Bandwidth Enhancement and Frequency Scanning Array Antenna Using Novel UWB Filter Integration Technique for OFDM UWB Radar Applications in Wireless Vital Signs Monitoring
Abstract
:1. Introduction
2. Development of Fan Beam Array Antenna
3. Design Guidelines of Fan Beam Array Antenna
4. Simulation and Measurements of the Developed Fan Beam Array Antenna
5. Development of Wideband Bandpass Filter with Simulated and Measured Results
6. Development of Bandwidth-Enhanced Frequency Scanning Fan Beam Array Antenna
7. Simulation and Measurement of the Proposed Antenna
8. Application in Robotics for _target Detection
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- The Federal Communications Commission. Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems; The Federal Communications Commission: Washington, DC, USA, 2002.
- Jahromi, M.N.; Falahati, A.; Edwards, R.M. Application of Fractal Binary Tree Slot to Design and Construct a Dual Band-Notch CPW-Ground-Fed Ultra-Wide Band Antenna. IET Microw. Antennas Propag. 2011, 5, 1424–1430. [Google Scholar] [CrossRef]
- Desrumaux, L.; Godard, A.; Lalande, M.; Bertrand, V.; Andrieu, J.; Jecko, B. An original antenna for transient high power UWB arrays: The shark antenna. IEEE Trans. Antennas Propag. 2010, 58, 2515–2552. [Google Scholar] [CrossRef]
- Neto, A.; Cavallo, D.; Gerini, G.; Toso, G. Scanning performances of wideband connected arrays in the presence of a backing reflector. IEEE Trans. Antennas Propag. 2009, 57, 3092–3102. [Google Scholar] [CrossRef]
- Hui, H.T.; Tiong, T.C. Dual-monopole array backed by a reflector for antenna diversity/MIMO systems. IET Microw. Antenna Propag. 2008, 2, 383–388. [Google Scholar] [CrossRef]
- Arrebola, M.W.H.; Cahill, R.; Encinar, J.A.; Fusco, V.; Gamble, H.S.; Alvarez, Y.; Las-Heras, F. 94 GHz dual-reflector antenna with reflectarray subreflector. IEEE Trans. Antennas Propag. 2009, 57, 3043–3050. [Google Scholar]
- Eom, S.Y.; Son, S.H.; Jung, Y.B.; Jeon, S.I.; Ganin, S.A.; Shubov, A.G.; Tobolev, A.K.; Shishlov, A.V. Design and test of a mobile antenna system with tri-band operation for broadband satellite communications and DBS reception. IEEE Trans. Antennas Propag. 2007, 55, 3123–3133. [Google Scholar] [CrossRef]
- NaghshvarianJahromi, M. Novel Ku band fan beam reflector back array antenna. Prog. Electromagn. Res. Lett. 2008, 3, 95–103. [Google Scholar] [CrossRef]
- NaghshvarianJahromi, M.; Orazi, H. Fan-beam reflector back array antenna for V-band WLAN applications. Asia Pac. Microw. Conf. 2009, 1759–1762. [Google Scholar] [CrossRef]
- Falahati, A.; NaghshvarianJahromi, M.; Edwards, R.M. Bandwidth enhancement and decreasing UWB pulse response distortion of penta-gasket-koch monopole antennas using compact grounded coplanar wave guides. IET Microw. Antennas Propag. 2011, 5, 48–56. [Google Scholar] [CrossRef]
- NaghshvarianJahromi, M.; Falahati, A.A.; Edwards, R.M. Bandwidth and impedance matching enhancement of fractal monopole antennas using compact grounded coplanar wave guides. IEEE Trans. Antennas Propag. 2011, 59, 2480–2487. [Google Scholar] [CrossRef]
- Tokan, F.; Gunes, F. Interference suppression by optimizing the positions of selected elements using generalized pattern search algorithm. IEEE Microw. Antennas Propag. 2011, 5, 127–135. [Google Scholar] [CrossRef]
- Mosig, J.R. An old tool and a new challenge for depicting antenna array radiation patterns. IEEE Antennas Propag. Mag. 2011, 53, 115–123. [Google Scholar] [CrossRef]
- Chun, T.F.; Zamora, A.; Bao, J.L.; Iwami, R.T.; Shiroma, W.A. An interleaved, interelement phase-detecting/phase-shifting retrodirective antenna array for interference reduction. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 919–922. [Google Scholar] [CrossRef]
- Guo, K.; Fu, Y. Coupler design method based on stripline frequency scanning antenna. Sixth IEEE Asia Pac. Conf. Antennas Propag. 2017, 16, 1–3. [Google Scholar]
- Rahman, M. CPW fed miniaturized UWB tri-notch antenna with bandwidth enhancement. Adv. Electr. Eng. 2016, 2016, 1–5. [Google Scholar] [CrossRef]
- Rahman, M.; Khan, W.T.; Imran, M. Penta-notched UWB antenna with sharp frequency edge selectivity using combination of SRR, CSRR, and DGS. AEU Int. J. Electr. Commun. 2018, 93, 116–122. [Google Scholar] [CrossRef]
- Nejatijahromi, M.; Rahman, M.; Naghshvarianjahromi, M. Continuously Tunable WiMAX Band-Notched UWB Antenna with Fixed WLAN Notched Band. Prog. Electromagn. Res. Lett. 2018, 75, 97–103. [Google Scholar] [CrossRef]
- Islam, M.T.; Azim, R.; Mobashsher, A.T. Triple band-notched planar UWB antenna using parasitic strips. Prog. Electromagn. Res. 2012, 129, 161–179. [Google Scholar] [CrossRef]
- Mosallaei, H.; Sarabandi, K. Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate. IEEE Trans. Antennas Propag. 2004, 52, 2403–2414. [Google Scholar] [CrossRef]
- Li, L.-W.; Li, Y.-N.; Yeo, T.S.; Mosig, J.R.; Martin, O.J. A broadband and high-gain metamaterial microstrip antenna. Appl. Phys. Lett. 2010, 96, 164101. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Tchafa, F.M.; Jain, A.; Tjuatja, S.; Huang, H. Far-field interrogation of microstrip patch antenna for temperature sensing without electronics. IEEE Sens. J. 2016, 16, 7053–7060. [Google Scholar] [CrossRef]
- Falahati, A.; NaghshvarianJahromi, M.; Edwards, R.M. Wideband Fan-Beam Low-Sidelobe Array Antenna Using Grounded Reflector for DECT, 3G, and Ultra-Wideband Wireless Applications. IEEE Trans. Antenna Propag. 2013, 61, 700–706. [Google Scholar] [CrossRef]
- Stutzman, W.L.; Thiele, G.A. Antenna Theory and Design, 2nd ed.; John Wiley & Sons: Hoboken, NY, USA, 1998. [Google Scholar]
Operating Freq. | Frequency Scanning | Technique Implemented | |
---|---|---|---|
[9] | 60 GHz | N/A | Reflector back array technique |
[11] | 4.65–10.5 GHz | N/A | GCPW Technique |
[20] | 1.8–1.95 GHz | N/A | RIS Technique |
[23] | 1.7–2.2 GHz | N/A | Non-parasitic grounded reflector Technique |
This work | 2.8–6 GHz | 75 degree | Bandpass filter integration Technique with combination of GCPW, grounded reflector, and CPW feed line |
Freq. | 3.30 GHz | 3.50 GHz | |||
---|---|---|---|---|---|
HFSS Results | Measured Results | HFSS Results | Measured Results | ||
Relative SLL | Without reflector | −8.49 dB | - | −9.40 dB | - |
With reflector | −8.3 dB | −9.1 dB | −15.6 dB | −15.1 dB | |
Beam-width (3 dB) | Without reflector | 30.0° × 99.0° | - | 29.0° × 92.5° | - |
With reflector | 28.0° × 90.0° | 26° × 79.0° | 28.5° × 89.5° | 27.0° × 76.0° | |
Back-lobe-level (Max) | Without reflector | 0 dB | - | 0 dB | - |
With reflector | −9.50 dB | −12 dB | −13.95 dB | −14.4 dB |
Type | Value | Frequency |
---|---|---|
Zom | 50 Ω | - |
Zsq | 179 Ω | 9.25 GHz |
Zos | 78.5 Ω | 8.5 GHz |
Zos | 75.7 Ω | 6.0 GHz |
n | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.; NaghshvarianJahromi, M.; Mirjavadi, S.S.; Hamouda, A.M. Bandwidth Enhancement and Frequency Scanning Array Antenna Using Novel UWB Filter Integration Technique for OFDM UWB Radar Applications in Wireless Vital Signs Monitoring. Sensors 2018, 18, 3155. https://doi.org/10.3390/s18093155
Rahman M, NaghshvarianJahromi M, Mirjavadi SS, Hamouda AM. Bandwidth Enhancement and Frequency Scanning Array Antenna Using Novel UWB Filter Integration Technique for OFDM UWB Radar Applications in Wireless Vital Signs Monitoring. Sensors. 2018; 18(9):3155. https://doi.org/10.3390/s18093155
Chicago/Turabian StyleRahman, MuhibUr, Mahdi NaghshvarianJahromi, Seyed Sajad Mirjavadi, and Abdel Magid Hamouda. 2018. "Bandwidth Enhancement and Frequency Scanning Array Antenna Using Novel UWB Filter Integration Technique for OFDM UWB Radar Applications in Wireless Vital Signs Monitoring" Sensors 18, no. 9: 3155. https://doi.org/10.3390/s18093155
APA StyleRahman, M., NaghshvarianJahromi, M., Mirjavadi, S. S., & Hamouda, A. M. (2018). Bandwidth Enhancement and Frequency Scanning Array Antenna Using Novel UWB Filter Integration Technique for OFDM UWB Radar Applications in Wireless Vital Signs Monitoring. Sensors, 18(9), 3155. https://doi.org/10.3390/s18093155