The Feeder Effects of Cultured Rice Cells on the Early Development of Rice Zygotes
Abstract
:1. Introduction
2. Results
2.1. 2,4-Dichlorophenoxyacetic Acid Enhances the Division of Embryonic Cells during or after the Multicellular Stage
2.2. Feeder Cells Promote Karyogamy and Subsequent Cell Division in Zygotes
2.3. Heat-Unstable Proteins in Culture Medium Function as Development-Promoting Substances for Zygotes
2.4. Hydrolytic Enzymes Were Identified as Potential DPSs for Zygotes
2.5. Exogenously Applied α-Amylase Partially Promoted the Initial Development of Zygotes
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Isolation of Gametes, Electro-Fusion of Gametes, and Subsequent Culture of Zygotes
4.3. Microscopic Observations
4.4. Preparation of Conditioned Medium
4.5. Preparation of Heat-Treated Conditioned Medium
4.6. Isolation of Protein Samples from the Conditioned Medium for Proteome Analysis
4.7. SDS-PAGE and Silver Staining
4.8. Identification of Proteins by Tandem Mass Spectrometry
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pritchard, H.N. A cytochemical study of embryo development in Stellaria medis. Botany 1964, 51, 472–479. [Google Scholar] [CrossRef]
- Schulz, R.; Jensen, W.A. Capsella embryogenesis: The egg, zygote, and young embryo. Am. J. Bot. 1968, 55, 807–819. [Google Scholar] [CrossRef]
- Tykarska, T. Rape embryogenesis: I. The proembryo development. Acta Soc. Bot. Pol. 1976, 45, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Schel, J.H.N.; Kieft, H.; van Lammeren, A.A.M. Interactions between embryo and endosperm during early developmental stage of maize caryopses (Zea mays). Can. J. Bot. 1984, 62, 2842–2853. [Google Scholar] [CrossRef]
- Lindsey, K.; Topping, J.E. Embryogenesis: A question of pattern. J. Exp. Bot. 1993, 259, 359–374. [Google Scholar] [CrossRef]
- Itoh, J.; Nonomura, K.; Ikeda, K.; Yamaki, S.; Inukai, Y.; Yamagishi, H.; Kitano, H.; Nagato, Y. Rice Plant development: From zygote to spikelet. Plant Cell Physiol. 2005, 46, 23–47. [Google Scholar] [CrossRef] [PubMed]
- Sato, A.; Toyooka, K.; Okamoto, T. Asymmetric cell division of rice zygotes located in embryo sac and produced by in vitro fertilization. Sex Plant Reprod. 2010, 23, 211–217. [Google Scholar] [CrossRef]
- Kranz, E.; Bautor, J.; Lörz, H. In vitro fertilization of single, isolated gametes of maize mediated by electrofusion. Sex. Plant Reprod. 1991, 4, 12–16. [Google Scholar] [CrossRef]
- Okamoto, T. Gamete fusion site on the egg cell and autonomous establishment of cell polarity in the zygote. Plant Signal. Behav. 2010, 5, 1464–1467. [Google Scholar] [CrossRef]
- Uchiumi, T.; Uemura, I.; Okamoto, T. Establishment of an in vitro fertilization system in rice (Oryza sativa L.). Planta 2007, 226, 581–589. [Google Scholar] [CrossRef]
- Kranz, E.; Lörz, H. In vitro fertilization with isolated, single gametes results in zygotic embryogenesis and fertile maize plants. Plant Cell 1993, 5, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Kumlehn, J.; Lörz, H.; Kranz, E. Differentiation of isolated wheat zygotes into embryos and normal plants. Planta 1998, 205, 327–333. [Google Scholar] [CrossRef]
- Maryenti, T.; Kato, N.; Ichikawa, M.; Okamoto, T. Establishment of an in vitro fertilization system in wheat (Triticum aestivum L.). Plant Cell Physiol. 2019, 60, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Moloney, M.M.; Hall, J.F.; Robinson, G.M.; Elliott, M.C. Auxin Requirements of Sycamore Cells in Suspension Culture. Plant Physiol. 1983, 71, 927–931. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Bird, S.; Kemble, R.; Simmonds, D.; Keller, W.; Miki, B. Effects of culture density, conditioned medium and feeder cultures on microspore embryogenesis in Brassica napus L. cv. Topas. Plant Cell Rep. 1990, 8, 594–597. [Google Scholar] [CrossRef] [PubMed]
- Folling, M.; Madsen, S.; Olesen, A. Effect of nurse culture and conditioned medium on colony formation and plant regeneration from Lolium perenne protoplasts. Plant Sci. 1995, 108, 229–239. [Google Scholar] [CrossRef]
- Campanoni, P.; Nick, P. Auxin-dependent cell division and cell elongation. 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid activate different pathways. Plant Physiol. 2005, 137, 939–948. [Google Scholar] [CrossRef]
- Woójcik, A.M.; Woójcikowska, B.; Gaj, M.D. Current Perspectives on the Auxin-Mediated Genetic Network that Controls the Induction of Somatic Embryogenesis in Plants. Int. J. Mol. Sci. 2020, 21, 1333. [Google Scholar] [CrossRef]
- Imbrie-Milligan, C.W.; Hodges, T.K. Microcallus formation from maize protoplasts prepared from embryogenic callus. Planta 1986, 168, 395–401. [Google Scholar] [CrossRef]
- Jain, R.K.; Khehra, G.S.; Lee, S.-H.; Blackhal, N.W.; Marehant, L.R.; Davey, M.R.; Power, J.B.; Cocking, E.C.; Gosal, S.S. An improved procedure for plant regeneration from indica and japonica rice protoplasts. Plant Cell Rep. 1995, 14, 515–519. [Google Scholar] [CrossRef]
- Matthys-Rochon, E. Secreted molecules and their role in embryo formation in plants: A mini-review. Acta Biol. Crac. Ser. Bot. 2005, 47, 23–29. Available online: https://hal.science/hal-00188834 (accessed on 4 January 2023).
- Van Hengel, A.J.; Tadesse, Z.; Immerzeel, P.; Schols, H.; Van Kammen, A.; de Vries, S.C. N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol. 2001, 125, 1880–1890. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, Y.; Hoshino, R.; Okamoto, T. Dynamics of male and female chromatin during karyogamy in rice zygotes. Plant Physiol. 2014, 165, 1533–1543. [Google Scholar] [CrossRef]
- Toda, E.; Ohnishi, Y.; Okamoto, T. Development of polyspermic rice zygotes. Plant Physiol. 2016, 171, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Deushi, R.; Toda, E.; Koshimizu, S.; Yano, K.; Okamoto, T. Effect of paternal genome excess on the developmental and gene expression profiles of polyspermic zygotes in rice. Plants 2021, 10, 255. [Google Scholar] [CrossRef]
- Kitahara, R.; Akasaka, K. Close identity of a pressure-stabilized intermediate with a kinetic intermediate in protein folding. Proc. Natl. Acad. Sci. USA 2003, 100, 3167–3172. [Google Scholar] [CrossRef]
- Kitahara, R.; Yokoyama, S.; Akasaka, K. NMR snapshots of a fluctuating protein structure: Ubiquitin at 30 bar-3 kbar. J. Mol. Biol. 2005, 347, 277–285. [Google Scholar] [CrossRef]
- Rakleova, G.; Keightley, A.; Pantchev, I.; Tsacheva, I.; Tchorbadjieva, M. Identification, molecular cloning, and recombinant gene expression of an extracellular a-amylase from Dactylis Glomerata L. embryogenic suspension cultures. Biotech. Biotechnol. Eq. 2012, 26, 3192–3200. [Google Scholar] [CrossRef]
- Tchorbadjieva, M.I.; Kalmukova, R.I.; Pantchev, I.Y.; Kyurkchiev, S.D. Monoclonal antibody against a cell wall marker protein for embryogenic potential of Dactylis glomerata L. suspension cultures. Planta 2005, 222, 811–819. [Google Scholar] [CrossRef]
- Pernis, M.; Salaj, T.; Bellová, J.; Danchenko, M.; Baráth, P.; Klubicová, K. Secretome analysis revealed that cell wall remodeling and starch catabolism underlie the early stages of somatic embryogenesis in Pinus nigra. Front. Plant Sci. 2023, 14, 1225424. [Google Scholar] [CrossRef]
- De Jong, A.J.; Cordewener, J.; Lo Schiavo, F.; Terzi, M.; Vandekerckhove, J.; Van Kammen, A.; De Vries, S.C. A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 1992, 4, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Helleboid, S.; Bauw, G.; Belingheri, L.; Vasseur, J.; Hilbert, J.L. Extracellular b-1,3-glucanases are induced during early somatic embryogenesis in Cichorium. Planta 1998, 205, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Park, H.Y.; Pan, C.H.; So, M.Y.; Ah, J.H.; Jo, D.H.; Kim, S.I. Purification, characterization, and cDNA cloning of rice class III chitinase. Mol. Cells 2002, 3, 69–76. [Google Scholar]
- De Jong, A.J.; Heidstra, R.; Spaink, H.P.; Hartog, M.V.; Meijer, E.A.; Hendriks, T.; Lo Schiavo, F.; Terzi, M.; Bisseling, T.; Van Kammen, A.; et al. Rhizobium lipooligosaccharides rescue a carrot somatic embryo mutant. Plant Cell 1993, 5, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Quiroz-Figueroa, F.R.; Rojas-Herrera, R.; Galaz-Avalos, R.M.; Loyola-Vargas, V.M. Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tissue Organ Cult. 2006, 86, 285–301. [Google Scholar] [CrossRef]
- Ma, T.; Dong, F.; Luan, D.; Hu, H.; Zhao, J. Gene expression and localization of arabinogalactan proteins during the development of anther, ovule, and embryo in rice. Protoplasma 2019, 256, 909–922. [Google Scholar] [CrossRef]
- Qin, Y.; Zhao, J. Localization of arabinogalactan proteins in egg cells, zygotes, and two-celled proembryos and effects of b-D-glucosyl Yariv reagent on egg cell fertilization and zygote division in Nicotiana tabacum L. J. Exp. Bot. 2006, 57, 2061–2074. [Google Scholar] [CrossRef]
- Kranz, E.; von Wiegen, P.; Lörz, H. Early cytological events after induction of cell division in egg cells and zygote development following in vitro fertilization with angiosperm gametes. Plant J. 1995, 8, 9–23. [Google Scholar] [CrossRef]
- Ohnishi, Y.; Kokubu, I.; Kinoshita, T.; Okamoto, T. Sperm Entry into the Egg Cell Induces the Progression of Karyogamy in Rice Zygotes. Plant Cell Physiol. 2019, 60, 1656–1665. [Google Scholar] [CrossRef]
- He, Y.C.; He, Y.Q.; Qu, L.H.; Sun, M.X.; Yang, H.Y. Tobacco zygotic embryogenesis in vitro: The original cell wall of the zygote is essential for maintenance of cell polarity, the apical–basal axis and typical suspensor formation. Plant J. 2007, 49, 515–527. [Google Scholar] [CrossRef]
- Abiko, M.; Furuta, K.; Yamauchi, Y.; Fujita, C.; Taoka, M.; Isobe, T.; Okamoto, T. Identification of proteins enriched in rice egg or sperm cells by single-cell proteomics. PLoS ONE 2013, 8, e69578. [Google Scholar] [CrossRef]
- Uchiumi, T.; Komatsu, S.; Koshiba, T.; Okamoto, T. Isolation of gametes and central cells from Oryza sativa L. Sex. Plant Reprod. 2006, 19, 37–45. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Oakley, B.R.; Kirsch, D.R.; Morris, N.R. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 1980, 105, 361–363. [Google Scholar] [CrossRef]
- Taoka, M.; Ichimura, T.; Wakamiya-Tsuruta, A.; Kubota, Y.; Araki, T.; Obinata, T.; Isobe, T. V-1, a protein expressed transiently during murine cerebellar development, regulates actin polymerization via interaction with capping protein. J. Biol. Chem. 2003, 278, 5864–5870. [Google Scholar] [CrossRef] [PubMed]
- Taoka, M.; Morofuji, N.; Yamauchi, Y.; Ojima, H.; Kubota, D.; Terukina, G. Global PROTOMAP profiling to search for biomarkers of early-recurrent hepatocellular carcinoma. J. Proteome Res. 2014, 13, 4847–4858. [Google Scholar] [CrossRef] [PubMed]
Medium | No. of Zygotes Cultured | No. of Zygotes That Developed to Specific Growth Stages | |||||
---|---|---|---|---|---|---|---|
Feeder Cell | 2,4-D | Karyogamy | Two-Celled Embryo | Multicellular Embryo | Globular-LikeEmbryo | Cell Mass | |
+ | + | 128 | 105 | 98 | 97 | 88 | 74 |
+ | − | 73 | 53 | 47 | 43 | 31 | 28 |
− | + | 103 | 19 | 5 | 0 | 0 | 0 |
− | − | 83 | 27 | 5 | 0 | 0 | 0 |
Conditioned medium | 104 | 8 | 72 | 51 | 12 | 8 |
Heat Treatment a | No. of Zygotes Cultured | No. of Zygotes That Developed to Specific Growth Stages | ||
---|---|---|---|---|
Karyogamy | Two-Celled Embryo | Multicellular Embryo | ||
− | 39 | 24 | 11 | 3 |
+ | 37 | 16 | 0 | 0 |
Gene Locus | Protein a | Number of Identified Spectra b | |
---|---|---|---|
Non-Heat Conditioned Medium | Heated Conditioned Medium | ||
Os06g0681400 | Ubiquitin domain-containing protein. | 368 | 310 |
Os02g0161900 | Similar to polyubiquitin containing seven ubiquitin monomers. | 317 | 268 |
Os04g0628100 | Similar to polyubiquitin. | 250 | 207 |
Os06g0673500 | Similar to polyubiquitin containing seven ubiquitin monomers. | 93 | 79 |
Os03g0770775 | Hypothetical protein. | 61 | 78 |
Os01g0328400 | Ubiquitin. | 62 | 58 |
Os05g0160200 | Ubiquitin. | 62 | 58 |
Os06g0650100 | Similar to the ubiquitin-NEDD8-like protein RUB2. | 62 | 58 |
Os07g0489500 | Ubiquitin domain-containing protein. | 62 | 58 |
Os09g0420800 | Similar to ubiquitin. | 62 | 58 |
Os09g0452700 | Ubiquitin. | 62 | 58 |
Os01g0687400 | Similar to chitinase. | 157 | 47 |
Os03g0429000 | Proteinase inhibitor I25, cystatin domain-containing protein. | 45 | 41 |
Os10g0359200 | Similar to UPF0496 protein 1. | 30 | 36 |
Os01g0853000 | Conserved hypothetical protein. | 29 | 35 |
Os02g0525900 | Similar to acetyl-coenzyme A synthetase 2 (acetate–CoA ligase 2) (acyl-activating enzyme 2). | 43 | 29 |
Os11g0427700 | Xanthine/uracil/vitamin C permease family protein. | 25 | 29 |
Os01g0582400 | Similar to multidomain cyclophilin type peptidyl-prolyl cis-trans isomerase. | 28 | 26 |
Os08g0434100 | Similar to S-like ribonuclease (RNase PD2) (fragment). | 34 | 22 |
Os06g0208800 | Lysin motif-containing protein, pattern recognition receptor, roles in peptidoglycan and chitin perception in innate immunity | 36 | 21 |
Os03g0786100 | Similar to glycolate oxidase (fragment). | 24 | 20 |
Gene Locus | Protein a | Number of Identified Spectra b | Signal Peptide c | |
---|---|---|---|---|
Non-Heat-Conditioned Medium | Heated Conditioned Medium | |||
Os08g0473900 | Similar to alpha amylase isozyme 3D. | 531 | 2 | + |
Os08g0473600 | Alpha-amylase isozyme 3E precursor. | 259 | 0 | + |
Os09g0457800 | Alpha-amylase isozyme 3C precursor. | 135 | 0 | + |
Os09g0457600 | Alpha-amylase isozyme 3B precursor. | 131 | 0 | + |
Os04g0574200 | FAS1 domain-containing protein | 130 | 13 | + |
Os06g0104300 | Similar to pectinesterase-like protein. | 107 | 0 | + |
Os03g0761500 | Similar to subtilisin-like protease (fragment). | 73 | 0 | + |
Os03g0603600 | PLC-like phosphodiesterase, TIM beta/alpha-barrel domain-containing protein. | 66 | 0 | + |
Os02g0121300 | Cyclophilin, peptidyl-prolyl cis-trans isomerase, auxin signal transduction, lateral root initiation, stress tolerance | 48 | 0 | − |
Os11g0525600 | Similar to alpha-mannosidase. | 46 | 0 | + |
Os01g0739700 | Glycoside hydrolase, family 17 protein. | 43 | 0 | + |
Os10g0493600 | Alpha-galactosidase precursor. | 43 | 0 | + |
Os02g0765400 | Similar to alpha-amylase. | 36 | 0 | + |
Os02g0765600 | Alpha-amylase glycoprotein, degradation of starch granule | 36 | 0 | + |
Os06g0546500 | Similar to class III peroxidase GvPx2b (fragment). | 32 | 0 | + |
Os02g0139300 | Glycoside hydrolase, family 17 protein. | 28 | 0 | + |
Os10g0416100 | Class III chitinase RCB4. | 26 | 0 | + |
Os03g0703100 | Similar to beta-glucosidase. | 25 | 0 | + |
Os03g0327600 | Ricin B-related lectin domain-containing protein. | 24 | 0 | − |
Os03g0285700 | Similar to L-ascorbate peroxidase. | 21 | 1 | − |
Os09g0548200 | Peptidoglycan-binding lysin subgroup domain-containing protein. | 21 | 2 | + |
α-Amylase Concentration (Unit/mL) | No. of Zygotes Produced | No. of Zygotes That Developed to Specific Growth Stages | |
---|---|---|---|
Karyogamy | Two-Celled Embryo | ||
0 | 13 | 3 | 0 |
0.17 | 7 | 2 | 0 |
1.7 | 18 | 12 | 0 |
17 | 21 | 5 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, Y.; Nobe, Y.; Taoka, M.; Okamoto, T. The Feeder Effects of Cultured Rice Cells on the Early Development of Rice Zygotes. Int. J. Mol. Sci. 2023, 24, 16541. https://doi.org/10.3390/ijms242216541
Watanabe Y, Nobe Y, Taoka M, Okamoto T. The Feeder Effects of Cultured Rice Cells on the Early Development of Rice Zygotes. International Journal of Molecular Sciences. 2023; 24(22):16541. https://doi.org/10.3390/ijms242216541
Chicago/Turabian StyleWatanabe, Yoriko, Yuko Nobe, Masato Taoka, and Takashi Okamoto. 2023. "The Feeder Effects of Cultured Rice Cells on the Early Development of Rice Zygotes" International Journal of Molecular Sciences 24, no. 22: 16541. https://doi.org/10.3390/ijms242216541
APA StyleWatanabe, Y., Nobe, Y., Taoka, M., & Okamoto, T. (2023). The Feeder Effects of Cultured Rice Cells on the Early Development of Rice Zygotes. International Journal of Molecular Sciences, 24(22), 16541. https://doi.org/10.3390/ijms242216541