Accurate Global Point Cloud Registration Using GPU-Based Parallel Angular Radon Spectrum
Abstract
:1. Introduction
- Introducing the parallel algorithm Cud-ARS for computation of the Fourier coefficients of ARS suitable for parallel execution of GPUs.
- The implementation of Cud-ARS using the Nvidia CUDA library and conducting experiments comparing performance with state-of-the-art registration methods on benchmarks.
- A branch-and-bound (B&B)-based translation estimation method improves accuracy over previous versions used in ARS, completing the pose estimation pipeline.
2. Related Work
3. Angular Radon Spectrum for Registration
3.1. Angular Radon Spectrum of a Gaussian Mixture Model
3.2. Registration Algorithm
4. Cud-ARS
4.1. Parallelization Setup and Enhancement
Algorithm 1 Obtain I and J from TID |
//indices vary between 0 and n−1 while
do end while return
//indices vary between 0 and n−1 while
do end while return
|
Algorithm 2 ARS Coefficient Downward Update |
for
do end for |
4.2. Full Registration and Mapping
5. Experiments
5.1. Cud-ARS Rotation Estimation
- Noise tests. This transformation adds Gaussian noise with a given standard deviation to the points coordinates. The value of is varied in the interval of , with the maximum dimension of a point set varying from 300 to 900.
- Occlusion tests. An occluded version of a point set is constructed by removing all points lying inside a randomly generated circle. The center of the circle is a randomly chosen point of the dataset, while the radius is proportional to the size of the point set. In particular, if the points are contained in a bounding box of size , the radius is equal to , where is the occlusion rate. Occlusion rate is varied up to 50%.
- Rand tests. This transformation adds random points to an input point set of points, where is the random point rate. The random points are uniformly distributed on a circle centered on the point set’s mean point, and with a radius double the size of bounding box. The maximum value of the random point rate used in the tests is 300, i.e., random points are at most three times the number of shape points.
5.2. Registration and Mapping
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
GPU | Graphics Processing Unit |
ARS | Angular Radon Spectrum |
References
- Besl, P.; Mckay, H. A method for registration of 3-D shapes. IEEE Trans. Pat. Anal. Mach. Intel 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Lodi Rizzini, D. Angular Radon Spectrum for Rotation Estimation. Pattern Recognit. 2018, 84, 182–196. [Google Scholar] [CrossRef]
- Lodi Rizzini, D.; Fontana, E. Rotation Estimation Based on Anisotropic Angular Radon Spectrum. IEEE Robot. Autom. Lett. 2022, 7, 7279–7286. [Google Scholar] [CrossRef]
- Yang, H.; Shi, J.; Carlone, L. Teaser: Fast and certifiable point cloud registration. IEEE Trans. Robot. 2020, 37, 314–333. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Campbell, D.; Jia, Y. Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2241–2254. [Google Scholar] [CrossRef]
- Huang, Y.; Ling, K.V.; See, S. Solving quadratic programming problems on graphics processing unit. ASEAN Eng. J. 2011, 1, 76–86. [Google Scholar]
- Frasch, J.V.; Sager, S.; Diehl, M. A parallel quadratic programming method for dynamic optimization problems. Math. Program. Comput. 2015, 7, 289–329. [Google Scholar] [CrossRef]
- Olson, E. Real-Time Correlative Scan Matching. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, 12–17 May 2009; pp. 4387–4393. [Google Scholar]
- Premebida, C.; Ambrus, R.; Marton, Z.C. Intelligent robotic perception systems. In Applications of Mobile Robots; IntechOpen: London, UK, 2018. [Google Scholar]
- Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans. Robot. 2016, 32, 1309–1332. [Google Scholar] [CrossRef]
- Vizzo, I.; Guadagnino, T.; Mersch, B.; Wiesmann, L.; Behley, J.; Stachniss, C. KISS-ICP: In Defense of Point-to-Point ICP—Simple, Accurate, and Robust Registration if Done the Right Way. IEEE Robot. Autom. Lett. 2023, 8, 1029–1036. [Google Scholar] [CrossRef]
- Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. In Proceedings of the International Conference on 3-D Digital Imaging and Modeling, Quebec, QC, Canada, 28 May–1 June 2001. [Google Scholar]
- Biber, P.; Straßer, W. The normal distributions transform: A new approach to laser scan matching. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2003; pp. 2743–2748. [Google Scholar]
- Magnusson, M.; Lilienthal, A.; Duckett, T. Scan registration for autonomous mining vehicles using 3D-NDT. J. Field Robot. 2007, 24, 803–827. [Google Scholar] [CrossRef]
- Maken, F.; Ramos, F.; Ott, L. Stein ICP for Uncertainty Estimation in Point Cloud Matching. IEEE Robot. Autom. Lett. 2022, 7, 1063–1070. [Google Scholar] [CrossRef]
- Kolpakov, A.; Werman, M. An approach to robust ICP initialization. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jaimez, M.; Monroy, J.; Lopez-Antequera, M.; Gonzalez-Jimenez, J. Robust Planar Odometry Based on Symmetric Range Flow and Multiscan Alignment. IEEE Trans. Robot. 2018, 34, 1623–1635. [Google Scholar] [CrossRef]
- Zhang, J.; Singh, S. Low-drift and Real-time Lidar Odometry and Mapping. Auton. Robot. 2017, 41, 401–416. [Google Scholar] [CrossRef]
- Shan, T.; Englot, B. LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4758–4765. [Google Scholar]
- Wang, H.; Wang, C.; Chen, C.; Xie, L. F-LOAM: Fast LiDAR Odometry and Mapping. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 4390–4396. [Google Scholar]
- Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 5135–5142. [Google Scholar] [CrossRef]
- Myronenko, A.; Song, X. Point Set Registration: Coherent Point Drift. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 2262–2275. [Google Scholar] [CrossRef]
- Censi, A.; Iocchi, L.; Grisetti, G. Scan Matching in the Hough Domain. In Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), Barcelona, Spain, 18–22 April 2005. [Google Scholar]
- Censi, A.; Carpin, S. HSM3D: Feature-less global 6DOF scan-matching in the Hough/Radon domain. In Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), Kobe, Japan, 12–17 May 2009; pp. 3899–3906. [Google Scholar]
- Zhang, Y.; Severinsen, O.A.; Leonard, J.J.; Carlone, L.; Khosoussi, K. Data-Association-Free Landmark-based SLAM. arXiv 2023, arXiv:2302.13264. [Google Scholar]
- Dellaert, F.; Kaess, M. Factor graphs for robot perception. Found. Trends Robot. 2017, 6, 1–139. [Google Scholar] [CrossRef]
- Sola, J.; Vallvé, J.; Casals, J.; Deray, J.; Fourmy, M.; Atchuthan, D.; Corominas-Murtra, A.; Andrade-Cetto, J. WOLF: A modular estimation framework for robotics based on factor graphs. IEEE Robot. Autom. Lett. 2022, 7, 4710–4717. [Google Scholar] [CrossRef]
- Roussillon, C.; Gonzalez, A.; Solà, J.; Codol, J.M.; Mansard, N.; Lacroix, S.; Devy, M. RT-SLAM: A generic and real-time visual SLAM implementation. In Proceedings of the International Conference on Computer Vision Systems, Sophia Antipolis, France, 20–22 September 2011; pp. 31–40. [Google Scholar]
- Ila, V.; Polok, L.; Solony, M.; Svoboda, P. SLAM++—A highly efficient and temporally scalable incremental SLAM framework. Int. J. Robot. Res. 2017, 36, 210–230. [Google Scholar] [CrossRef]
- Abouzahir, M.; Latif, R.; Ramzi, M.; Sbihi, M. OpenCL and OpenGL Implementation of Simultaneous Localization and Mapping Algorithm using High-End GPU. In Proceedings of the ITM Web of Conferences. EDP Sciences, Craiova, Romania, 29 June–2 July 2022; Volume 46, p. 04001. [Google Scholar]
- Kumar, A.; Chellappa, R. Disentangling 3d pose in a dendritic cnn for unconstrained 2d face alignment. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 430–439. [Google Scholar]
- Chen, H.; Manhardt, F.; Navab, N.; Busam, B. TexPose: Neural Texture Learning for Self-Supervised 6D Object Pose Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 4841–4852. [Google Scholar]
- Kehl, W.; Manhardt, F.; Tombari, F.; Ilic, S.; Navab, N. Ssd-6d: Making rgb-based 3d detection and 6d pose estimation great again. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1521–1529. [Google Scholar]
- Milioto, A.; Stachniss, C. Bonnet: An open-source training and deployment framework for semantic segmentation in robotics using cnns. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 7094–7100. [Google Scholar]
- Milioto, A.; Vizzo, I.; Behley, J.; Stachniss, C. RangeNet ++: Fast and Accurate LiDAR Semantic Segmentation. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), The Venetian Macao, Macau, 4–8 November 2019; pp. 4213–4220. [Google Scholar] [CrossRef]
- Collet, A.; Srinivasa, S.S. Efficient multi-view object recognition and full pose estimation. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, Alaska, 3–8 May 2010; pp. 2050–2055. [Google Scholar]
- Collet, A.; Martinez, M.; Srinivasa, S.S. The moped framework: Object recognition and pose estimation for manipulation. Int. J. Robot. Res. 2011, 30, 1284–1306. [Google Scholar] [CrossRef]
- Deng, X.; Xiang, Y.; Mousavian, A.; Eppner, C.; Bretl, T.; Fox, D. Self-supervised 6d object pose estimation for robot manipulation. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Virtual, 31 May–31 August 2020; pp. 3665–3671. [Google Scholar]
- Austin, J.; Corrales-Fatou, R.; Wyetzner, S.; Lipson, H. Titan: A parallel asynchronous library for multi-agent and soft-body robotics using nvidia cuda. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Virtual, 31 May–31 August 2020; pp. 7754–7760. [Google Scholar]
- Ha, S.W.; Han, T.D. A scalable work-efficient and depth-optimal parallel scan for the GPGPU environment. IEEE Trans. Parallel Distrib. Syst. 2012, 24, 2324–2333. [Google Scholar] [CrossRef]
- Deans, S. Radon and Abel Transforms. In The Transforms and Applications Handbook, 2nd ed.; Poularikas, A., Ed.; CRC Press: Boca Raton, FL, USA, 2000; pp. 1–95. [Google Scholar]
- Liu, Y.; Wang, C.; Song, Z.; Wang, M. Efficient global point cloud registration by matching rotation invariant features through translation search. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 448–463. [Google Scholar]
- Bai, X.; Yang, X.; Latecki, L.; Liu, W.; Tu, Z. Learning Context-Sensitive Shape Similarity by Graph Transduction. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 861–874. [Google Scholar] [CrossRef] [PubMed]
- Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-Time Loop Closure in 2D LIDAR SLAM. In Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278. [Google Scholar] [CrossRef]
- Kohlbrecher, S.; Meyer, J.; von Stryk, O.; Klingauf, U. A Flexible and Scalable SLAM System with Full 3D Motion Estimation. In Proceedings of the IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), Kyoto, Japan, 1–5 November 2011. [Google Scholar]
- Hornung, A.; Wurm, K.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees. Auton. Robots 2013, 34, 189–206. [Google Scholar] [CrossRef]
Description | Symbol | Value |
---|---|---|
ARS Fourier order | 32 | |
ARS stdev | (mpeg7), (maps) | |
ARS tolerance on B&B | ||
Coeff Matrix Rows | ||
Coeff Matrix Cols | ||
Prlz Grid Size | ||
Number of Blocks | ||
Number of Threads | 256 | |
Coeff Matrix Tot Size | ||
Max Chunk Size | 4096 |
Dataset | Length | Hector | ARS | ||
---|---|---|---|---|---|
(m) | ATE (%) | ARE () | ATE (%) | ARE () | |
uniprdia_0 | 262.28 | 3.87 | 7.18 | 19.78 | 31.66 |
uniprdia_1 | 180.34 | 3.14 | 6.66 | 11.06 | 32.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontana, E.; Lodi Rizzini, D. Accurate Global Point Cloud Registration Using GPU-Based Parallel Angular Radon Spectrum. Sensors 2023, 23, 8628. https://doi.org/10.3390/s23208628
Fontana E, Lodi Rizzini D. Accurate Global Point Cloud Registration Using GPU-Based Parallel Angular Radon Spectrum. Sensors. 2023; 23(20):8628. https://doi.org/10.3390/s23208628
Chicago/Turabian StyleFontana, Ernesto, and Dario Lodi Rizzini. 2023. "Accurate Global Point Cloud Registration Using GPU-Based Parallel Angular Radon Spectrum" Sensors 23, no. 20: 8628. https://doi.org/10.3390/s23208628
APA StyleFontana, E., & Lodi Rizzini, D. (2023). Accurate Global Point Cloud Registration Using GPU-Based Parallel Angular Radon Spectrum. Sensors, 23(20), 8628. https://doi.org/10.3390/s23208628