A Piezoelectric Tactile Sensor for Tissue Stiffness Detection with Arbitrary Contact Angle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Structure
2.2. Sensing Principle and Detection Method
2.2.1. Sensing Principle
2.2.2. A New Detection Method and Its Optimization
3. Results
3.1. Simulation Studies
3.1.1. Test of Distinguishing Samples with Different Stiffness
3.1.2. Effect of Optimization
3.1.3. Sample Blind Recognition Test in Arbitrary Angle
3.2. Experiment Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nagy, T.D.; Haidegger, T. Recent Advances in Robot-Assisted Surgery: Soft Tissue Contact Identification. In Proceedings of the 2019 IEEE 13th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 29–31 May 2019; pp. 99–106. [Google Scholar]
- Bandari, N.; Dargahi, J.; Packirisamy, M. Tactile Sensors for Minimally Invasive Surgery: A Review of the State-of-the-Art, Applications, and Perspectives. IEEE Access 2020, 8, 7682–7708. [Google Scholar] [CrossRef]
- Chuang, C.-H.; Li, T.-H.; Chou, I.-C.; Teng, Y.-J. Piezoelectric tactile sensor for submucosal tumor detection in endoscopy. Sens. Actuators A Phys. 2016, 244, 299–309. [Google Scholar] [CrossRef]
- Sharma, S.; Aguilera, R.; Rao, J.; Gimzewski, J.K. Piezoelectric needle sensor reveals mechanical heterogeneity in human thyroid tissue lesions. Sci. Rep. 2019, 9, 9282. [Google Scholar] [CrossRef] [PubMed]
- Yip, M.C.; Yuen, S.G.; Howe, R.D. A Robust Uniaxial Force Sensor for Minimally Invasive Surgery. IEEE Trans. Biomed. Eng. 2010, 57, 1008–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noh, Y.; Liu, H.; Sareh, S.; Chathuranga, D.S.; Wurdemann, H.; Rhode, K.; Althoefer, K. Image-Based Optical Miniaturized Three-Axis Force Sensor for Cardiac Catheterization. IEEE Sens. J. 2016, 16, 7924–7932. [Google Scholar] [CrossRef]
- Lv, C.; Wang, S.; Shi, C. A High-Precision and Miniature Fiber Bragg Grating-Based Force Sensor for Tissue Palpation During Minimally Invasive Surgery. Ann. Biomed. Eng. 2019, 48, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Pan, A.; Ren, H. Reaction Force Mapping by 3-Axis Tactile Sensing with Arbitrary Angles for Tissue Hard-inclusion Localization. IEEE Trans. Biomed. Eng. [CrossRef]
- Nagatom, T.; Miki, N. A Flexible Tactile Sensor to Detect Stiffness Distribution without Measuring Displacement. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 23–27 June 2019; pp. 551–555. [Google Scholar]
- Aviles, A.I.; Alsaleh, S.M.; Hahn, J.K.; Casals, A. Towards Retrieving Force Feedback in Robotic-Assisted Surgery: A Supervised Neuro-Recurrent-Vision Approach. IEEE Trans. Haptics 2017, 10, 431–443. [Google Scholar] [CrossRef] [Green Version]
- Ju, F.; Zhang, Y.; Yun, Y.; Guo, H.; Wei, X.; Zhu, C.; Zhang, X.; Bai, D.; Chen, B. A Piezoelectric Tactile Sensor and Human-inspired Tactile Exploration Strategy for Lump Palpation in Tele-operative Robotic Minimally Invasive Surgery. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019; pp. 223–228. [Google Scholar]
- Uribe, D.O.; Schoukens, J.; Stroop, R. Improved tactile resonance sensor for robotic assisted surgery. Mech. Syst. Signal Process. 2018, 99, 600–610. [Google Scholar] [CrossRef] [Green Version]
- Chalasani, P.; Wang, L.; Yasin, R.; Simaan, N.; Taylor, R.H. Preliminary Evaluation of an Online Estimation Method for Organ Geometry and Tissue Stiffness. IEEE Robot. Autom. Lett. 2018, 3, 1816–1823. [Google Scholar] [CrossRef]
- Goldman, R.E.; Bajo, A.; Simaan, N. Algorithms for autonomous exploration and estimation in compliant environments. Robotics 2012, 31, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Yu, B.; Yang, C.; Vagdargi, P.; Srivatsan, R.A.; Choset, H. Development of an inexpensive tri-axial force sensor for minimally invasive surgery. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, 24–28 September 2017; pp. 906–913. [Google Scholar]
- Guan, L.; Weng, L.; Zhang, X.; Wu, Z.; Li, Q.; Liu, L. Microstructures, electrical behavior and energy storage properties of Ag@shell/PVDF-based polymers: Different effects between an organic polydopamine shell and inorganic zinc oxide shell. J. Mater. Sci. 2020, 55, 15238–15251. [Google Scholar] [CrossRef]
- Lukasz, K.S. Concept, Implementation and Analysis of the Piezoelectric Resonant Sensor/Actuator for Measuring the Aging Process of Human Skin. Ph.D Thesis, University of Toulouse, Toulouse, France, 2016. [Google Scholar]
- Omata, S.; Murayama, Y.; Constantinou, C.E. Real time robotic tactile sensor system for the determination of the physical properties of biomaterials. Sens. Actuators A Phys. 2004, A112, 278–285. [Google Scholar] [CrossRef]
- Omata, Y.S.; Terunuma, Y. Development of new type tactile sensor for detecting hardness and/or softness of an object like the human hand. In Proceedings of the TRANSDUCERS’91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers, San Francisco, CA, USA, 24–27 June 1991. [Google Scholar]
- Tian, J.; Xie, Z. Dynamic contact stiffness of vibrating rigid sphere contacting semi-infinite transversely isotropic viscoelastic solid. Acta Mech. Solida Sin. 2008, 21, 580–588. [Google Scholar] [CrossRef]
- Niemz, M.H. Laser-Tissue Tissue Interactions Fundamentals and Applications; Science Press: Beijing, China, 2005; pp. 20–21. [Google Scholar]
- Zhao, X.Y. Effects of Stiffness on Biological Behavior of Tumor Cells. Medical Review. 2018, 24, 2991–2994. [Google Scholar]
- Li, M. Experimental Study and Numerical Simulation on Grasping Behavior between Fenestrated Mis Grasper and Soft Tissue. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2015. [Google Scholar]
Part of Sensor | Material |
---|---|
Probe | Stainless steel |
PZT | PZT-5A |
Interlayer | Carbon fiber |
Samples | Mooney-Rivlin |
Samples | Stiffness (MPa) |
---|---|
1 | 0.0450 |
2 | 0.104 |
3 | 0.235 |
4 | 0.320 |
5 | 0.649 |
Samples | Stiffness (00) |
---|---|
1 | 00–24 |
2 | 00–32 |
3 | 00–60 |
4 | 00–68 |
5 | 00–75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Ju, F.; Wei, X.; Wang, D.; Wang, Y. A Piezoelectric Tactile Sensor for Tissue Stiffness Detection with Arbitrary Contact Angle. Sensors 2020, 20, 6607. https://doi.org/10.3390/s20226607
Zhang Y, Ju F, Wei X, Wang D, Wang Y. A Piezoelectric Tactile Sensor for Tissue Stiffness Detection with Arbitrary Contact Angle. Sensors. 2020; 20(22):6607. https://doi.org/10.3390/s20226607
Chicago/Turabian StyleZhang, Yingxuan, Feng Ju, Xiaoyong Wei, Dan Wang, and Yaoyao Wang. 2020. "A Piezoelectric Tactile Sensor for Tissue Stiffness Detection with Arbitrary Contact Angle" Sensors 20, no. 22: 6607. https://doi.org/10.3390/s20226607
APA StyleZhang, Y., Ju, F., Wei, X., Wang, D., & Wang, Y. (2020). A Piezoelectric Tactile Sensor for Tissue Stiffness Detection with Arbitrary Contact Angle. Sensors, 20(22), 6607. https://doi.org/10.3390/s20226607