Optimizing the Agricultural Internet of Things (IoT) with Edge Computing and Low-Altitude Platform Stations
Abstract
:1. Introduction
- On the one hand, the works in [12,13] only consider the impact of a single edge computing server and fail to address the potential collaboration among multiple edge computing servers. This assumption limits the optimization of resources. Because a multi-server architecture can handle data tasks more efficiently, it can reduce latency and improve overall system performance. Therefore, we need to further investigate how multiple edge servers can work together to maximize the efficiency and responsiveness of agricultural data processing.
- On the other hand, although the works [14,15,16] explore task collaborative offloading using multiple edge computing servers installed on LAPSs, these studies are based on the implicit assumption that tasks to be offloaded can only be divided into two parts and cannot be further subdivided into multiple subtasks. In contrast, the authors in [17,18,19] focus on the offloading of multiple subtasks. Unfortunately, how to determine the priorities of subtasks to satisfy the practical task needs still requires further discussion.
- First, in the considered agricultural IoT scenario, each task is divided into multiple interdependent subtasks for processing. Next, we view the task dependencies as directed acyclic graphs (DAGs). Then, the problem of minimizing the total task processing delay is formulated by jointly considering task dependency and priority, equipment energy consumption, and the features of air–ground integrated communication.
- Second, to solve this non-convex optimization problem, we propose a heuristic task processing algorithm with priority selection by using graph theory. The proposed scheme ensures task dependency by facilitating collaboration among multiple edge computing servers.
2. System Model and Problem Formulation
2.1. LAPS-Aided Agricultural IoT Model
2.2. Computing Model
2.3. Transmission Model
2.4. Energy Consumption Model
2.5. Total Task Processing Delay Minimization Problem
3. Task Processing Scheme with Priority Selection
Algorithm 1 Task processing algorithm with priority selection |
|
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, R.; Ren, X.; Li, Y.; Wu, Y.; Sun, H.; Al-Absi, M.A. Machine-learning-based UAV-assisted agricultural information security architecture and intrusion detection. IEEE Internet Things J. 2023, 10, 18589–18598. [Google Scholar] [CrossRef]
- Adil, M.; Jan, M.A.; Liu, Y.; Abulkasim, H.; Farouk, A.; Song, H. A systematic survey: Se-curity threats to UAV-aided IoT applications, taxonomy, current challenges and requirements with future research directions. IEEE Trans. Intell. Transp. Syst. 2023, 24, 1437–1455. [Google Scholar] [CrossRef]
- Bai, Z.; Lin, Y.; Cao, Y.; Wang, W. Delay-aware cooperative task offloading for multi-UAV enabled edge-cloud computing. IEEE Trans. Mob. Comput. 2024, 23, 1034–1049. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, Z.; Mo, J.; Shu, C.; Min, G. Efficient task offloading with dependency guar-antees in ultra-dense edge networks. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 1–6 December 2019. [Google Scholar]
- Zheng, K.; Jiang, G.; Liu, X.; Chi, K.; Yao, X.; Liu, J. DRL-based offloading for computation delay minimization in wireless-powered multi-access edge computing. IEEE Trans. Commun. 2023, 71, 1755–1770. [Google Scholar] [CrossRef]
- He, Y.; Huang, F.; Wang, D.; Zhang, R.; Gu, X.; Pan, J. NOMA-enhanced cooperative re-laying systems in drone-enabled IoV: Capacity analysis and height optimization. IEEE Trans. Veh. Technol. 2024. early access. [Google Scholar] [CrossRef]
- Xiong, S.; Wang, Z.; Ni, Q.; Han, X. PoMC: An efficient blockchain consensus mechanism for agricultural Internet of Things. IEEE Internet Things J. 2024, 11, 15193–15204. [Google Scholar] [CrossRef]
- Li, X.; Hou, B.; Zhang, R.; Liu, Y. A review of RGB image-based Internet of Things in smart agriculture. IEEE Sens. J. 2023, 23, 24107–24122. [Google Scholar] [CrossRef]
- He, Y.; Wang, D.; Huang, F.; Zhang, R.; Min, L. Aerial-ground integrated vehicular networks: A UAV-vehicle collaboration perspective. IEEE Trans. Intell. Transp. Syst. 2024, 25, 5154–5169. [Google Scholar] [CrossRef]
- Adil, M.; Abulkasim, H.; Farouk, A.; Song, H. R3ACWU: A lightweight, trustworthy au-thentication scheme for UAV-assisted IoT applications. IEEE Trans. Intell. Transp. Syst. 2024, 25, 6161–6172. [Google Scholar] [CrossRef]
- Rashid, L.; Rubab, S.; Alhaisoni, M.; Alqahtani, A.; Alsubai, S.; Binbusayyis, A.; Bukhari, S.A.C. Analysis of dimensionality reduction techniques on Internet of Things data using machine learning. Sus. Energy Technol. Assess 2022, 52, 102304. [Google Scholar] [CrossRef]
- He, Y.; Wang, D.; Huang, F.; Zhang, R. An MEC-enabled framework for task offloading and power allocation in NOMA enhanced ABS-assisted VANETs. IEEE Commun. Lett. 2022, 26, 1353–1357. [Google Scholar] [CrossRef]
- Qian, P.; Wang, L.; Lin, Y.; Du, J.; Dong, X. Joint power allocation and task offloading in NOMA enhanced MEC for ABS-assisted ITS. IEEE Commun. Lett. 2023, 27, 2403–2407. [Google Scholar] [CrossRef]
- Dai, Y.; Xu, D.; Maharjan, S.; Zhang, Y. Joint load balancing and offloading in vehicular edge computing and networks. IEEE Internet Things J. 2019, 6, 4377–4387. [Google Scholar] [CrossRef]
- Duan, S.; Lyu, F.; Wu, H.; Chen, W.; Lu, H.; Dong, Z.; Shen, X. MOTO: Mobility-aware online task offloading with adaptive load balancing in small-cell MEC. IEEE Trans. Mob. Comput. 2024, 23, 645–659. [Google Scholar] [CrossRef]
- Han, Z.; Zhou, T.; Xu, T.; Hu, H. Joint user association and deployment optimization for delay-minimized UAV-aided MEC networks. IEEE Wirel. Commun. Lett. 2023, 12, 1791–1795. [Google Scholar] [CrossRef]
- Shu, C.; Zhao, Z.; Han, Y.; Min, G.; Duan, H. Multi-user offloading for edge computing networks: A dependency-aware and latency-optimal approach. IEEE Internet Things J. 2020, 7, 1678–1689. [Google Scholar] [CrossRef]
- Gao, M.; Shen, R.; Shi, L.; Qi, W.; Li, J.; Li, Y. Task partitioning and offloading in DNN-task enabled mobile edge computing networks. IEEE Trans. Mob. Comput. 2023, 22, 2435–2445. [Google Scholar] [CrossRef]
- Xu, X.; Yan, K.; Han, S.; Wang, B.; Tao, X.; Zhang, P. Learning-based edge-device collab-orative DNN inference in IoVT networks. IEEE Internet Things J. 2024, 11, 7989–8004. [Google Scholar] [CrossRef]
- Trinh, B.; Muntean, G.-M. A deep reinforcement learning-based offloading scheme for multi-access edge computing-supported extended reality systems. IEEE Trans. Veh. Technol. 2023, 72, 1254–1264. [Google Scholar] [CrossRef]
- Liu, S.; Yu, Y.; Lian, X.; Feng, Y.; She, C.; Yeoh, P.L.; Guo, L.; Vucetic, B.; Li, Y. Dependent task scheduling and offloading for minimizing deadline violation ratio in mobile edge computing networks. IEEE J. Sel. Areas Commun. 2023, 41, 538–554. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, H.; Zhang, X.; Chang, Z.; Jäntti, R.; Yang, K. Toward autonomous multi-UAV wireless network: A survey of reinforcement learning-based approaches. IEEE Commun. Surv. Tuts. 2023, 25, 3038–3067. [Google Scholar] [CrossRef]
- Alam, M.Z.; Jamalipour, A. Multi-agent DRL-based Hungarian algorithm (MADRLHA) for task offloading in multi-access edge computing Internet of Vehicles (IoVs). IEEE Trans. Wirel. Commun. 2022, 21, 7641–7652. [Google Scholar] [CrossRef]
- Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H.; Dutta, S.; Sabella, D. On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Commun. Surv. Tuts. 2017, 19, 1657–1681. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, X.; He, Z.; Chen, Y.; Zhang, Y. Dependency-aware task scheduling and layer loading for mobile edge computing networks. IEEE Internet Things J. 2024, 11, 34364–34381. [Google Scholar] [CrossRef]
- Tang, Z.; Lou, J.; Jia, W. Layer dependency-aware learning scheduling algorithms for containers in mobile edge computing. IEEE Trans. Mob. Comput. 2023, 22, 3444–3459. [Google Scholar] [CrossRef]
- Xu, B.; Kuang, Z.; Gao, J.; Zhao, L.; Wu, C. Joint offloading decision and trajectory design for UAV-enabled edge computing with task dependency. IEEE Trans. Wirel. Commun. 2023, 22, 5043–5055. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Wu, J.; He, Y. Optimizing the Agricultural Internet of Things (IoT) with Edge Computing and Low-Altitude Platform Stations. Sensors 2024, 24, 7094. https://doi.org/10.3390/s24217094
Yang D, Wu J, He Y. Optimizing the Agricultural Internet of Things (IoT) with Edge Computing and Low-Altitude Platform Stations. Sensors. 2024; 24(21):7094. https://doi.org/10.3390/s24217094
Chicago/Turabian StyleYang, Deshan, Jingwen Wu, and Yixin He. 2024. "Optimizing the Agricultural Internet of Things (IoT) with Edge Computing and Low-Altitude Platform Stations" Sensors 24, no. 21: 7094. https://doi.org/10.3390/s24217094
APA StyleYang, D., Wu, J., & He, Y. (2024). Optimizing the Agricultural Internet of Things (IoT) with Edge Computing and Low-Altitude Platform Stations. Sensors, 24(21), 7094. https://doi.org/10.3390/s24217094