Modulating Endoplasmic Reticulum Stress in Gastrointestinal Cancers: Insights from Traditional Chinese Medicine
Abstract
:1. Introduction
2. TCM as an Adjunctive Cancer Treatment
3. ER Stress and the UPR
4. ER Stress and Cancer
5. Natural Products Inducing ER Stress in GI Cancer
5.1. Saccharide and Glycoside
5.2. Quinone
5.3. Flavonoids
5.4. Phenylpropanoid
5.5. Terpenes
5.6. Alkaloids
5.7. Steroids
5.8. Polyphenols
5.9. Others
5.10. Nanoparticle Drug Delivery Systems
6. Advances in Clinical Trials of Natural Products in GI Treatment
7. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Abdul-Latif, M.; Townsend, K.; Dearman, C.; Shiu, K.K.; Khan, K. Immunotherapy in Gastrointestinal Cancer: The Current Scenario and Future Perspectives. Cancer Treat. Rev. 2020, 88, 102030. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Llovet, J.M.; Willoughby, C.E.; Singal, A.G.; Greten, T.F.; Heikenwälder, M.; El-Serag, H.B.; Finn, R.S.; Friedman, S.L. Nonalcoholic Steatohepatitis-Related Hepatocellular Carcinoma: Pathogenesis and Treatment. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 487–503. [Google Scholar] [CrossRef]
- Biller, L.H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. Jama 2021, 325, 669–685. [Google Scholar] [CrossRef]
- Watanabe, M.; Otake, R.; Kozuki, R.; Toihata, T.; Takahashi, K.; Okamura, A.; Imamura, Y. Recent Progress in Multidisciplinary Treatment for Patients with Esophageal Cancer. Surg. Today 2020, 50, 12–20. [Google Scholar] [CrossRef]
- Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.; Lordick, F. Gastric cancer. Lancet 2020, 396, 635–648. [Google Scholar] [CrossRef]
- Efferth, T. From Ancient Herb to Modern Drug: Artemisia Annua and Artemisinin for Cancer Therapy. Semin. Cancer Biol. 2017, 46, 65–83. [Google Scholar] [CrossRef]
- Zou, G.; Zhang, X.; Wang, L.; Li, X.; Xie, T.; Zhao, J.; Yan, J.; Wang, L.; Ye, H.; Jiao, S.; et al. Herb-Sourced Emodin Inhibits Angiogenesis of Breast Cancer by _targeting Vegfa Transcription. Theranostics 2020, 10, 6839–6853. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.; Cao, S.; Sun, Y.; He, X.; Jiang, B.; Yu, Y.; Duan, J.; Qiu, F.; Kang, N. Berberine Represses Human Gastric Cancer Cell Growth in Vitro and in Vivo by Inducing Cytostatic Autophagy via Inhibition of Mapk/Mtor/P70s6k and Akt Signaling Pathways. Biomed. Pharmacother. 2020, 128, 110245. [Google Scholar] [CrossRef]
- Devarajan, N.; Nathan, J.; Mathangi, R.; Mahendra, J.; Ganesan, S.K. Pharmacotherapeutic Values of Berberine: A Chinese Herbal Medicine for the Human Cancer Management. J. Biochem. Mol. Toxicol. 2023, 37, e23278. [Google Scholar] [CrossRef]
- Chen, X.; Cubillos-Ruiz, J.R. Endoplasmic Reticulum Stress Signals in the Tumour and Its Microenvironment. Nat. Rev. Cancer 2021, 21, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Tabas, I.; Ron, D. Integrating the Mechanisms of Apoptosis Induced by Endoplasmic Reticulum Stress. Nat. Cell Biol. 2011, 13, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Hetz, C. The Unfolded Protein Response: Controlling Cell Fate Decisions under Er Stress and Beyond. Nat. Rev. Mol. Cell Biol. 2012, 13, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Qi, F.; Cui, Y.; Zhao, L.; Sun, X.; Tang, W.; Cai, P. An Update on Chinese Herbal Medicines as Adjuvant Treatment of Anticancer Therapeutics. Biosci. Trends 2018, 12, 220–239. [Google Scholar] [CrossRef]
- Qi, F.; Zhao, L.; Zhou, A.; Zhang, B.; Li, A.; Wang, Z.; Han, J. The Advantages of Using Traditional Chinese Medicine as an Adjunctive Therapy in the Whole Course of Cancer Treatment Instead of Only Terminal Stage of Cancer. Biosci. Trends 2015, 9, 16–34. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Chen, Y.; Liang, C.L.; Liu, H.; Qiu, F.; Dai, Z. Antitumor Effects of Immunity-Enhancing Traditional Chinese Medicine. Biomed. Pharmacother. 2020, 121, 109570. [Google Scholar] [CrossRef]
- Senft, D.; Ronai, Z.A. UPR, Autophagy, and Mitochondria Crosstalk Underlies the Er Stress Response. Trends Biochem. Sci. 2015, 40, 141–148. [Google Scholar] [CrossRef]
- Hu, H.; Tian, M.; Ding, C.; Yu, S. The C/Ebp Homologous Protein (Chop) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection. Front. Immunol. 2018, 9, 3083. [Google Scholar] [CrossRef]
- Oakes, S.A. Endoplasmic Reticulum Stress Signaling in Cancer Cells. Am. J. Pathol. 2020, 190, 934–946. [Google Scholar] [CrossRef]
- Ghosh, R.; Wang, L.; Wang, E.S.; Perera, B.G.; Igbaria, A.; Morita, S.; Prado, K.; Thamsen, M.; Caswell, D.; Macias, H.; et al. Allosteric Inhibition of the Ire1α Rnase Preserves Cell Viability and Function During Endoplasmic Reticulum Stress. Cell 2014, 158, 534–548. [Google Scholar] [CrossRef]
- Ye, J.; Rawson, R.B.; Komuro, R.; Chen, X.; Davé, U.P.; Prywes, R.; Brown, M.S.; Goldstein, J.L. Er Stress Induces Cleavage of Membrane-Bound Atf6 by the Same Proteases That Process Srebps. Mol. Cell 2000, 6, 1355–1364. [Google Scholar] [CrossRef] [PubMed]
- Sriburi, R.; Jackowski, S.; Mori, K.; Brewer, J.W. XBP1: A Link between the Unfolded Protein Response, Lipid Biosynthesis, and Biogenesis of the Endoplasmic Reticulum. J. Cell Biol. 2004, 167, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shi, C.; He, M.; Xiong, S.; Xia, X. Endoplasmic Reticulum Stress: Molecular Mechanism and Therapeutic _targets. Signal Transduct. _target. Ther. 2023, 8, 352. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Shi, Y.; Oyang, L.; Cui, S.; Li, S.; Li, J.; Liu, L.; Li, Y.; Peng, M.; Tan, S.; et al. Endoplasmic Reticulum Stress—A Key Guardian in Cancer. Cell Death Discov. 2024, 10, 343. [Google Scholar] [CrossRef]
- Scriven, P.; Coulson, S.; Haines, R.; Balasubramanian, S.; Cross, S.; Wyld, L. Activation and Clinical Significance of the Unfolded Protein Response in Breast Cancer. Br. J. Cancer 2009, 101, 1692–1698. [Google Scholar] [CrossRef]
- Sheng, X.; Arnoldussen, Y.J.; Storm, M.; Tesikova, M.; Nenseth, H.Z.; Zhao, S.; Fazli, L.; Rennie, P.; Risberg, B.; Wæhre, H.; et al. Divergent Androgen Regulation of Unfolded Protein Response Pathways Drives Prostate Cancer. EMBO Mol. Med. 2015, 7, 788–801. [Google Scholar] [CrossRef]
- Baird, M.; Ang, P.W.; Clark, I.; Bishop, D.; Oshima, M.; Cook, M.C.; Hemmings, C.; Takeishi, S.; Worthley, D.; Boussioutas, A.; et al. The Unfolded Protein Response Is Activated in Helicobacter-Induced Gastric Carcinogenesis in a Non-Cell Autonomous Manner. Lab. Investig. 2013, 93, 112–122. [Google Scholar] [CrossRef]
- Geng, J.; Guo, Y.; Xie, M.; Li, Z.; Wang, P.; Zhu, D.; Li, J.; Cui, X. Characteristics of Endoplasmic Reticulum Stress in Colorectal Cancer for Predicting Prognosis and Developing Treatment Options. Cancer Med. 2023, 12, 12000–12017. [Google Scholar] [CrossRef]
- Liu, X.; Ren, B.; Fang, Y.; Ren, J.; Wang, X.; Gu, M.; Zhou, F.; Xiao, R.; Luo, X.; You, L.; et al. Comprehensive Analysis of Bulk and Single-Cell Transcriptomic Data Reveals a Novel Signature Associated with Endoplasmic Reticulum Stress, Lipid Metabolism, and Liver Metastasis in Pancreatic Cancer. J. Transl. Med. 2024, 22, 393. [Google Scholar] [CrossRef]
- Madden, E.; Logue, S.E.; Healy, S.J.; Manie, S.; Samali, A. The Role of the Unfolded Protein Response in Cancer Progression: From Oncogenesis to Chemoresistance. Biol. Cell 2019, 111, 1–17. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhou, Y.; Zheng, Z.; Tang, W.; Song, M.; Wang, J.; Wang, K. Lentinan Inhibited Colon Cancer Growth by Inducing Endoplasmic Reticulum Stress-Mediated Autophagic Cell Death and Apoptosis. Carbohydr. Polym. 2021, 267, 118154. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.Y.; Wang, M.T.; Dai, D.F.; Peng, J.L.; Wu, W.L. Salidroside Induces Apoptosis and Triggers Endoplasmic Reticulum Stress in Human Hepatocellular Carcinoma. Biochem. Biophys. Res. Commun. 2020, 527, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ji, X.; Chen, Z.; Yao, Z. Asiaticoside Suppresses Gastric Cancer Progression and Induces Endoplasmic Reticulum Stress through the Mir-635/Hmga1 Axis. J. Immunol. Res. 2022, 2022, 1917585. [Google Scholar] [CrossRef]
- Cheng, C.; Dong, W. Aloe-Emodin Induces Endoplasmic Reticulum Stress-Dependent Apoptosis in Colorectal Cancer Cells. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018, 24, 6331–6339. [Google Scholar] [CrossRef]
- Fu, X.; Zhao, W.; Li, K.; Zhou, J.; Chen, X. Cryptotanshinone Inhibits the Growth of Hct116 Colorectal Cancer Cells through Endoplasmic Reticulum Stress-Mediated Autophagy. Front. Pharmacol. 2021, 12, 653232. [Google Scholar] [CrossRef]
- Qi, H.; Zhang, X.; Liu, H.; Han, M.; Tang, X.; Qu, S.; Wang, X.; Yang, Y. Shikonin Induced Apoptosis Mediated by Endoplasmic Reticulum Stress in Colorectal Cancer Cells. J. Cancer 2022, 13, 243–252. [Google Scholar] [CrossRef]
- Zhang, Z.; Shen, C.; Zhou, F.; Zhang, Y. Shikonin Potentiates Therapeutic Efficacy of Oxaliplatin through Reactive Oxygen Species-Mediated Intrinsic Apoptosis and Endoplasmic Reticulum Stress in Oxaliplatin-Resistant Colorectal Cancer Cells. Drug Dev. Res. 2023, 84, 542–555. [Google Scholar] [CrossRef]
- Yuan, Y.J.; Liu, S.; Yang, H.; Xu, J.L.; Zhai, J.; Jiang, H.M.; Sun, B. Acetylshikonin Induces Apoptosis through the Endoplasmic Reticulum Stress-Activated Perk/Eif(2α)/Chop Axis in Oesophageal Squamous Cell Carcinoma. J. Cell. Mol. Med. 2024, 28, e18030. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, Y.; Wang, M. Brosimone I, an Isoprenoid-Substituted Flavonoid, Induces Cell Cycle G(1) Phase Arrest and Apoptosis through Ros-Dependent Endoplasmic Reticulum Stress in Hct116 Human Colon Cancer Cells. Food Funct. 2019, 10, 2729–2738. [Google Scholar] [CrossRef]
- Liu, C.; Xu, J.; Guo, C.; Chen, X.; Qian, C.; Zhang, X.; Zhou, P.; Yang, Y. Gambogenic Acid Induces Endoplasmic Reticulum Stress in Colorectal Cancer via the Aurora a Pathway. Front. Cell Dev. Biol. 2021, 9, 736350. [Google Scholar] [CrossRef]
- Albayrak, D.; Doğanlar, O.; Erdoğan, S.; Meraklı, M.; Doğan, A.; Turker, P.; Bostancı, A.; Doğanlar, Z.B. Naringin Combined with Nf-κb Inhibition and Endoplasmic Reticulum Stress Induces Apoptotic Cell Death via Ox-idative Stress and the Perk/Eif2α/Atf4/Chop Axis in Ht29 Colon Cancer Cells. Biochem. Genet. 2021, 59, 159–184. [Google Scholar] [CrossRef] [PubMed]
- Kwak, A.W.; Lee, J.Y.; Lee, S.O.; Seo, J.H.; Park, J.W.; Choi, Y.H.; Cho, S.S.; Yoon, G.; Lee, M.H.; Shim, J.H. Echinatin Induces Reactive Oxygen Species-Mediated Apoptosis via Jnk/P38 Mapk Signaling Pathway in Colorectal Cancer Cells. Phytother. Res. PTR 2023, 37, 563–577. [Google Scholar] [CrossRef]
- Gu, Q.; Zhu, C.; Wu, X.; Peng, L.; Huang, G.; Hu, R. Wogonoside Promotes Apoptosis and Er Stress in Human Gastric Cancer Cells by Regulating the Ire1α Pathway. Exp. Ther. Med. 2021, 21, 411. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, R.; Chen, Y.; Chen, X.; Li, Y.; Shen, J.; Yuan, M.; Chen, Y.; Wu, J.; Sun, Q. Nobiletin Inhibits De Novo Fa Synthesis to Alleviate Gastric Cancer Progression by Regulating Endoplasmic Reticulum Stress. Phytomed. Int. J. Phytother. Phytopharm. 2023, 116, 154902. [Google Scholar] [CrossRef]
- Liu, J.; Ren, L.; Wang, H.; Li, Z. Isoquercitrin Induces Endoplasmic Reticulum Stress and Immunogenic Cell Death in Gastric Cancer Cells. Biochem. Genet. 2023, 61, 1128–1142. [Google Scholar] [CrossRef]
- Kim, A.D.; Madduma Hewage, S.R.; Piao, M.J.; Kang, K.A.; Cho, S.J.; Hyun, J.W. Esculetin Induces Apoptosis in Human Colon Cancer Cells by Inducing Endoplasmic Reticulum Stress. Cell Biochem. Funct. 2015, 33, 487–494. [Google Scholar] [CrossRef]
- Sharma, S.H.; Rajamanickam, V.; Nagarajan, S. Antiproliferative Effect of P-Coumaric Acid _targets Upr Activation by Downregulating Grp78 in Colon Cancer. Chem.-Biol. Interact. 2018, 291, 16–28. [Google Scholar] [CrossRef]
- Pu, H.; Qian, Q.; Wang, F.; Gong, M.; Ge, X. Schizandrin a Induces the Apoptosis and Suppresses the Proliferation, Invasion and Migration of Gastric Cancer Cells by Ac-tivating Endoplasmic Reticulum Stress. Mol. Med. Rep. 2021, 24, 787. [Google Scholar] [CrossRef]
- Lee, M.; Yang, C.; Park, S.; Song, G.; Lim, W. Fraxetin Induces Cell Death in Colon Cancer Cells via Mitochondria Dysfunction and Enhances Therapeutic Effects in 5-Fluorouracil Resistant Cells. J. Cell. Biochem. 2022, 123, 469–480. [Google Scholar] [CrossRef]
- Peng, K.Y.; Chou, T.C. Osthole Exerts Inhibitory Effects on Hypoxic Colon Cancer Cells via Eif2[Formula: See Text] Phosphorylation-Mediated Apoptosis and Regulation of Hif-1[Formula: See Text]. Am. J. Chin. Med. 2022, 50, 621–637. [Google Scholar] [CrossRef]
- Song, J.; Xu, X.; He, S.; Wang, N.; Bai, Y.; Chen, Z.; Li, B.; Zhang, S. Myristicin Suppresses Gastric Cancer Growth via _targeting the Egfr/Erk Signaling Pathway. Curr. Mol. Pharmacol. 2023, 16, 712–724. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.Y.; Yang, C.K.; Chen, M.Y.; Yadav, V.K.; Fong, I.H.; Yeh, C.T.; Cherng, Y.G. Furanocoumarin Notopterol: Inhibition of Hepatocellular Carcinogenesis through Suppression of Cancer Stemness Signaling and Induction of Oxidative Stress-Associated Cell Death. Nutrients 2023, 15, 2447. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Chen, Z.; Lin, W.; Wu, Q.; Wu, Y.; Hong, Y.; Tong, H.; Wang, C.; Zhang, Y. Esculin Induces Endoplasmic Reticulum Stress and Drives Apoptosis and Ferroptosis in Colorectal Cancer via Perk Regulating Eif2α/Chop and Nrf2/Ho-1 Cascades. J. Ethnopharmacol. 2024, 328, 118139. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.W. Paeoniflorin Induces Er Stress-Mediated Apoptotic Cell Death by Generating Nox4-Derived Ros under Radiation in Gastric Cancer. Nutrients 2023, 15, 5092. [Google Scholar] [CrossRef]
- Lu, M.; Sun, L.; Zhou, J.; Zhao, Y.; Deng, X. Dihydroartemisinin-Induced Apoptosis Is Associated with Inhibition of Sarco/Endoplasmic Reticulum Calcium Atpase Activity in Colorectal Cancer. Cell Biochem. Biophys. 2015, 73, 137–145. [Google Scholar] [CrossRef]
- Wei, R.; Zhao, Y.; Wang, J.; Yang, X.; Li, S.; Wang, Y.; Yang, X.; Fei, J.; Hao, X.; Zhao, Y.; et al. Tagitinin C Induces Ferroptosis through Perk-Nrf2-Ho-1 Signaling Pathway in Colorectal Cancer Cells. Int. J. Biol. Sci. 2021, 17, 2703–2717. [Google Scholar] [CrossRef]
- Huang, Z.; Gan, S.; Zhuang, X.; Chen, Y.; Lu, L.; Wang, Y.; Qi, X.; Feng, Q.; Huang, Q.; Du, B.; et al. Artesunate Inhibits the Cell Growth in Colorectal Cancer by Promoting Ros-Dependent Cell Senescence and Autophagy. Cells 2022, 11, 2472. [Google Scholar] [CrossRef]
- Banerjee, A.; Banerjee, V.; Czinn, S.; Blanchard, T. Increased Reactive Oxygen Species Levels Cause Er Stress and Cytotoxicity in Andrographolide Treated Colon Cancer Cells. Onco_target 2017, 8, 26142–26153. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; He, H.; Han, Q.; Wang, B.; Zhu, Y. Influence of Tanshinone Iia on Apoptosis of Human Esophageal Carcinoma Eca-109 Cells and Its Molecular Mechanism. Thorac. Cancer 2017, 8, 296–303. [Google Scholar] [CrossRef]
- Chen, P.; Zhong, X.; Song, Y.; Zhong, W.; Wang, S.; Wang, J.; Huang, P.; Niu, Y.; Yang, W.; Ding, Z.; et al. Triptolide Induces Apoptosis and Cytoprotective Autophagy by Ros Accumulation via Directly _targeting Peroxiredoxin 2 in Gastric Cancer Cells. Cancer Lett. 2024, 587, 216622. [Google Scholar] [CrossRef]
- Zhou, F.; Gao, H.; Shang, L.; Li, J.; Zhang, M.; Wang, S.; Li, R.; Ye, L.; Yang, S. Oridonin Promotes Endoplasmic Reticulum Stress via Tp53-Repressed Tcf4 Transactivation in Colorectal Cancer. J. Exp. Clin. Cancer Res. CR 2023, 42, 150. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.C.; Hsu, H.H.; Chu, Y.Y.; Cheng, S.F.; Shen, C.Y.; Lin, Y.J.; Chen, R.J.; Viswanadha, V.P.; Lin, Y.M.; Huang, C.Y. Lupeol Alters Er Stress-Signaling Pathway by Downregulating Abcg2 Expression to Induce Oxaliplatin-Resistant Lovo Colo-rectal Cancer Cell Apoptosis. Environ. Toxicol. 2018, 33, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Bi, Y.; Guo, J.; Liu, Y.; Zhong, J.; Liu, Y.; Pan, L.; Guo, Y.; Tan, Y.; Yu, X. Effect of Pristimerin on Apoptosis through Activation of Ros/Endoplasmic Reticulum (Er) Stress-Mediated Noxa in Colorectal Cancer. Phytomed. Int. J. Phytother. Phytopharm. 2021, 80, 153399. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Fan, R.; Yin, Z.; Huang, Y.; Huang, D.; Yuan, F.; Yin, A.; Tang, G.; Pu, R.; Yin, S. Glochodpurnoid B from Glochidion puberum Induces Endoplasmic Reticulum Stress-Mediated Apoptosis in Colorectal Cancer Cells. Molecules 2023, 28, 511. [Google Scholar] [CrossRef]
- Kim, T.W. _targeting Er Stress with Saikosaponin a to Overcome Resistance under Radiation in Gastric Cancer Cells. Int. J. Mol. Sci. 2023, 24, 5661. [Google Scholar] [CrossRef]
- Huang, J.L.; Liang, L.; Xie, P.E.; Sun, W.L.; Wang, L.; Cai, Z.W. Cucurbitacin B Induces Apoptosis in Colorectal Cells through Reactive Oxygen Species Generation and Endoplasmic Reticu-lum Stress Pathways. Exp. Ther. Med. 2023, 26, 484. [Google Scholar] [CrossRef]
- Yaffe, P.B.; Power Coombs, M.R.; Doucette, C.D.; Walsh, M.; Hoskin, D.W. Piperine, an Alkaloid from Black Pepper, Inhibits Growth of Human Colon Cancer Cells via G1 Arrest and Apoptosis Trig-gered by Endoplasmic Reticulum Stress. Mol. Carcinog. 2015, 54, 1070–1085. [Google Scholar] [CrossRef]
- Cao, S. Effect of Apoptosis on Implanted Human Esophageal Carcinoma in Nude Mouse by Oxymatrine Injection. China J. Tradit. Chin. Med. Pharm. 2014, 29, 2047–2049. [Google Scholar]
- Chen, W.; Lian, W.; Yuan, Y.; Li, M. The Synergistic Effects of Oxaliplatin and Piperlongumine on Colorectal Cancer Are Mediated by Oxidative Stress. Cell Death Dis. 2019, 10, 600. [Google Scholar] [CrossRef]
- Tian, J.; Mo, J.; Xu, L.; Zhang, R.; Qiao, Y.; Liu, B.; Jiang, L.; Ma, S.; Shi, G. Scoulerine Promotes Cell Viability Reduction and Apoptosis by Activating Ros-Dependent Endoplasmic Reticulum Stress in Colorectal Cancer Cells. Chem.-Biol. Interact. 2020, 327, 109184. [Google Scholar] [CrossRef]
- Jiang, X.; Hu, Y.; Peng, J.; Luo, X.; Su, L.; Tang, Y. Fangchinoline Exerts Anticancer Effects on Colorectal Cancer Cells by Evoking Cell Apoptosis via Endoplasmic Reticulum Stress. Bull. Exp. Biol. Med. 2023, 174, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Pan, Y.; Xu, T.; Zhang, L.; Chen, X.; Wang, F.; Liu, Q.; Jia, L. Daurisoline Inhibits Escc by Inducing G1 Cell Cycle Arrest and Activating Er Stress to Trigger Noxa-Dependent Intrinsic and Chop-Dr5-Dependent Extrinsic Apoptosis via P-Eif2α-Atf4 Axis. Oxidative Med. Cell. Longev. 2022, 2022, 5382263. [Google Scholar] [CrossRef] [PubMed]
- Obakan-Yerlikaya, P.; Arisan, E.D.; Coker-Gurkan, A.; Adacan, K.; Ozbey, U.; Somuncu, B.; Baran, D.; Palavan-Unsal, N. Calreticulin Is a Fine Tuning Molecule in Epibrassinolide-Induced Apoptosis through Activating Endoplasmic Reticulum Stress in Colon Cancer Cells. Mol. Carcinog. 2017, 56, 1603–1619. [Google Scholar] [CrossRef]
- Alnuqaydan, A.M.; Rah, B.; Almutary, A.G.; Chauhan, S.S. Synergistic Antitumor Effect of 5-Fluorouracil and Withaferin-a Induces Endoplasmic Reticulum Stress-Mediated Autophagy and Apoptosis in Colorectal Cancer Cells. Am. J. Cancer Res. 2020, 10, 799–815. [Google Scholar]
- Yang, Y.; Liu, Y.; Zhang, Y.; Ji, W.; Wang, L.; Lee, S.C. Periplogenin Activates Ros-Er Stress Pathway to Trigger Apoptosis via Bip-Eif2α- Chop and Ire1α-Ask1-Jnk Signaling Routes. Anti-Cancer Agents Med. Chem. 2021, 21, 61–70. [Google Scholar] [CrossRef]
- Park, J.W.; Woo, K.J.; Lee, J.T.; Lim, J.H.; Lee, T.J.; Kim, S.H.; Choi, Y.H.; Kwon, T.K. Resveratrol Induces Pro-Apoptotic Endoplasmic Reticulum Stress in Human Colon Cancer Cells. Oncol. Rep. 2007, 18, 1269–1273. [Google Scholar] [CrossRef]
- Xu, W.; Cheng, M.; Lao, Y.; Wang, X.; Wu, J.; Zhou, L.; Zhang, Y.; Xu, H.; Xu, N. DNA Damage and Er Stress Contribute to Oblongifolin C-Induced Cell Killing in Bax/Bak-Deficient Cells. Biochem. Biophys. Res. Commun. 2015, 457, 300–306. [Google Scholar] [CrossRef]
- Wu, C.; Huang, H.; Choi, H.Y.; Ma, Y.; Zhou, T.; Peng, Y.; Pang, K.; Shu, G.; Yang, X. Anti-Esophageal Cancer Effect of Corilagin Extracted from Phmllanthi Fructus via the Mitochondrial and Endoplasmic Reticulum Stress Pathways. J. Ethnopharmacol. 2021, 269, 113700. [Google Scholar] [CrossRef]
- Zhang, K.; Hu, X.; Su, J.; Li, D.; Thakur, A.; Gujar, V.; Cui, H. Gastrointestinal Cancer Therapeutics via Triggering Unfolded Protein Response and Endoplasmic Reticulum Stress by 2-Arylbenzofuran. Int. J. Mol. Sci. 2024, 25, 999. [Google Scholar] [CrossRef]
- Nishiguch, Y.; Fujiwara-Tani, R.; Nukaga, S.; Nishida, R.; Ikemoto, A.; Sasaki, R.; Mori, S.; Ogata, R.; Kishi, S.; Hojo, Y.; et al. Pterostilbene Induces Apoptosis from Endoplasmic Reticulum Stress Synergistically with Anticancer Drugs That Deposit Iron in Mitochondria. Int. J. Mol. Sci. 2024, 25, 2611. [Google Scholar] [CrossRef]
- Cao, A.; Li, Q.; Yin, P.; Dong, Y.; Shi, H.; Wang, L.; Ji, G.; Xie, J.; Wu, D. Curcumin Induces Apoptosis in Human Gastric Carcinoma Ags Cells and Colon Carcinoma Ht-29 Cells through Mitochondrial Dysfunction and Endoplasmic Reticulum Stress. Apoptosis Int. J. Program. Cell Death 2013, 18, 1391–1402. [Google Scholar] [CrossRef]
- Huang, Y.F.; Zhu, D.J.; Chen, X.W.; Chen, Q.K.; Luo, Z.T.; Liu, C.C.; Wang, G.X.; Zhang, W.J.; Liao, N.Z. Curcumin Enhances the Effects of Irinotecan on Colorectal Cancer Cells through the Generation of Reactive Oxygen Species and Activation of the Endoplasmic Reticulum Stress Pathway. Onco_target 2017, 8, 40264–40275. [Google Scholar] [CrossRef]
- Zhu, C.; Fang, Z.; Peng, L.; Gao, F.; Peng, W.; Song, F. Curcumin Suppresses the Progression of Colorectal Cancer by Improving Immunogenic Cell Death Caused by Irinotecan. Chemotherapy 2022, 67, 211–222. [Google Scholar] [CrossRef]
- Xu, W.; Shen, Y. Curcumin Affects Apoptosis of Colorectal Cancer Cells through Atf6-Mediated Endoplasmic Reticulum Stress. Chem. Biol. Drug Des. 2024, 103, e14433. [Google Scholar] [CrossRef]
- Tian, P.J.; Li, B.L.; Shan, Y.J.; Zhang, J.N.; Chen, J.Y.; Yu, M.; Zhang, L.W. Extraction of Peptidoglycan from L. paracasei subp. Paracasei X12 and Its Preliminary Mechanisms of Inducing Immunogenic Cell Death in Ht-29 Cells. Int. J. Mol. Sci. 2015, 16, 20033–20049. [Google Scholar] [CrossRef]
- Salah, A.; Bouaziz, C.; Prola, A.; Pires Da Silva, J.; Bacha, H.; Abid-Essefi, S.; Lemaire, C. Citrinin Induces Apoptosis in Human Hct116 Colon Cancer Cells through Endoplasmic Reticulum Stress. J. Toxicol. Environ. Health Part A 2017, 80, 1230–1241. [Google Scholar] [CrossRef]
- Kuang, H.; Sun, X.; Liu, Y.; Tang, M.; Wei, Y.; Shi, Y.; Li, R.; Xiao, G.; Kang, J.; Wang, F.; et al. Palmitic Acid-Induced Ferroptosis via Cd36 Activates Er Stress to Break Calcium-Iron Balance in Colon Cancer Cells. FEBS J. 2023, 290, 3664–3687. [Google Scholar] [CrossRef]
- Xue, W.; Sun, R.; Hao, Z.; Xing, Z.; Cheng, H.; Shao, L. Heterophyllin B Ameliorates Gastric Cancer Tumor Growth through Activating Er Stress. Tissue Cell 2023, 83, 102129. [Google Scholar] [CrossRef]
- Qi, W.; Li, Z.; Yang, C.; Jiangshan Dai, J.; Zhang, Q.; Wang, D.; Wu, C.; Xia, L.; Xu, S. Inhibitory Mechanism of Muscone in Liver Cancer Involves the Induction of Apoptosis and Autophagy. Oncol. Rep. 2020, 43, 839–850. [Google Scholar] [CrossRef]
- Kim, T.W. Cinnamaldehyde Induces Autophagy-Mediated Cell Death through Er Stress and Epigenetic Modification in Gastric Cancer Cells. Acta Pharmacol. Sin. 2022, 43, 712–723. [Google Scholar] [CrossRef]
- Xiao, B.; Liu, C.; Liu, B.T.; Zhang, X.; Liu, R.R.; Zhang, X.W. Ttf1-Nps Induce Ers-Mediated Apoptosis and Inhibit Human Hepatoma Cell Growth in Vitro and in Vivo. Oncol. Res. 2016, 23, 311–320. [Google Scholar] [CrossRef]
- Zhao, C.; Cao, W.; Zheng, H.; Xiao, Z.; Hu, J.; Yang, L.; Chen, M.; Liang, G.; Zheng, S.; Zhao, C. Acid-Responsive Nanoparticles as a Novel Oxidative Stress-Inducing Anticancer Therapeutic Agent for Colon Cancer. Int. J. Nanomed. 2019, 14, 1597–1618. [Google Scholar] [CrossRef]
- Jiang, Y.; Yu, X.; Su, C.; Zhao, L.; Shi, Y. Chitosan Nanoparticles Induced the Antitumor Effect in Hepatocellular Carcinoma Cells by Regulating Ros-Mediated Mitochondrial Damage and Endoplasmic Reticulum Stress. Artif. Cells Nanomed. Biotechnol. 2019, 47, 747–756. [Google Scholar] [CrossRef]
- Cheng, T.; Zhang, Z.; Shen, H.; Jian, Z.; Li, J.; Chen, Y.; Shen, Y.; Dai, X. Topically Applicated Curcumin/Gelatin-Blended Nanofibrous Mat Inhibits Pancreatic Adenocarcinoma by Increasing Ros Production and Endoplasmic Reticulum Stress Mediated Apoptosis. J. Nanobiotechnol. 2020, 18, 126. [Google Scholar] [CrossRef]
- Dennert, G.; Tucker, D. Antitumor Polysaccharide Lentinan. A T Cell Adjuvant. J. Natl. Cancer Inst. 1973, 51, 1727–1729. [Google Scholar] [CrossRef]
- Wang, J.; Li, W.; Huang, X.; Liu, Y.; Li, Q.; Zheng, Z.; Wang, K. A Polysaccharide from Lentinus Edodes Inhibits Human Colon Cancer Cell Proliferation and Suppresses Tumor Growth in Athymic Nude Mice. Onco_target 2017, 8, 610–623. [Google Scholar] [CrossRef]
- Zhao, G.; Shi, A.; Fan, Z.; Du, Y. Salidroside Inhibits the Growth of Human Breast Cancer in Vitro and in Vivo. Oncol. Rep. 2015, 33, 2553–2560. [Google Scholar] [CrossRef]
- Yu, G.; Li, N.; Zhao, Y.; Wang, W.; Feng, X.L. Salidroside Induces Apoptosis in Human Ovarian Cancer Skov3 and A2780 Cells through the P53 Signaling Pathway. Oncol. Lett. 2018, 15, 6513–6518. [Google Scholar] [CrossRef]
- Li, H.; Chen, C. Inhibition of Autophagy Enhances Synergistic Effects of Salidroside and Anti-Tumor Agents against Colorectal Cancer. BMC Complement. Altern. Med. 2017, 17, 538. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, S.; Zhang, Z.; Xu, H.; Zhang, W.; Xu, D.; Lin, B.; Mei, Y. Asiaticoside Alleviates Cerebral Ischemia-Reperfusion Injury Via Nod2/Mitogen-Activated Protein Kinase (Mapk)/Nuclear Factor Kappa B (Nf-κb) Signaling Pathway. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2020, 26, e920325. [Google Scholar] [CrossRef]
- Tseng, H.S.; Wang, Y.F.; Tzeng, Y.M.; Chen, D.R.; Liao, Y.F.; Chiu, H.Y.; Hsieh, W.T. Aloe-Emodin Enhances Tamoxifen Cytotoxicity by Suppressing Ras/Erk and Pi3k/Mtor in Breast Cancer Cells. Am. J. Chin. Med. 2017, 45, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Y.; Zhang, J.H.; Gao, J.H.; Li, Y.S. Aloe-Emodin (Ae) Nanoparticles Suppresses Proliferation and Induces Apoptosis in Human Lung Squamous Carcinoma via Ros Generation In vitro and In vivo. Biochem. Biophys. Res. Commun. 2017, 490, 601–607. [Google Scholar] [CrossRef]
- Wang, L.; Wang, R.; Wei, G.Y.; Zhang, R.P.; Zhu, Y.; Wang, Z.; Wang, S.M.; Du, G.H. Cryptotanshinone Alleviates Chemotherapy-Induced Colitis in Mice with Colon Cancer via Regulating Fecal-Bacteria-Related Lipid Metabolism. Pharmacol. Res. 2021, 163, 105232. [Google Scholar] [CrossRef]
- Shen, S.; Feng, H.; Le, Y.; Ni, J.; Yu, L.; Wu, J.; Bai, M. Rack1 Affects the Progress of G2/M by Regulating Aurora-A. Cell Cycle 2019, 18, 2228–2238. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Liang, J.J.; Wang, D.L.; Chen, J.B.; Cao, J.P.; Wang, Y.; Sun, C.D. Nobiletin as a Chemopreventive Natural Product against Cancer, a Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 6309–6329. [Google Scholar] [CrossRef]
- Xu, X.; Rajamanicham, V.; Xu, S.; Liu, Z.; Yan, T.; Liang, G.; Guo, G.; Zhou, H.; Wang, Y. Schisandrin a Inhibits Triple Negative Breast Cancer Cells by Regulating Wnt/Er Stress Signaling Pathway. Biomed. Pharmacother. 2019, 115, 108922. [Google Scholar] [CrossRef]
- Lee, J.; Song, C.H. Effect of Reactive Oxygen Species on the Endoplasmic Reticulum and Mitochondria During Intracellular Pathogen Infection of Mammalian Cells. Antioxidants 2021, 10, 872. [Google Scholar] [CrossRef]
- Lu, J.J.; Chen, S.M.; Zhang, X.W.; Ding, J.; Meng, L.H. The Anti-Cancer Activity of Dihydroartemisinin Is Associated with Induction of Iron-Dependent Endoplasmic Reticulum Stress in Colorectal Carcinoma Hct116 Cells. Investig. New Drugs 2011, 29, 1276–1283. [Google Scholar] [CrossRef]
- Krishna, S.; Ganapathi, S.; Ster, I.C.; Saeed, M.E.; Cowan, M.; Finlayson, C.; Kovacsevics, H.; Jansen, H.; Kremsner, P.G.; Efferth, T.; et al. A Randomised, Double Blind, Placebo-Controlled Pilot Study of Oral Artesunate Therapy for Colorectal Cancer. EBioMedicine 2015, 2, 82–90. [Google Scholar] [CrossRef]
- Hong, H.; Cao, W.; Wang, Q.; Liu, C.; Huang, C. Synergistic Antitumor Effect of Andrographolide and Cisplatin through Ros-Mediated Er Stress and Stat3 Inhibition in Colon Cancer. Med. Oncol. 2022, 39, 101. [Google Scholar] [CrossRef]
- Kadosh, E.; Snir-Alkalay, I.; Venkatachalam, A.; May, S.; Lasry, A.; Elyada, E.; Zinger, A.; Shaham, M.; Vaalani, G.; Mernberger, M.; et al. The Gut Microbiome Switches Mutant P53 from Tumour-Suppressive to Oncogenic. Nature 2020, 586, 133–138. [Google Scholar] [CrossRef]
- Zou, P.; Xia, Y.; Ji, J.; Chen, W.; Zhang, J.; Chen, X.; Rajamanickam, V.; Chen, G.; Wang, Z.; Chen, L.; et al. Piperlongumine as a Direct Trxr1 Inhibitor with Suppressive Activity against Gastric Cancer. Cancer Lett. 2016, 375, 114–126. [Google Scholar] [CrossRef]
- Fichera, G.A.; Giese, G. Non-Immunologically-Mediated Cytotoxicity of Lactobacillus Casei and Its Derivative Peptidoglycan against Tumor Cell Lines. Cancer Lett. 1994, 85, 93–103. [Google Scholar] [CrossRef]
- de Menezes, A.P.M.; Aguiar, R.P.S.; Santos, J.V.O.; Sarkar, C.; Islam, M.T.; Braga, A.L.; Hasan, M.M.; da Silva, F.C.C.; Sharifi-Rad, J.; Dey, A.; et al. Citrinin as a Potential Anti-Cancer Therapy: A Comprehensive Review. Chem.-Biol. Interact. 2023, 381, 110561. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angew. Chem. 2014, 53, 12320–12364. [Google Scholar] [CrossRef] [PubMed]
- Adiwidjaja, J.; McLachlan, A.J.; Boddy, A.V. Curcumin as a Clinically-Promising Anti-Cancer Agent: Pharmacokinetics and Drug Interactions. Expert Opin. Drug Metab. Toxicol. 2017, 13, 953–972. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ouyang, Z.; Du, H.; Wang, M.; Wang, J.; Sun, H.; Kong, L.; Xu, Q.; Ma, H.; Sun, Y. New Opportunities and Challenges of Natural Products Research: When _target Identification Meets Single-Cell Multiomics. Acta Pharm. Sin. B 2022, 12, 4011–4039. [Google Scholar] [CrossRef]
- Yang, C.; Li, D.; Ko, C.N.; Wang, K.; Wang, H. Active Ingredients of Traditional Chinese Medicine for Enhancing the Effect of Tumor Immunotherapy. Front. Immunol. 2023, 14, 1133050. [Google Scholar] [CrossRef]
- Hay, M.; Thomas, D.W.; Craighead, J.L.; Economides, C.; Rosenthal, J. Clinical Development Success Rates for Investigational Drugs. Nat. Biotechnol. 2014, 32, 40–51. [Google Scholar] [CrossRef]
Category | TCM | Cancer types | Mechanism | Ref. |
---|---|---|---|---|
Saccharide | Lentinan | CRC | p-IRE1α↑ p-PERK↑ p-eIF2α↑ ATF4↑ BIP↑ CHOP↑ | [31] |
Bcl-2↓ Bax↑ Cleaved-caspase-3↑ p62↓ LC3-II↑ | ||||
Glycoside | Salidroside | HCC | p-PERK↑ p-eIF2α↑ ATF6↑ CHOP↑ | [32] |
Bcl-2↓ Bax↑ Cyt-c↑ | ||||
Asiaticoside | GC | CHOP↑ BiP↑ | [33] | |
E-cadherin↑ N-cadherin↓ | ||||
Quinone | Aloe emodin | CRC | BiP↑ p-PERK↑ p-eIF2α↑ CHOP↑ | [34] |
Bcl-2↓ Bax↑ Calpain-1↑ Calpain-2↑ Caspase-12↑ | ||||
Cryptotanshinone | CRC | BIP↑ p-PERK↑ | [35] | |
LC3B↑ Beclin-1↑ | ||||
Shikonin | CRC | p-PERK↑ p-eIF2α↑ ATF4↑ BIP↑ CHOP↑ | [36] | |
Bcl-2↓ Cleaved-caspase-3/9↑ Cleaved-PARP↑ p-JNK↑ | ||||
Shikonin+Oxaliplatin | CRC | p-PERK↑ p-eIF2α↑ ATF4↑ | [37] | |
Bcl-2↓ Bax↑ Cleaved-caspase-3↑ Cleaved-PARP↑ | ||||
Acetylshikonin | ESCC | CHOP↑ BIP↑ p-eIF2α↑ | [38] | |
Bax↑ Cleaved-caspase-3↑ Cleaved-PARP↑ | ||||
Flavonoid | Brosimone I | CRC | p-PERK↑ CHOP↑ BiP↑ | [39] |
CaMKKβ↑ p-AMPK↑ | ||||
Gambogenic Acid | CRC | p-PERK↑ p-eIF2α↑ ATF4↑ BIP↑ IRE1α↑ | [40] | |
Aurora A↓ | ||||
Naringin | CRC | p-PERK↑ p-eIF2α↑ CHOP↑ ATF4↑ | [41] | |
NF-κB↓ Bcl-2↓ Bax↑ | ||||
Echinatin | CRC | CHOP↑ BiP↑ DR4↑ DR5↑ | [42] | |
Bcl-2↓ Bax↑ cyto-c↑ p-JNK↑ p-p38↑ | ||||
Wogonoside | GC | CHOP↑ BiP↑ GRP94↑ | [43] | |
Bcl-2↓ Bax↑ Cleaved-caspase-3↑ p-ASK↑ p-JNK↑ TRAF2↑ IRE1α↑ | ||||
Nobiletin | GC | CHOP↑ BiP↑ | [44] | |
Bcl-2↓ Bax↑ Cleaved-caspase-3↑ ACLY↓ FASN↓ | ||||
Isoquercitrin | GC | p-PERK↑ p-eIF2α↑ CHOP↑ BiP↑ | [45] | |
Bcl-2↓ Bax↑ Cleaved-caspase-3↑ caspase-12↑ HMGB1↑ HSP70↑ HSP90↑ | ||||
Phenylprop-anoid | Esculetin | CRC | p-PERK↑ p-eIF2α↑ p-IRE1α↑ CHOP↑ BiP↑ | [46] |
Cleaved-ATF6↑ Spliced XBP1↑ Cleaved-caspase-12↑ | ||||
p-Coumaric acid | CRC | p-PERK↑ p-eIF2α↑ CHOP↑ BiP↑ ATF4↑ | [47] | |
Bcl-xL↓ cyto-c↑ P53↑ | ||||
Schizandrin A | GC | p-PERK↑ p-eIF2α↑ CHOP↑ | [48] | |
MMP-2↓ MMP-9↓ E-cadherin↑ N-cadherin↓ Bcl-2↓ Bax↑ Cleaved-caspase-3↑ Cleaved-PARP↑ | ||||
Fraxetin | CRC | BiP↑ CATF6α↑ | [49] | |
Bcl-2↓ Bax↑ MFN2↓ VDAC↓ p-AKT↑ p-ENK1/2↑ p-JNK↑ p-P38↑ | ||||
Osthole | CRC | p-eIF2α↑ ATF4↑ CHOP↑ DR5↑ | [50] | |
Cleaved-caspase-3↑ | ||||
Myristicin | GC | Bax↑ cyto-c↑ EGFR/ERK↓ | [51] | |
Notopterol | HCC | CHOP↑ ATF4↓ | [52] | |
p-Jak2↓ GPX1↓ CAT↓ SOD1↓ Snail↓ β-cat↓ N-Cad↓ OCT4↓ CD133↓ SOX2↓ | ||||
Esculin | CRC | CHOP↑ BiP↑ p-eIF2α↑ PERK↑ | [53] | |
Bcl-2↓ Cleaved-caspase-3↑ P53↑ p-Nrf2↑ HO-1↑ | ||||
Terpene | Paeoniflorin | GC | p-eIF2α↑ p-PERK↑ ATF4↑ CHOP↑ BIP↑ | [54] |
Cleaved-caspase-3/9↑ | ||||
Dihydroartemisinin | CRC | CHOP↑ | [55] | |
Bcl-2↓ Bax↑ Caspase-3↑ Bid(MT)↑ | ||||
Tagitinin C | CRC | BIP↑ IRE1α↑ PERK↑ | [56] | |
Nrf2↑ HO-1↑ | ||||
Artesunate | CRC | BIP↑ IRE1α↑ p-IRE1α↑ CHOP↑ DR5↑ | [57] | |
LC3A↑ LC3B↑ p62↑ | ||||
Andrographolide | CRC | p-eIF2α↑ ATF4↑ CHOP↑ | [58] | |
p-STAT3↓ | ||||
Tanshinone IIA | EC | BIP↓ | [59] | |
cyto-c↑ Caspase-9↑ | ||||
Triptolide | GC | CHOP↑ BiP↑ p-eIF2α↑ ATF4↑ | [60]. | |
p62↓ LC3-II↑ | ||||
Oridonin | CRC | CHOP↑ ATF4↑ | [61]. | |
TP53↑ Wnt↓ β-catenin↓ | ||||
Lupeol | CRC | p-eIF2α↑ | [62]. | |
Caspase-3↑ ABCG2↓ | ||||
Pristimerin | CRC | p-IRE1α↑ BiP↑ ATF6↑ p-PERK↑ | [63] | |
Cleaved-caspase-3↑ Noxa↑ p-JNK↑ | ||||
Glochodpurnoid B | CRC | CHOP↑ ATF4↑ | [64] | |
Bcl-2↓ Bax↑ Cleaved-caspase-3↑ Cleaved-PARP↑ | ||||
Saikosaponin A | GC | p-PERK↑ p-eIF2α↑ CHOP↑ ATF4↑ | [65] | |
E-cadherin↑ N-cadherin↓ Cleaved-caspase-3/8/9↑ Cleaved-PARP↑ | ||||
Cucurbitacin B | CRC | p-PERK↑ p-eIF2α↑ BiP↑ ATF4↑ CHOP↑ | [66] | |
Bcl-2↓ Bax↑ | ||||
Alkaloid | Piperine | CRC | CHOP↑ IRE1α↑ BIP↑ | [67] |
cyto-c↑ p-JNK↑ p38↑ p-Akt↓ | ||||
Oxymatrine | EC | Bip↓ CHOP↑ | [68] | |
Piperlongumin | CRC | p-eIF2α↑ ATF4↑ CHOP↑ | [69]. | |
p-JNK↑ Bcl-2↓ Bax↑ | ||||
Scoulerine | CRC | CHOP↑ BiP↑ | [70] | |
Bcl-2↓ Bax↑ cyto-c↑ | ||||
Fangchinoline | CRC | p-PERK↑ p-eIF2α↑ ATF4↑ CHOP↑ | [71] | |
Bcl-2↓ Bax↑ Caspase-3↑ | ||||
Daurisoline | EC | p-eIF2α↑ CHOP↑ DR5↑ ATF4↑ | [72] | |
Noxa↑ P53↑ Puma↓ Bcl-2↓ Mcl-1↓ | ||||
Steroid | Epibrassinolide | CRC | p-eIF2α↑ CHOP↑ BiP↑ ATF6↑ ATF4↑ | [73] |
CALR↑ Caspase9/12↓ | ||||
Withaferin A | CRC | p-PERK↑ p-eIF2α↑ ATF4↑ CHOP↑ BiP↑ | [74] | |
Cleaved-PARP↑ LC3-II↑ | ||||
Periplogenin | CRC | p-eIF2α↑ IRE1α↑ CHOP↑ BiP↑ | [75] | |
p-JNK↑ p-ASK1↓ Bcl-2↓ Bax↑ Cleaved-caspase-3↑ Cleaved-PARP↑ | ||||
Phenolic | Resveratrol | CRC | p-eIF2α↑ CHOP↑ BiP↑ | [76] |
PARP↑ Caspase-3↓ | ||||
Oblongifolin C | CRC | CHOP↑ IRE1α↑ | [77] | |
p62↓ LC3-II↑ Cleaved-caspase-3↑ Cleaved-PARP↑ | ||||
Corilagin | EC | BiP↑ | [78] | |
Cleaved-caspase-3/7/8/9/12↑ MMP-2/9↓ | ||||
Moracin P | GC | BiP↑ PERK↑ IRE1α↑ ATF6↑ | [79] | |
LC3-II↑ | ||||
Pterostilbene | GC | CHOP↑ PERK↑ | [80] | |
Bcl-2↓ Bax↑ GPX4↑ HIF1α↑ | ||||
Curcumin | CRC and GC | BiP↑ CHOP↑ | [81] | |
p-JNK↑ Fas↑ FasL↑ FADD↑ Bid↓ Bcl-2↓ Bax↑ cyto-c↑ Cleaved-caspase-3/7/8/9↑ | ||||
Curcumin+Irinotecan | CRC | BiP↑ CHOP↑ | [82] | |
PDI↑ | ||||
Curcumin | CRC | BiP↑ CHOP↑ | [83] | |
CAT ↑ HMGB1↑ | ||||
Curcumin | CRC | BiP↑ CHOP↑ ATF6↑ | [84] | |
Bcl-2↓ Bax↑ | ||||
Others | X12-PG | CRC | Ca2+ ↑ | [85] |
CAT↑ HMGB1↑ | ||||
Citrinin | CRC | CHOP↑ BiP↑ GRP94↑ PDI6A↑ GADD34↑ | [86] | |
Bax↑ | ||||
Palmitic acid | CRC | p-eIF2α↑ p-PERK↑ ATF4↑ | [87] | |
SOD2↑ GPX4↑ TFRC↓ TF↑ FPN↑ | ||||
Heterophyllin B | GC | IRE1α↑ CHOP↑ BiP↑ | [88] | |
Bcl-2↓ | ||||
Muscone | HCC | p-eIF2α↑ p-PERK↑ ATF4↑ CHOP↑ | [89] | |
Bcl-2↓ Bax↑ Cleaved-caspase-3↑ LC3-II↑ p-AMPK↑ p-mTOR↓ | ||||
Cinnamaldehyde | GC | p-eIF2α↑ p-PERK↑ CHOP↑ BiP↑ | [90] | |
Bcl-2↓ Cleaved-caspase-3/9↑ ATG5↑ Beclin-1↑ p62↓ LC3B↑ p-mTOR↓ p-AMPKα↑ p-ULK1↑ | ||||
Nanoparticless | TTF1 NPs | HCC | CHOP↑ PERK↑ BiP↑ ATF6↑ | [91] |
p-JNK↑ Caspase-4↑ | ||||
Cinnamaldehyde NPs | CRC | p-eIF2α↑ CHOP↑ ATF4↑ | [92] | |
Bcl-2↓ Bax↑ P53↑ | ||||
Chitosan NPs | HCC | BiP↑ | [93] | |
Bax↑ Cleaved-caspase-3↑ cyto-c↑ | ||||
Cc/Glt NMs | PAAD | p-eIF2α↑ p-PERK↑ BiP↑ | [94] | |
Cleaved-caspase-3↑ p-STAT3↓ |
Posted | Identifiers | TCM | Cancer | Phase | Notes |
---|---|---|---|---|---|
2004 | NCT00094445 | Curcumin | Pancreatic Cancer | II | - |
2005 | NCT00256334 | Resveratrol | Colon Cancer | I | - |
2005 | NCT00192842 | Curcumin+Gemcitabine | Pancreatic Cancer | II | - |
2006 | NCT00295035 | Curcumin+Gemcitabine+Celebrex | Colorectal Cancer | III | - |
2007 | NCT00433576 | Resveratrol | Colorectal Cancer | I | - |
2007 | NCT00486460 | Curcumin+Gemcitabine+Celebrex | Pancreatic Cancer | III | - |
2008 | NCT00745134 | Curcumin+Capecitabine | Colorectal Cancer | II | Radiotherapy |
2009 | NCT00973869 | Curcumin | Colorectal Cancer | I | Prevention |
2011 | NCT01490996 | Curcumin C3+ FOLFOX | Colorectal Cancer | I/II | Inoperable Patients |
2011 | NCT01294072 | Curcumin | Colorectal Cancer | I | Plant Exosomes |
2013 | NCT01993472 | Andrographolide+Capecitabine | Colorectal Cancer | II | - |
2013 | NCT01859858 | Curcumin+Irinotecan | Colorectal Cancer | I | - |
2014 | NCT02195232 | Isoquercitrin | Colorectal Cancer/Pancreatic Cancer | II/III | - |
2014 | NCT02261844 | Resveratrol | Hepatocellular carcinoma | I/II | - |
2015 | NCT02439385 | Curcumin+Avastin+FOLFIRI | Colorectal Cancer | II | - |
2016 | NCT02724202 | Curcumin+5FU | Colorectal Cancer | I | - |
2017 | NCT03093129 | Artesunate | Colorectal Cancer | II | pre-operation |
2017 | NCT03129139 | Minnelide+Protein-Bound Paclitaxel | Gastric Cancer/Colorectal Cancer/Pancreatic Cancer | I | Pro-drug of triptolide |
2019 | NCT04196075 | Andrographis Paniculata | Esophageal Cancer | III | Palliative Care |
2021 | NCT04896073 | Minnelide | Pancreatic Cancer | II | Pro-drug of triptolide |
2022 | NCT05856500 | Curcumin+creatine | Gastric Cancer/Esophageal Cancer | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Zhao, X.; Yang, H.; Zhu, X.; Sui, X.; Feng, J. Modulating Endoplasmic Reticulum Stress in Gastrointestinal Cancers: Insights from Traditional Chinese Medicine. Pharmaceuticals 2024, 17, 1599. https://doi.org/10.3390/ph17121599
Li Q, Zhao X, Yang H, Zhu X, Sui X, Feng J. Modulating Endoplasmic Reticulum Stress in Gastrointestinal Cancers: Insights from Traditional Chinese Medicine. Pharmaceuticals. 2024; 17(12):1599. https://doi.org/10.3390/ph17121599
Chicago/Turabian StyleLi, Qinyi, Xiaohong Zhao, Huan Yang, Xiaolong Zhu, Xinbing Sui, and Jiao Feng. 2024. "Modulating Endoplasmic Reticulum Stress in Gastrointestinal Cancers: Insights from Traditional Chinese Medicine" Pharmaceuticals 17, no. 12: 1599. https://doi.org/10.3390/ph17121599
APA StyleLi, Q., Zhao, X., Yang, H., Zhu, X., Sui, X., & Feng, J. (2024). Modulating Endoplasmic Reticulum Stress in Gastrointestinal Cancers: Insights from Traditional Chinese Medicine. Pharmaceuticals, 17(12), 1599. https://doi.org/10.3390/ph17121599