e0170261. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, J.; Xie, Z.; Wang, J.; Ho, C.; Zhang, Y.; Li, Q. Mechanical Strain Promotes Skin Fibrosis through LRG-1 Induction Mediated by ELK1 and ERK Signalling. Commun. Biol. 2019, 2, 359. [Google Scholar] [CrossRef]
- Honda, H.; Fujimoto, M.; Serada, S.; Urushima, H.; Mishima, T.; Lee, H.; Ohkawara, T.; Kohno, N.; Hattori, N.; Yokoyama, A.; et al. Leucine-Rich α-2 Glycoprotein Promotes Lung Fibrosis by Modulating TGF-β Signaling in Fibroblasts. Physiol. Rep. 2017, 5, e13556. [Google Scholar] [CrossRef]
- Tian, H.; Ketova, T.; Hardy, D.; Xu, X.; Gao, X.; Zijlstra, A.; Blobe, G.C. Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading. Arter. Thromb. Vasc. Biol. 2017, 37, 1115–1126. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Labinaz, M.; Goldstein, J.; Miller, H.; Keon, W.J.; Letarte, M.; O’Brien, E. Endoglin Is Overexpressed after Arterial Injury and Is Required for Transforming Growth Factor-Beta-Induced Inhibition of Smooth Muscle Cell Migration. Arter. Thromb. Vasc. Biol. 2000, 20, 2546–2552. [Google Scholar] [CrossRef] [PubMed]
- Pardali, E.; Ten Dijke, P. TGFβ Signaling and Cardiovascular Diseases. Int. J. Biol. Sci. 2012, 8, 195–213. [Google Scholar] [CrossRef]
- Niu, Z.; Su, G.; Li, T.; Yu, H.; Shen, Y.; Zhang, D.; Liu, X. Vascular Calcification: New Insights into BMP Type I Receptor A. Front. Pharmacol. 2022, 13, 887253. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Zong, P.; Chen, J.; Yang, S.; Shen, Y.; Lu, Y.; Yang, C.; Kong, X.; Sheng, Y.; Sun, W. Celastrol Attenuates Arterial and Valvular Calcification via Inhibiting BMP2/Smad1/5 Signalling. J. Cell Mol. Med. 2020, 24, 12476–12490. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Jeong, J.Y.; Oh, C.J.; Park, S.; Kim, J.-Y.; Kim, H.-J.; Doo Kim, N.; Choi, Y.-K.; Do, J.-Y.; Go, Y.; et al. Pyruvate Dehydrogenase Kinase 4 Promotes Vascular Calcification via SMAD1/5/8 Phosphorylation. Sci. Rep. 2015, 5, 16577. [Google Scholar] [CrossRef]
- Rezaei, H.B.; Kamato, D.; Ansari, G.; Osman, N.; Little, P.J. Cell Biology of Smad2/3 Linker Region Phosphorylation in Vascular Smooth Muscle. Clin. Exp. Pharmacol. Physiol. 2012, 39, 661–667. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, H.; Chang, P.; Zhao, H.; Xia, Y.; Zhang, L.; Guo, X.; Huang, C.; Yan, F.; Hu, L.; et al. Glycoprotein M6B Interacts with TβRI to Activate TGF-β-Smad2/3 Signaling and Promote Smooth Muscle Cell Differentiation. Stem Cells 2019, 37, 190–201. [Google Scholar] [CrossRef]
- Haku, S.; Wakui, H.; Azushima, K.; Haruhara, K.; Kinguchi, S.; Ohki, K.; Uneda, K.; Kobayashi, R.; Matsuda, M.; Yamaji, T.; et al. Early Enhanced Leucine-Rich α-2-Glycoprotein-1 Expression in Glomerular Endothelial Cells of Type 2 Diabetic Nephropathy Model Mice. Biomed. Res. Int. 2018, 2018, 2817045. [Google Scholar] [CrossRef]
- Fu, J.; Wei, C.; Zhang, W.; Schlondorff, D.; Wu, J.; Cai, M.; He, W.; Baron, M.H.; Chuang, P.Y.; Liu, Z. Gene Expression Profiles of Glomerular Endothelial Cells Support Their Role in the Glomerulopathy of Diabetic Mice. Kidney Int. 2018, 94, 326–345. [Google Scholar] [CrossRef]
- Kumagai, S.; Nakayama, H.; Fujimoto, M.; Honda, H.; Serada, S.; Ishibashi-Ueda, H.; Kasai, A.; Obana, M.; Sakata, Y.; Sawa, Y.; et al. Myeloid Cell-Derived LRG Attenuates Adverse Cardiac Remodelling after Myocardial Infarction. Cardiovasc. Res. 2016, 109, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Wang, Y.; Chen, Y.; Cao, F. The Role of the Autophagy in Myocardial Ischemia/Reperfusion Injury. Biochim. Biophys. Acta. 2015, 1852, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Wang, X. The Role of TGFβ1 and LRG1 in Cardiac Remodelling and Heart Failure. Biophys. Rev. 2015, 7, 91–104. [Google Scholar] [CrossRef]
- Feng, J.; Zhan, J.; Ma, S. LRG1 Promotes Hypoxia-Induced Cardiomyocyte Apoptosis and Autophagy by Regulating Hypoxia-Inducible Factor-1α. Bioengineered 2021, 12, 8897–8907. [Google Scholar] [CrossRef] [PubMed]
- Goettsch, C.; Hutcheson, J.D.; Hagita, S.; Rogers, M.A.; Creager, M.D.; Pham, T.; Choi, J.; Mlynarchik, A.K.; Pieper, B.; Kjolby, M.; et al. A Single Injection of Gain-of-Function Mutant PCSK9 Adeno-Associated Virus Vector Induces Cardiovascular Calcification in Mice with No Genetic Modification. Atherosclerosis 2016, 251, 109–118. [Google Scholar] [CrossRef]
- Sanson, M.; Augé, N.; Vindis, C.; Muller, C.; Bando, Y.; Thiers, J.-C.; Marachet, M.-A.; Zarkovic, K.; Sawa, Y.; Salvayre, R.; et al. Oxidized Low-Density Lipoproteins Trigger Endoplasmic Reticulum Stress in Vascular Cells: Prevention by Oxygen-Regulated Protein 150 Expression. Circ. Res. 2009, 104, 328–336. [Google Scholar] [CrossRef]
- Amaya-Garrido, A.; Brunet, M.; Buffin-Meyer, B.; Piedrafita, A.; Grzesiak, L.; Agbegbo, E.; Del Bello, A.; Ferrandiz, I.; Ardeleanu, S.; Bermudez-Lopez, M.; et al. Calprotectin Is a Contributor to and Potential Therapeutic _target for Vascular Calcification in Chronic Kidney Disease. Sci. Transl. Med. 2023, 15, eabn5939. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzesiak, L.; Amaya-Garrido, A.; Feuillet, G.; Malet, N.; Swiader, A.; Sarthou, M.-K.; Wahart, A.; Ramel, D.; Gayral, S.; Schanstra, J.P.; et al. Leucine-Rich Alpha-2 Glycoprotein 1 Accumulates in Complicated Atherosclerosis and Promotes Calcification. Int. J. Mol. Sci. 2023, 24, 16537. https://doi.org/10.3390/ijms242216537
Grzesiak L, Amaya-Garrido A, Feuillet G, Malet N, Swiader A, Sarthou M-K, Wahart A, Ramel D, Gayral S, Schanstra JP, et al. Leucine-Rich Alpha-2 Glycoprotein 1 Accumulates in Complicated Atherosclerosis and Promotes Calcification. International Journal of Molecular Sciences. 2023; 24(22):16537. https://doi.org/10.3390/ijms242216537
Chicago/Turabian StyleGrzesiak, Lucile, Ana Amaya-Garrido, Guylène Feuillet, Nicole Malet, Audrey Swiader, Marie-Kerguelen Sarthou, Amandine Wahart, Damien Ramel, Stéphanie Gayral, Joost Peter Schanstra, and et al. 2023. "Leucine-Rich Alpha-2 Glycoprotein 1 Accumulates in Complicated Atherosclerosis and Promotes Calcification" International Journal of Molecular Sciences 24, no. 22: 16537. https://doi.org/10.3390/ijms242216537
APA StyleGrzesiak, L., Amaya-Garrido, A., Feuillet, G., Malet, N., Swiader, A., Sarthou, M. -K., Wahart, A., Ramel, D., Gayral, S., Schanstra, J. P., Klein, J., & Laffargue, M. (2023). Leucine-Rich Alpha-2 Glycoprotein 1 Accumulates in Complicated Atherosclerosis and Promotes Calcification. International Journal of Molecular Sciences, 24(22), 16537. https://doi.org/10.3390/ijms242216537