Improving the GRACE Kinematic Precise Orbit Determination Through Modified Clock Estimating
Abstract
:1. Introduction
2. Methodology
2.1. GPS Observation Model
2.2. On-Board GPS Clock Constraints
3. Data and Processing Strategies
4. Results and Analysis
4.1. PPP Float Results
4.2. PPP-AR Results
4.3. Simulated Real-Time PPP Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, 4. [Google Scholar] [CrossRef]
- Kang, Z.; Tapley, B.; Bettadpur, S.; Ries, J.; Nagel, P.; Pastor, R. Precise orbit determination for the GRACE mission using only GPS data. J. Geod. 2006, 80, 322–331. [Google Scholar] [CrossRef]
- Yunck, T.P.; Wu, S.C.; Wu, J.T.; Thornton, C.L. Precise tracking of remote sensing satellites with the Global Positioning System. IEEE Trans. Geosci. Remote Sens. 1990, 28, 108–116. [Google Scholar] [CrossRef]
- Svehla, D.; Rothacher, M. Kinematic and reduced-dynamic precise orbit determination of low earth orbiters. Adv. Geosci. 2003, 1, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Jaeggi, A.; Dach, R.; Montenbruck, O.; Hugentobler, U.; Bock, H.; Beutler, G. Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. J. Geod. 2009, 83, 1145–1162. [Google Scholar] [CrossRef] [Green Version]
- Jaeggi, A.; Hugentobler, U.; Bock, H.; Beutler, G. Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data. Adv. Space Res. 2007, 39, 1612–1619. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Zou, X.; Jiang, W. Precise orbit determination for GRACE with zero-difference kinematic method. Chin. Sci. Bull. 2010, 55, 600–606. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Sun, A.Y.; Mueller Schmied, H.; van Beek, L.P.H.; Wiese, D.N.; Wada, Y.; Long, D.; Reedy, R.C.; et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl. Acad. Sci. USA 2018, 115, E1080–E1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufmann, G. Ice-ocean mass balance during the Late Pleistocene glacial cycles in view of CHAMP and GRACE satellite missions. Geophys. J. Int. 2000, 143, 142–156. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Shen, W.; Pan, Y.; Luan, W. Study of seasonal and long-term vertical deformation in Nepal based on GPS and GRACE observations. Adv. Space Res. 2018, 61, 1005–1016. [Google Scholar] [CrossRef]
- Dunn, C.; Bertiger, W.; Bar-Sever, Y.; Desai, S.; Haines, B.; Kuang, D.; Franklin, G.; Harris, I.; Kruizinga, G.; Meehan, T.; et al. Instrument of Grace: GPS augments gravity measurements. GPS World 2003, 14, 16–28. [Google Scholar]
- Weinbach, U.; Schoen, S. Improved GPS receiver clock modeling for kinematic orbit determination of the GRACE satellites. In Proceedings of the 2012 European Frequency and Time Forum, Gothenburg, Sweden, 23–27 April 2012; pp. 157–160. [Google Scholar]
- Weinbach, U.; Schoen, S. Improved GRACE kinematic orbit determination using GPS receiver clock modeling. GPS Solut. 2013, 17, 511–520. [Google Scholar] [CrossRef]
- Busse, F.; How, J. Demonstration of adaptive extended kalman filter for low earth orbit formation estimation using CDGPS. Navigation 2003, 50, 79–93. [Google Scholar] [CrossRef]
- Yang, Y.; Yue, X.; Yuan, J.; Rizos, C. Enhancing the kinematic precise orbit determination of low earth orbiters using GPS receiver clock modelling. Adv. Space Res. 2014, 54, 1901–1912. [Google Scholar] [CrossRef]
- Teunissen, P.; Kleusberg, A. GPS observation equations and positioning concepts. In GPS for Geodesy; Springer: Berlin/Heidelberg, Germany, 1998; pp. 175–229. [Google Scholar]
- Dixon, T.; Kornreich Wolf, S. Some tests of wet tropospheric calibration for the CASA Uno Global Positioning System Experiment. Geophys. Res. Lett. 1990, 17, 203–206. [Google Scholar] [CrossRef] [Green Version]
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.; Webb, F. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. Solid Earth 1997, 102, 5005–5017. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.T.; Wu, S.C.; Hajj, G.A.; Bertiger, W.I.; Lichten, S.M. Effects of antenna orientation on GPS carrier phase. Astrodynamics 1992, 18, 1647–1660. [Google Scholar]
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Wasle, E. GNSS–Global Navigation Satellite System; Springer: Vienna, Austria, 2008. [Google Scholar]
- Fyfe, P.; Kovach, K. Navstar GPS Space Segment/Navigation User Interfaces (Public Release Version). Eur. J. Theol. 1991, 24, 272. [Google Scholar]
- Ge, M.; Gendt, G.; Dick, G.; Zhang, F.P.; Rothacher, M. A new data processing strategy for huge GNSS global networks. J. Geod. 2006, 80, 199–203. [Google Scholar] [CrossRef]
- Ge, M.; Gendt, G.; Rothacher, M.; Changhong, S.; Liu, J. Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. J. Geod. 2008, 82, 389–399. [Google Scholar] [CrossRef]
- Montenbruck, O.; Hackel, S.; van den Ijssel, J.; Arnold, D. Reduced dynamic and kinematic precise orbit determination for the Swarm mission from 4 years of GPS tracking. GPS Solut. 2018, 22, 79. [Google Scholar] [CrossRef]
Model | Description |
---|---|
GPS tracking data | Undifferenced Ionosphere-free Code and Phase |
GPS orbits | IGS Final Orbits and 30-s Clocks |
ERP | IERS 2010 |
GPS phase model | IGS08.atx (week 1930) |
GRACE phase model | Phase Center Offset (level 1B) |
Stochastic model | Elevation Dependent Model |
Priori coordinates | GFZ NAV1B Products |
Priori coordinates constraint | 100 m |
Priori receiver clock constraint | 9000 m |
Elevation cutoff | 0° |
Sampling interval | 10 s |
Arc coverage | 24 h |
Ionosphere delay | Ionosphere-free Combination |
Phase wind-up | Model [19] |
Relativistic corrections for GPS | Shapiro Effect [20] Model [21] |
Ambiguity resolution | Uncalibrated Phase Delay Method [22] |
Post-processing mode | LS solution |
Simulated real-time processing mode | Epoch-wise LS solution |
GRACE-A | GRACE-B | |||||
---|---|---|---|---|---|---|
RMS | Radial/cm | Along/cm | Cross/cm | Radial/cm | Along/cm | Cross/cm |
PPP float + RW | 2.9 | 2.4 | 3.2 | 3.0 | 2.7 | 2.7 |
PPP float | 3.6 | 2.7 | 3.5 | 4.4 | 3.4 | 3.2 |
Improvement | 19.44% | 11.11% | 8.57% | 31.82% | 20.59% | 15.63% |
GRACE-A | GRACE-B | |||||
---|---|---|---|---|---|---|
RMS | Radial/cm | Along/cm | Cross/cm | Radial/cm | Along/cm | Cross/cm |
PPP-AR + RW | 2.5 | 1.7 | 1.0 | 2.4 | 1.8 | 1.1 |
PPP-AR | 3.2 | 1.8 | 1.1 | 3.7 | 2.2 | 1.2 |
Improvement | 21.88% | 5.56% | 9.09% | 35.14% | 18.18% | 8.33% |
GRACE-A | GRACE-B | |||||
---|---|---|---|---|---|---|
RMS | Radial/cm | Along/cm | Cross/cm | Radial/cm | Along/cm | Cross/cm |
PPP float + RW | 3.0 | 3.2 | 2.1 | 3.0 | 3.3 | 2.3 |
PPP float | 4.1 | 4.1 | 2.5 | 5.6 | 5.2 | 3.4 |
Improvement | 26.83% | 21.95% | 16.00% | 46.43% | 36.54% | 32.35% |
Time | Float Residuals | Float + Random Walk Residuals | ||||
---|---|---|---|---|---|---|
Radial/cm | Along/cm | Cross/cm | Radial/cm | Along/cm | Cross/cm | |
00:10 | −54.7 | 17.3 | −45.5 | −14.2 | −12.5 | 19.4 |
00:30 | −8.2 | 7.0 | −8.0 | 2.2 | 10.9 | −10.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Jiang, W.; Chen, H.; Li, Z.; Liu, X. Improving the GRACE Kinematic Precise Orbit Determination Through Modified Clock Estimating. Sensors 2019, 19, 4347. https://doi.org/10.3390/s19194347
Zhou X, Jiang W, Chen H, Li Z, Liu X. Improving the GRACE Kinematic Precise Orbit Determination Through Modified Clock Estimating. Sensors. 2019; 19(19):4347. https://doi.org/10.3390/s19194347
Chicago/Turabian StyleZhou, Xingyu, Weiping Jiang, Hua Chen, Zhao Li, and Xuexi Liu. 2019. "Improving the GRACE Kinematic Precise Orbit Determination Through Modified Clock Estimating" Sensors 19, no. 19: 4347. https://doi.org/10.3390/s19194347
APA StyleZhou, X., Jiang, W., Chen, H., Li, Z., & Liu, X. (2019). Improving the GRACE Kinematic Precise Orbit Determination Through Modified Clock Estimating. Sensors, 19(19), 4347. https://doi.org/10.3390/s19194347