Lower Limb Motion Recognition Based on sEMG and CNN-TL Fusion Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Objects and Equipment
2.2. Experiment Procedure
2.3. Data Preprocessing
2.4. Feature Extraction and Analysis
2.5. Lower Limb Action Recognition Model
2.5.1. CNN
2.5.2. LSTM
2.5.3. Transformer
2.5.4. CLT Model
3. Results
3.1. Model Evaluation Index
3.2. Analysis of Experimental Results
3.3. Ablation Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, C.; Xi, X.G.; Chen, S.J.; Miran, S.M.; Hua, X.; Luo, Z.Z. SEMG-based multifeatures and predictive model for knee-joint-angle estimation. AIP Adv. 2019, 9, 095042. [Google Scholar] [CrossRef]
- Simão, M.; Mendes, N.; Gibaru, O.; Neto, P. A review on electromyography decoding and pattern recognition for human-machine interaction. IEEE Access 2019, 7, 39564–39582. [Google Scholar] [CrossRef]
- Totty, M.S.; Wade, E. Muscle activation and inertial motion data for noninvasive classification of activities of daily living. IEEE Trans. Biomed. Eng. 2018, 65, 1069–1076. [Google Scholar] [PubMed]
- Wang, J.; Sun, S.; Sun, Y. A Muscle Fatigue Classification Model Based on LSTM and Improved Wavelet Packet Threshold. Sensors 2021, 21, 6369. [Google Scholar] [CrossRef]
- Cui, B.; Deng, J.; Zhang, X. Hand Gesture Recognition Based on Surface Electromyography. Sci. Technol. Eng. 2023, 23, 15133–15141. [Google Scholar]
- Shi, X.H.; Lu, H.; Liao, Z.Y. Active training of lower limb rehabilitation based on surface electromyography signal. Sci. Technol. Eng. 2018, 18, 61–66. [Google Scholar]
- Zheng, Y.; Zheng, G.; Zhang, H.; Zhao, B.; Sun, P. Mapping Method of Human Arm Motion Based on Surface Electromyography Signals. Sensors 2024, 24, 2827. [Google Scholar] [CrossRef]
- Huang, S.; Mao, J. Recognition method of sEMG gesture based on improved deep forest. J. Shanghai Univ. Eng. Sci. 2023, 37, 190–197. [Google Scholar]
- Ai, Q.; Zhang, Y.; Qi, W.; Liu, Q.; Chen, K. Research on lower limb motion recognition based on fusion of sEMG and accelerometer signals. Symmetry 2017, 9, 147. [Google Scholar] [CrossRef]
- Liu, G.P.; Wang, N.X.; Zhou, Y.; Wang, W.; Tang, M. Recognition of Dumbbell Movements Based on an Improved ReliefF Algorithm. Sci. Technol. Eng. 2019, 19, 219–224. [Google Scholar]
- Zhong, T.; Li, D.; Wang, J.; Xu, J.; An, Z.; Zhu, Y. Fusion Learning for sEMG Recognition of Multiple Upper-Limb Rehabilitation Movements. Sensors 2021, 21, 5385. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.H.; Zhou, J.H.; Fu, Y.F. Investigation of gesture recognition using attention mechanism CNN combined electromyography feature matrix. J. Electron. Meas. Instrum. 2023, 37, 59–67. [Google Scholar]
- Xi, X.G.; Yang, C.; Shi, J.H.; Luo, Z.Z.; Zhao, Y.B. Surface electromyography-based daily activity recognition using wavelet coherence coefficient and support vector machine. Neural Process. Lett. 2019, 50, 2265–2280. [Google Scholar] [CrossRef]
- Wei, W.; Wong, Y.; Du, Y.; Hu, Y.; Kankanhalli, M.; Wang, G. A multi-stream convolutional neural network for sEMG-based gesture recognition in muscle-computer interface. Pattern Recognit. Lett. 2019, 119, 131–138. [Google Scholar] [CrossRef]
- Liu, G.D.; Xu, L.Y.; Xiao, R.L.; Sun, J.; Cai, J.; Zhang, S. Muscle Fatigue Classification Method of sEMG Signal Based on FGNN Algorithm. Sci. Technol. Eng. 2022, 22, 8370–8377. [Google Scholar]
- Sui, X.W.; Wan, K.X.; Zhang, Y. Pattern recognition of sEMG based on wavelet packet transform and improved SVM. Optik 2019, 176, 228–235. [Google Scholar] [CrossRef]
- Liu, S.Z.; Xu, D.Z. A New Method for Hand Motion Intent Recognition Based on Improved sEMG Signal Active Segment Detection. J. Jiaxing Univ. 2022, 34, 105–112. [Google Scholar]
- Gupta, R.; Agarwal, R. Electromyographic signal-driven continuous locomotion mode identification module design for lower limb prosthesis control. Arabian J. Sci. Eng. 2018, 43, 7817–7835. [Google Scholar] [CrossRef]
- Reaz, M.; Hussain, M.; Mohd-Yasin, F. Techniques of EMG signal analysis: Detection, processing, classification and applications (Correction). Biol. Proced. Online 2006, 8, 11–35. [Google Scholar] [CrossRef]
- Xu, H.; Xiong, A. Advances and disturbances in sEMG-based intentions and movements recognition: A review. IEEE Sens. J. 2021, 21, 13019–13028. [Google Scholar] [CrossRef]
- Chang, J.; Wang, Z.J.; Mckeown, M.A. Hidden Markov, multivariate autoregressive (HMM-mAR) network framework for analysis of surface EMG (sEMG) data. IEEE Trans. Signal Process. 2008, 56, 4069–4081. [Google Scholar] [CrossRef]
- Wang, R.; Yang, J.R. Study on the applicability of vulnerability analysis based on long short-term memory neural network. Sichuan Build. Sci. 2024, 50, 9–15. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is All You Need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 770–778. [Google Scholar]
- Goutte, C.; Gaussier, E. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In Proceedings of the Advances in Information Retrieval: 27th European Conference on IR Research, ECIR 2005, Santiago de Compostela, Spain, 21–23 March 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 345–359. [Google Scholar]
People | Age | Height/(cm) | Weight/(kg) |
---|---|---|---|
20 | 22~28 | 160~189 | 60~85 |
Muscle Name | Patch Position | Acquisition Channel |
---|---|---|
Rectus femoris | EMG-ch1 | |
Vastus lateralis | EMG-ch2 | |
Vastus medialis | EMG-ch3 | |
Semitendinosus muscle | EMG-ch4 | |
Tibialis anterior | EMG-ch5 | |
Gastrocnemius lateralis | EMG-ch6 | |
Medial gastrocnemius | EMG-ch7 |
Feature Value Name | Formula of Calculation | |
---|---|---|
Time-Domain Features | MAV | |
RMS | ||
Frequency- Domain Features | MPF | |
MF |
Network Layer | Kernel Size | Kernels Number | Output |
---|---|---|---|
Convolutional layer 1 | 3 × 1 | 64 | 64 × 1020 |
BN1+ReLU | 64 | - | 64 × 1020 |
Max-Pool 1 | 2 × 2 | 64 | 64 × 510 |
Convolutional layer 2 | 3 × 1 | 32 | 32 × 508 |
BN2+ReLU | 32 | - | 32 × 508 |
Max-Pool 2 | 2 × 2 | 32 | 32 × 254 |
Convolutional layer 3 | 3 × 1 | 10 | 10 × 252 |
BN3+ReLU | 10 | - | 10 × 252 |
Max-Pool 3 | 2 × 2 | 10 | 10 × 126 |
Fully connected layer 1 | 1260 | 1 | 1260 × 1 |
Fully connected layer 2 | 600 | 1 | 600 × 1 |
Fully connected layer 2 | 100 | 1 | 100 × 1 |
Hyperparameters | Value |
loss function | Cross Entropy |
optimizer | Adadelta |
layers | 3 |
LSTM unit | 100 |
batch size | 40 |
learning rate | 0.001 |
Model | Acc | Pre | Rec | F1 |
---|---|---|---|---|
SVM | 81.21 | 82.38 | 78.97 | 80.64 |
CNN | 90.21 | 88.94 | 86.96 | 87.94 |
LSTM | 84.03 | 86.64 | 82.37 | 84.45 |
CNN-LSTM | 92.37 | 91.10 | 92.23 | 91.66 |
CNN-Transformer | 92.06 | 91.28 | 91.14 | 91.26 |
CNN-TL | 96.13 | 95.71 | 95.60 | 95.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Tao, Q.; Su, N.; Liu, J.; Chen, Q.; Li, B. Lower Limb Motion Recognition Based on sEMG and CNN-TL Fusion Model. Sensors 2024, 24, 7087. https://doi.org/10.3390/s24217087
Zhou Z, Tao Q, Su N, Liu J, Chen Q, Li B. Lower Limb Motion Recognition Based on sEMG and CNN-TL Fusion Model. Sensors. 2024; 24(21):7087. https://doi.org/10.3390/s24217087
Chicago/Turabian StyleZhou, Zhiwei, Qing Tao, Na Su, Jingxuan Liu, Qingzheng Chen, and Bowen Li. 2024. "Lower Limb Motion Recognition Based on sEMG and CNN-TL Fusion Model" Sensors 24, no. 21: 7087. https://doi.org/10.3390/s24217087
APA StyleZhou, Z., Tao, Q., Su, N., Liu, J., Chen, Q., & Li, B. (2024). Lower Limb Motion Recognition Based on sEMG and CNN-TL Fusion Model. Sensors, 24(21), 7087. https://doi.org/10.3390/s24217087