Long-Term Glucose Forecasting Using a Physiological Model and Deconvolution of the Continuous Glucose Monitoring Signal
Abstract
:1. Introduction
2. Methods
2.1. Composite Minimal Model
2.1.1. Minimal Model of Glucose Disappearance
2.1.2. Insulin Absorption Model
2.1.3. Glucose Absorption Model
2.2. Accounting for Meal Absorption
2.3. Glucose Prediction Algorithm
2.4. Model Parameter Identification
2.5. Baseline Algorithms
2.6. Clinical Data Testing
2.7. In Silico Testing
2.8. Evaluation Metrics
3. Results
3.1. Clinical Data Results
3.2. In Silico Results
4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
Appendix A. Mixed-Meal Model Library
Meal | Ingredients | Weight | CHO | CHO; Prot.; Fat | Reference |
---|---|---|---|---|---|
# | (Kg) | (g) | (% energy) | ||
1 | Scrambled eggs, Canadian bacon, gelatin (Jell-O) | 77 | 77 | [37] | |
2 | White bread, low-fat cheese, sucrose, oil, butter | 111 | [47] | ||
3 | Fat milk, white rice, low-fat cheese, fructose, pear, bran-cookies, oil | [47] | |||
4 | Pasta, oil (low fat) | 57 | 75 | [48] | |
5 | Pasta, oil (medium fat) | 57 | 75 | [48] | |
6 | Pasta, oil (high fat) | 57 | 75 | [48] | |
7 | Rice, pudding, sugar and cinnamon | 🟉 | [49] | ||
8 | Toast, honey, ham, curd cheese, orange juice | 🟉 | [49] | ||
9 | Pear barley | 50 | [50] | ||
10 | Instant mashed potato | 50 | [50] | ||
11 | 2 slices of bread, 1 and eggs, 1 tea spoon of margarine and orange juice | 65 | 50 | [51] | |
12 | Cereal, coconut, chocolate, fruit and whipping cream | 🟉 | 93 | [52] | |
13 | Oats, coconut, almonds, raisins, honey, sunflower oil, banana, double cream and milk | [53] | |||
14 | Same as meal 13 | [53] | |||
15 | Same as meal 13 | 50 | [53] | ||
16 | Oat loop cereal, milk, white bread, margarine, strawberry jam, orange juice | 🟉 | [54] |
Meal # | b | d | |||
---|---|---|---|---|---|
1 | |||||
2 | |||||
3 | |||||
4 | |||||
5 | |||||
6 | |||||
7 | |||||
8 | |||||
9 | |||||
10 | |||||
11 | |||||
12 | |||||
13 | |||||
14 | |||||
15 | |||||
16 |
- Peak value: ≤ 0.3 mg · min kg
- Peak time: min
- Area-under-the-curve: △AUC ≤
- RMSE: RMSE mg · min kg
Meal | △AUC | RMSE | |||
---|---|---|---|---|---|
mg · min kg | min | % | mg · min kg | - | |
1 | 0.16 | 1 | 2 | 0.1521 | 0.995 |
2 | 0.27 | 7 | 1.6 | 0.31623 | 0.978 |
3 | 0.20 | 12 | 1.6 | 0.3458 | 0.952 |
4 | 0.14 | 10 | 1.2 | 0.17675 | 0.979 |
5 | 0.04 | 12 | 3.4 | 0.2535 | 0.964 |
6 | 0.20 | 10 | 12.5 | 0.37702 | 0.818 |
7 | 0.22 | 6 | 3.6 | 0.230776 | 0.970 |
8 | 0.25 | 16 | 4.3 | 0.17117 | 0.972 |
9 | 0.22 | 5 | 5.1 | 0.26335 | 0.918 |
10 | 0.17 | 5 | 1.1 | 0.2928 | 0.991 |
11 | 0.01 | 3 | 4.0 | 0.25221 | 0.987 |
12 | 0.21 | 2 | 2.0 | 0.28166 | 0.984 |
13 | 0.21 | 9 | 0.5 | 0.27094 | 0.993 |
14 | 0.19 | 8 | 1.3 | 0.11685 | 0.995 |
15 | 0.12 | 6 | 2.5 | 0.09367 | 0.995 |
16 | 0.07 | 1 | 0.02 | 0.3495 | 0.969 |
Appendix B. Individual Results
Config-uration | PH | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
# 1 | # 2 | # 3 | # 4 | # 5 | # 6 | # 7 | # 8 | # 9 | # 10 | Mean | STD | |
Config-uration | PH | |||||||||||
# 1 | # 2 | # 3 | # 4 | # 5 | # 6 | # 7 | # 8 | # 9 | # 10 | Mean | STD | |
Config-uration | PH | |||||||||||
# 1 | # 2 | # 3 | # 4 | # 5 | # 6 | # 7 | # 8 | # 9 | # 10 | Mean | STD | |
Config-uration | PH | |||||||||||
# 1 | # 2 | # 3 | # 4 | # 5 | # 6 | # 7 | # 8 | # 9 | # 10 | Mean | STD | |
References
- Daneman, D. Type 1 diabetes. Lancet 2006, 367, 847–858. [Google Scholar] [CrossRef]
- Lind, M.; Polonsky, W.H.; Hirsch, I.B.; Heise, T.; Bolinder, J.; Dahlqvist, S.; Schwarz, E.; Ólafsdóttir, A.F.; Frid, A.; Wedel, H.; et al. Continuous glucose monitoring vs conventional therapy for glycemic control in adults with type 1 diabetes treated with multiple daily insulin injections: The GOLD randomized clinical trial. JAMA 2017, 317, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Polonsky, W.H.; Hessler, D.; Ruedy, K.J.; Beck, R.W. The impact of continuous glucose monitoring on markers of quality of life in adults with type 1 diabetes: Further findings from the DIAMOND randomized clinical trial. Diabetes Care 2017, 40, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Buckingham, B.; Chase, H.P.; Dassau, E.; Cobry, E.; Clinton, P.; Gage, V.; Caswell, K.; Wilkinson, J.; Cameron, F.; Lee, H.; et al. Prevention of nocturnal hypoglycemia using predictive alarm algorithms and insulin pump suspension. Diabetes Care 2010, 33, 1013–1017. [Google Scholar] [CrossRef] [PubMed]
- Kovatchev, B. Automated closed-loop control of diabetes: The artificial pancreas. Bioelectron. Med. 2018, 4, 14. [Google Scholar] [CrossRef]
- Lunze, K.; Singh, T.; Walter, M.; Brendel, M.D.; Leonhardt, S. Blood glucose control algorithms for type 1 diabetic patients: A methodological review. Biomed. Signal Process. Control 2013, 8, 107–119. [Google Scholar] [CrossRef]
- Oviedo, S.; Vehí, J.; Calm, R.; Armengol, J. A review of personalized blood glucose prediction strategies for T1DM patients. Int. J. Numer. Methods Biomed. Eng. 2016, 33, E2833. [Google Scholar] [CrossRef]
- Woldaregay, A.Z.; Årsand, E.; Walderhaug, S.; Albers, D.; Mamykina, L.; Botsis, T.; Hartvigsen, G. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Artif. Intell. Med. 2019, 98, 109–134. [Google Scholar] [CrossRef]
- Bock, A.; François, G.; Gillet, D. A therapy parameter-based model for predicting blood glucose concentrations in patients with type 1 diabetes. Comput. Methods Programs Biomed. 2015, 118, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Pappada, S.M.; Cameron, B.D.; Rosman, P.M.; Bourey, R.E.; Papadimos, T.J.; Olorunto, W.; Borst, M.J. Neural network-based real-time prediction of glucose in patients with insulin-dependent diabetes. Diabetes Technol. Ther. 2011, 13, 135–141. [Google Scholar] [CrossRef]
- Eren-Oruklu, M.; Cinar, A.; Rollins, D.K.; Quinn, L. Adaptive system identification for estimating future glucose concentrations and hypoglycemia alarms. Automatica 2012, 48, 1892–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.; Daniels, J.; Liu, C.; Herrero, P.; Georgiou, P. Convolutional Recurrent Neural Networks for Glucose Prediction. Available online: https://doi.org/10.1109/JBHI.2019.2908488 (accessed on 1 April 2019).
- Bunescu, R.; Struble, N.; Marling, C.; Shubrook, J.; Schwartz, F. Blood glucose level prediction using physiological models and support vector regression. In Proceedings of the 12th International Conference on Machine Learning and Applications, Miami, FL, USA, 4–7 December 2013. [Google Scholar]
- Van Heusden, K.; Dassau, E.; Zisser, H.C.; Seborg, D.E.; Doyle, F.J., III. Control-relevant models for glucose control using a priori patient characteristics. IEEE Trans. Biomed. Eng. 2011, 59, 1839–1849. [Google Scholar] [CrossRef] [PubMed]
- Toffanin, C.; Del Favero, S.; Aiello, E.; Messori, M.; Cobelli, C.; Magni, L. Glucose-insulin model identified in free-living conditions for hypoglycaemia prevention. J. Process Control 2018, 64, 27–36. [Google Scholar] [CrossRef]
- Toffanin, C.; Aiello, E.; Del Favero, S.; Cobelli, C.; Magni, L. Multiple models for artificial pancreas predictions identified from free-living condition data: A proof of concept study. J. Process Control 2019, 77, 29–37. [Google Scholar] [CrossRef]
- Dassau, E.; Cameron, F.; Lee, H.; Bequette, B.W.; Zisser, H.; Jovanovič, L.; Chase, H.P.; Wilson, D.M.; Buckingham, B.A.; Doyle, F.J. Real-time hypoglycemia prediction suite using continuous glucose monitoring. Diabetes Care 2010, 33, 1249–1254. [Google Scholar] [CrossRef]
- De Canete, J.F.; Gonzalez-Perez, S.; Ramos-Diaz, J. Artificial neural networks for closed loop control of in silico and ad hoc type 1 diabetes. Comput. Methods Programs Biomed. 2012, 106, 55–66. [Google Scholar] [CrossRef]
- Shah, M.; Franklin, B.; Adams-Huet, B.; Mitchell, J.; Bouza, B.; Dart, L.; Phillips, M. Effect of meal composition on postprandial glucagon-like peptide-1, insulin, glucagon, C-peptide, and glucose responses in overweight/obese subjects. Eur. J. Nutr. 2017, 56, 1053–1062. [Google Scholar] [CrossRef]
- Gani, A.; Gribok, A.V.; Lu, Y.; Ward, W.K.; Vigersky, R.A.; Reifman, J. Universal glucose models for predicting subcutaneous glucose concentration in humans. IEEE Trans. Inf. Technol. Biomed. 2009, 14, 157–165. [Google Scholar] [CrossRef]
- Montaser, E.; Díez, J.L.; Bondia, J. Stochastic seasonal models for glucose prediction in the artificial pancreas. J. Diabetes Sci. Technol. 2017, 11, 1124–1131. [Google Scholar] [CrossRef]
- Zarkogianni, K.; Mitsis, K.; Litsa, E.; Arredondo, M.T.; Fico, G.; Fioravanti, A.; Nikita, K.S. Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring. Med. Biol. Eng. Comput. 2015, 53, 1333–1343. [Google Scholar] [CrossRef]
- Xie, J.; Wang, Q. Benchmark machine learning approaches with classical time series approaches on the blood glucose level prediction challenge. CEUR Workshop Proc. 2018, 2148, 97–102. [Google Scholar]
- Cappon, G.; Facchinetti, A.; Sparacino, G.; Georgiou, P.; Herrero, P. Classification of postprandial glycemic status with application to insulin dosing in type 1 diabetes—An in silico proof-of-concept. Sensors 2019, 19, 3168. [Google Scholar] [CrossRef] [PubMed]
- Georga, E.I.; Protopappas, V.C.; Ardigò, D.; Marina, M.; Zavaroni, I.; Polyzos, D.; Fotiadis, D.I. Multivariate prediction of subcutaneous glucose concentration in type 1 diabetes patients based on support vector regression. IEEE J. Biomed. Health Inf. 2012, 17, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Razvan Bunescu, A.G.; Marling, C. The Blood Glucose Level Prediction Challenge. In Proceedings of the 3rd International Workshop on Knowledge Discovery in Healthcare Data, Stockholm, Sweden, 13 July 2018. [Google Scholar]
- Zhong, A.; Choudhary, P.; McMahon, C.; Agrawal, P.; Welsh, J.B.; Cordero, T.L.; Kaufman, F.R. Effectiveness of automated insulin management features of the MiniMed® 640G sensor-augmented insulin pump. Diabetes Technol. Ther. 2016, 18, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Forlenza, G.P.; Li, Z.; Buckingham, B.A.; Pinsker, J.E.; Cengiz, E.; Wadwa, R.P.; Ekhlaspour, L.; Church, M.M.; Weinzimer, S.A.; Jost, E.; et al. Predictive low-glucose suspend reduces hypoglycemia in adults, adolescents, and children with type 1 diabetes in an at-home randomized crossover study: Results of the PROLOG trial. Diabetes Care 2018, 41, 2155–2161. [Google Scholar] [CrossRef]
- Liu, C.; Avari, P.; Leal, Y.; Wos, M.; Sivasithamparam, K.; Georgiou, P.; Reddy, M.; Fernández-Real, J.M.; Martin, C.; Fernández-Balsells, M.; et al. A Modular Safety System for an Insulin Dose Recommender: A Feasibility Study. Available online: https://journals.sagepub.com/doi/abs/10.1177/1932296819851135 (accessed on 5 October 2019).
- Herrero, P.; Calm, R.; Vehí, J.; Armengol, J.; Georgiou, P.; Oliver, N.; Tomazou, C. Robust fault detection system for insulin pump therapy using continuous glucose monitoring. J. Diabetes Sci. Technol. 2012, 6, 1131–1141. [Google Scholar] [CrossRef] [PubMed]
- Herrero, P.; Bondia, J.; Palerm, C.C.; Vehí, J.; Georgiou, P.; Oliver, N.; Toumazou, C. A simple robust method for estimating the glucose rate of appearance from mixed meals. J. Diabetes Sci. Technol. 2012, 6, 153–162. [Google Scholar] [CrossRef]
- Dalla Man, C.; Rizza, R.A.; Cobelli, C. Meal simulation model of the glucose-insulin system. IEEE Trans. Biomed. Eng. 2007, 54, 1740–1749. [Google Scholar] [CrossRef]
- Gillis, R.; Palerm, C.C.; Zisser, H.; Jovanovic, L.; Seborg, D.E.; Doyle, F.J., III. Glucose estimation and prediction through meal responses using ambulatory subject data for advisory mode model predictive control. J. Diabetes Sci. Technol. 2007, 1, 825–833. [Google Scholar] [CrossRef]
- Bergman, R.N.; Ider, Y.Z.; Bowden, C.R.; Cobelli, C. Quantitative estimation of insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 1979, 236, E667. [Google Scholar] [CrossRef]
- Hovorka, R.; Canonico, V.; Chassin, L.J.; Haueter, U.; Massi-Benedetti, M.; Federici, M.O.; Pieber, T.R.; Schaller, H.C.; Schaupp, L.; Vering, T.; et al. Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Meas. 2004, 25, 905. [Google Scholar] [CrossRef] [PubMed]
- Dalla Man, C.; Micheletto, F.; Lv, D.; Breton, M.; Kovatchev, B.; Cobelli, C. The UVA/PADOVA type 1 diabetes simulator: New features. J. Diabetes Sci. Technol. 2014, 8, 26–34. [Google Scholar]
- Dalla Man, C.; Yarasheski, K.E.; Caumo, A.; Robertson, H.; Toffolo, G.; Polonsky, K.S.; Cobelli, C. Insulin sensitivity by oral glucose minimal models: Validation against clamp. Am. J. Physiol. Endocrinol. Metab. 2005, 289, E954–E959. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Dassau, E.; Jovanovič, L.; Zisser, H.C.; Doyle, F.J., III; Seborg, D.E. Predicting subcutaneous glucose concentration using a latent-variable-based statistical method for type 1 diabetes mellitus. J. Diabetes Sci. Technol. 2012, 6, 617–633. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.; Pesl, P.; Xenou, M.; Toumazou, C.; Johnston, D.; Georgiou, P.; Herrero, P.; Nick, O. Clinical safety and feasibility of the advanced bolus calculator for type 1 diabetes based on case-based reasoning: A 6-week nonrandomized single-arm pilot study. Diabetes Technol. Ther. 2016, 18, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Brazeau, A.; Mircescu, H.; Desjardins, K.; Leroux, C.; Strychar, I.; Ekoé, J.; Rabasa-Lhoret, R. Carbohydrate counting accuracy and blood glucose variability in adults with type 1 diabetes. Diabetes Res. Clin. Pract. 2013, 99, 19–23. [Google Scholar] [CrossRef]
- Haidar, A.; Elleri, D.; Kumareswaran, K.; Leelarathna, L.; Allen, J.M.; Caldwell, K.; Murphy, H.R.; Wilinska, M.E.; Acerini, C.L.; Evans, M.L.; et al. Pharmacokinetics of insulin aspart in pump-treated subjects with type 1 diabetes: Reproducibility and effect of age, weight, and duration of diabetes. Diabetes Care 2013, 36, E173–E174. [Google Scholar] [CrossRef]
- Herrero, P.; Bondia, J.; Adewuyi, O.; Pesl, P.; El-Sharkawy, M.; Reddy, M.; Toumazou, C.; Oliver, N.; Georgiou, P. Enhancing automatic closed-loop glucose control in type 1 diabetes with an adaptive meal bolus calculator–in silico evaluation under intra-day variability. Comput. Methods Programs Biomed. 2017, 146, 125–131. [Google Scholar] [CrossRef]
- Wentholt, I.M.; Hoekstra, J.B.; DeVries, J.H. A critical appraisal of the continuous glucose–error grid analysis. Diabetes Care 2006, 29, 1805–1811. [Google Scholar] [CrossRef]
- Dassau, E.; Herrero, P.; Zisser, H.; Buckingham, B.A.; Jovanovič, L.; Dalla Man, C.; Cobelli, C.; Vehí, J.; Doyle, F.J. Implications of meal library & meal detection to glycemic control of type 1 diabetes mellitus through MPC control. IFAC Proc. Vol. 2008, 41, 4228–4233. [Google Scholar]
- Visentin, R.; Dalla Man, C.; Kudva, Y.C.; Basu, A.; Cobelli, C. Circadian variability of insulin sensitivity: Physiological input for in silico artificial pancreas. Diabetes Technol. Ther. 2015, 17, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Dalla Man, C.; Breton, M.D.; Cobelli, C. Physical activity into the meal glucose—Insulin model of type 1 diabetes: In silico studies. J. Diabetes Sci. Technol. 2009, 3, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Galgani, J.; Aguirre, C.; Díaz, E. Acute effect of meal glycemic index and glycemic load on blood glucose and insulin responses in humans. Nutr. J. 2006, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Normand, S.; Khalfallah, Y.; Louche-Pelissier, C.; Pachiaudi, C.; Antoine, J.M.; Blanc, S.; Desage, M.; Riou, J.P.; Laville, M. Influence of dietary fat on postprandial glucose metabolism (exogenous and endogenous) using intrinsically 13 C-enriched durum wheat. Br. J. Nutr. 2001, 86, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Freckmann, G.; Hagenlocher, S.; Baumstark, A.; Jendrike, N.; Gillen, R.C.; Rössner, K.; Haug, C. Continuous glucose profiles in healthy subjects under everyday life conditions and after different meals. J. Diabetes Sci. Technol. 2007, 1, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Brand-Miller, J.C.; Liu, V.; Petocz, P.; Baxter, R.C. The glycemic index of foods influences postprandial insulin-like growth factor–binding protein responses in lean young subjects. Am. J. Clin. Nutr. 2005, 82, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Edes, T.E.; Shah, J.H. Glycemic index and insulin response to a liquid nutritional formula compared with a standard meal. J. Am. Coll. Nutr. 1998, 17, 30–35. [Google Scholar] [CrossRef]
- Koutsari, C.; Malkova, D.; Hardman, A.E. Postprandial lipemia after short-term variation in dietary fat and carbohydrate. Metabolism 2000, 49, 1150–1155. [Google Scholar] [CrossRef]
- Whitley, H.A.; Humphreys, S.M.; Samra, J.S.; Campbell, I.T.; Maclaren, D.P.; Reilly, T.; Frayn, K.N. Metabolic responses to isoenergetic meals containing different proportions of carbohydrate and fat. Bri. J. Nutr. 1997, 78, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Wolever, T.M.; Mehling, C. Long-term effect of varying the source or amount of dietary carbohydrate on postprandial plasma glucose, insulin, triacylglycerol, and free fatty acid concentrations in subjects with impaired glucose tolerance. Am. J. Clin. Nutr. 2003, 77, 612–621. [Google Scholar] [CrossRef]
- Dalla Man, C.; Camilleri, M.; Cobelli, C. A system model of oral glucose absorption: Validation on gold standard data. IEEE Trans. Biomed. Eng. 2006, 53, 2472–2478. [Google Scholar] [PubMed]
Parameter | V | W | |||||
---|---|---|---|---|---|---|---|
Value | * | * | |||||
Units | |||||||
Parameter | |||||||
Value | * | 30 | |||||
Units | – | – | – |
Config-uration | PH | ||||||
---|---|---|---|---|---|---|---|
RMSE (mg/dL) | EGA-regions (%) | MCC | |||||
A | B | C | D | E | |||
LVX | + | + | * | ||||
ARX | * | + | ‡ | ‡ | |||
* | * | * | ‡ | + | * | ||
Config-uration | PH | ||||||
RMSE (mg/dL) | EGA-regions (%) | MCC | |||||
A | B | C | D | E | |||
LVX | ‡ | * | ‡ | ||||
ARX | ‡ | ‡ | ‡ | ||||
* | * | * | + | * | + | + | |
Config-uration | PH | ||||||
RMSE (mg/dL) | EGA-regions (%) | MCC | |||||
A | B | C | D | E | |||
LVX | ‡ | ||||||
ARX | ‡ | ‡ | + | ||||
* | * | * | * | ‡ | + | * | |
Config-uration | PH | ||||||
RMSE (mg/dL) | EGA-regions (%) | MCC | |||||
A | B | C | D | E | |||
LVX | ‡ | ||||||
ARX | * | * | * | * | ‡ | + | * |
* | * | * | * | ‡ | + | * | |
Config-uration | PH | ||||||
---|---|---|---|---|---|---|---|
RMSE (mg/dL) | EGA-regions (%) | MCC | |||||
A | B | C | D | E | |||
* | * | 0 | * | 0 | |||
* | + | * | * | 0 | |||
* | * | * | 0 | * | 0 | * | |
0 | 0 | ||||||
Config-uration | PH | ||||||
RMSE (mg/dL) | EGA-regions (%) | MCC | |||||
A | B | C | D | E | |||
‡ | ‡ | * | + | ||||
+ | * | ||||||
* | * | * | 0 | * | 0 | * | |
0 | 0 | ||||||
Config-uration | PH | ||||||
RMSE (mg/dL) | EGA-regions (%) | MCC | |||||
A | B | C | D | E | |||
‡ | ‡ | + | + | * | * | ||
+ | ‡ | * | |||||
* | * | * | * | ‡ | * | ||
Config-uration | PH | ||||||
RMSE (mg/dL) | EGA-regions (%) | MCC | |||||
A | B | C | D | E | |||
‡ | * | * | * | ||||
* | + | ‡ | + | + | ‡ | * | |
* | * | * | ‡ | ‡ | * | ||
* | * | * | * | ||||
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Vehí, J.; Avari, P.; Reddy, M.; Oliver, N.; Georgiou, P.; Herrero, P. Long-Term Glucose Forecasting Using a Physiological Model and Deconvolution of the Continuous Glucose Monitoring Signal. Sensors 2019, 19, 4338. https://doi.org/10.3390/s19194338
Liu C, Vehí J, Avari P, Reddy M, Oliver N, Georgiou P, Herrero P. Long-Term Glucose Forecasting Using a Physiological Model and Deconvolution of the Continuous Glucose Monitoring Signal. Sensors. 2019; 19(19):4338. https://doi.org/10.3390/s19194338
Chicago/Turabian StyleLiu, Chengyuan, Josep Vehí, Parizad Avari, Monika Reddy, Nick Oliver, Pantelis Georgiou, and Pau Herrero. 2019. "Long-Term Glucose Forecasting Using a Physiological Model and Deconvolution of the Continuous Glucose Monitoring Signal" Sensors 19, no. 19: 4338. https://doi.org/10.3390/s19194338
APA StyleLiu, C., Vehí, J., Avari, P., Reddy, M., Oliver, N., Georgiou, P., & Herrero, P. (2019). Long-Term Glucose Forecasting Using a Physiological Model and Deconvolution of the Continuous Glucose Monitoring Signal. Sensors, 19(19), 4338. https://doi.org/10.3390/s19194338