Isolation and Characterization of Lytic Bacteriophages Capable of Infecting Diverse Multidrug-Resistant Strains of Pseudomonas aeruginosa: PaCCP1 and PaCCP2
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phage Characterization
2.2. Inhibition Assay and Host Range
2.3. Anti-CRISPR Proteins in Phages PaCCP1 and PaCCP2
3. Materials and Methods
3.1. Bacterial Strains
3.2. Sample Collection and Processing
3.3. Disk Diffusion Method for the Determination of Antimicrobial Resistance
3.4. Phage Isolation
3.5. Susceptibility to RNAse and Chloroform
3.6. Propagation and Concentration of Phages
3.7. Electron Microscopy
3.8. DNase and RNase Treatment of Phage Stocks
3.9. Nucleic Acid Extraction
3.10. Sequencing
3.11. Assembly of Genomes
3.12. Comparative Genome Analysis
3.13. Genome Annotation
3.14. Detection of AMR and Virulence Genes
3.15. Detection of Anti-CRISPR-Cas Systems
3.16. Host Range
3.17. Growth Inhibition Assay
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pillarisetti, N.; Williamson, E.; Linnane, B.; Skoric, B.; Robertson, C.F.; Robinson, P.; Massie, J.; Hall, G.L.; Sly, P.; Stick, S.; et al. Infection, inflammation, and lung function decline in infants with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2011, 184, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018, 7, 212527. [Google Scholar] [CrossRef] [PubMed]
- Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.L.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M.; et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000, 406, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Moradali, M.F.; Ghods, S.; Rehm, B.H. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front. Cell. Infect. Microbiol. 2017, 7, 39. [Google Scholar] [CrossRef]
- Jurado-Martín, I.; Sainz-Mejías, M.; McClean, S. Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors. Int. J. Mol. Sci. 2021, 22, 3128. [Google Scholar] [CrossRef]
- Thi, M.T.T.; Wibowo, D.; Rehm, B.H. Pseudomonas aeruginosa biofilms. Int. J. Mol. Sci. 2020, 21, 8671. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- WHO. WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance. 2024. Available online: https://www.who.int/publications/i/item/9789240093461 (accessed on 7 July 2024).
- Gordillo Altamirano, F.L.; Barr, J.J. Phage therapy in the postantibiotic era. Clin. Microbiol. Rev. 2019, 32, e00066-18. [Google Scholar] [CrossRef]
- Pires, D.P.; Costa, A.R.; Pinto, G.; Meneses, L.; Azeredo, J. Current challenges and future opportunities of phage therapy. FEMS Microbiol. Rev. 2020, 44, 684–700. [Google Scholar] [CrossRef]
- Principi, N.; Silvestri, E.; Esposito, S. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front. Pharmacol. 2019, 10, 457104. [Google Scholar] [CrossRef] [PubMed]
- Pirnay, J.P. Phage therapy in the year 2035. Front. Microbiol. 2020, 11, 1171. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.P.; Sillankorva, S.; Kropinski, A.M.; Lu, T.K.; Azeredo, J. Complete genome sequence of Pseudomonas aeruginosa phage vB_PaeM_CEB_DP1. Genome Announc. 2015, 3, e00918-15. [Google Scholar] [CrossRef] [PubMed]
- Bertozzi Silva, J.; Storms, Z.; Sauvageau, D. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett. 2016, 363, fnw002. [Google Scholar] [CrossRef] [PubMed]
- Aghaee, B.L.; Mirzaei, M.K.; Alikhani, M.Y.; Mojtahedi, A. Sewage and sewage-contaminated environments are the most prominent sources to isolate phages against Pseudomonas aeruginosa. BMC Microbiol. 2021, 21, 132. [Google Scholar] [CrossRef]
- Ballesté, E.; Blanch, A.R.; Muniesa, M.; García-Aljaro, C.; Rodríguez-Rubio, L.; Martín-Díaz, J.; Pascual-Benito, M.; Jofre, J. Bacteriophages in sewage: Abundance, roles, and applications. FEMS Microbes 2022, 3, xtac009. [Google Scholar] [CrossRef]
- Chegini, Z.; Khoshbayan, A.; Taati Moghadam, M.; Farahani, I.; Jazireian, P.; Shariati, A. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: A review. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 45. [Google Scholar] [CrossRef]
- Maffei, E.; Woischnig, A.K.; Burkolter, M.R.; Heyer, Y.; Humolli, D.; Thürkauf, N.; Bock, T.; Schmidt, A.; Manfredi, P.; Egli, A.; et al. Phage Paride can kill dormant, antibiotic-tolerant cells of Pseudomonas aeruginosa by direct lytic replication. Nat. Commun. 2024, 15, 175. [Google Scholar] [CrossRef]
- Hawkins, C.; Harper, D.; Burch, D.; Änggård, E.; Soothill, J. Topical treatment of Pseudomonas aeruginosa otitis of dogs with a bacteriophage mixture: A before/after clinical trial. Vet. Microbiol. 2010, 146, 309–313. [Google Scholar] [CrossRef]
- Fukuda, K.; Ishida, W.; Uchiyama, J.; Rashel, M.; Kato, S.; Morita, T.; Muraoka, A.; Sumi, T.; Matsuzaki, S.; Daibata, M.; et al. Pseudomonas aeruginosa keratitis in mice: Effects of topical bacteriophage KPP12 administration. PLoS ONE 2012, 7, e47742. [Google Scholar] [CrossRef]
- Abedon, S.T.; Kuhl, S.J.; Blasdel, B.G.; Kutter, E.M. Phage treatment of human infections. Bacteriophage 2011, 1, 66–85. [Google Scholar] [CrossRef] [PubMed]
- Marza, J.S.; Soothill, J.S.; Boydell, P.; Collyns, T.A. Multiplication of therapeutically administered bacteriophages in Pseudomonas aeruginosa infected patients. Burns 2006, 32, 644–646. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, D.D.; Wolcott, R.D.; Kuskowski, M.A.; Wolcott, B.M.; Ward, L.S.; Sulakvelidze, A. Bacteriophage therapy of venous leg ulcers in humans: Results of a phase I safety trial. J. Wound Care 2009, 18, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.; Hawkins, C.H.; Änggård, E.E.; Harper, D.R. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol. 2009, 34, 349–357. [Google Scholar] [CrossRef]
- Waters, E.M.; Neill, D.R.; Kaman, B.; Sahota, J.S.; Clokie, M.R.; Winstanley, C.; Kadioglu, A. Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa. Thorax 2017, 72, 666–667. [Google Scholar] [CrossRef]
- Strathdee, S.A.; Hatfull, G.F.; Mutalik, V.K.; Schooley, R.T. Phage therapy: From biological mechanisms to future directions. Cell 2023, 186, 17–31. [Google Scholar] [CrossRef]
- Doudna, J.A.; Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef]
- Anzalone, A.V.; Koblan, L.W.; Liu, D.R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 2020, 38, 824–844. [Google Scholar] [CrossRef]
- Wang, J.Y.; Doudna, J.A. CRISPR technology: A decade of genome editing is only the beginning. Science 2023, 379, eadd8643. [Google Scholar] [CrossRef] [PubMed]
- van Belkum, A.; Soriaga, L.B.; LaFave, M.C.; Akella, S.; Veyrieras, J.B.; Barbu, E.M.; Shortridge, D.; Blanc, B.; Hannum, G.; Zambardi, G.; et al. Phylogenetic distribution of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa. mBio 2015, 6, e01796-15. [Google Scholar] [CrossRef]
- Cady, K.C.; Bondy-Denomy, J.; Heussler, G.E.; Davidson, A.R.; O’Toole, G.A. The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages. J. Bacteriol. 2012, 194, 5728–5738. [Google Scholar] [CrossRef] [PubMed]
- Høyland-Kroghsbo, N.M.; Paczkowski, J.; Mukherjee, S.; Broniewski, J.; Westra, E.; Bondy-Denomy, J.; Bassler, B.L. Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system. Proc. Natl. Acad. Sci. USA 2017, 114, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, R.M.; MacLean, R.C. CRISPR-Cas systems restrict horizontal gene transfer in Pseudomonas aeruginosa. ISME J. 2021, 15, 1420–1433. [Google Scholar] [CrossRef] [PubMed]
- Pawluk, A.; Bondy-Denomy, J.; Cheung, V.H.; Maxwell, K.L.; Davidson, A.R. A new group of phage anti-CRISPR genes inhibits the type IE CRISPR-Cas system of Pseudomonas aeruginosa. mBio 2014, 5, e00896. [Google Scholar] [CrossRef] [PubMed]
- Pawluk, A.; Davidson, A.R.; Maxwell, K.L. Anti-CRISPR: Discovery, mechanism and function. Nat. Rev. Microbiol. 2018, 16, 12–17. [Google Scholar] [CrossRef]
- Turner, D.; Shkoporov, A.N.; Lood, C.; Millard, A.D.; Dutilh, B.E.; Alfenas-Zerbini, P.; van Zyl, L.J.; Aziz, R.K.; Oksanen, H.M.; Poranen, M.M.; et al. Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Arch. Virol. 2023, 168, 74. [Google Scholar] [CrossRef]
- Peters, D.L.; Lynch, K.H.; Stothard, P.; Dennis, J.J. The isolation and characterization of two Stenotrophomonas maltophilia bacteriophages capable of cross-taxonomic order infectivity. BMC Genom. 2015, 16, 664. [Google Scholar] [CrossRef]
- Loh, B.; Wang, X.; Hua, X.; Luo, J.; Wen, T.; Zhang, L.; Ma, L.; Manohar, P.; Nachimuthu, R.; Grainge, I.; et al. Complete genome sequences of bacteriophages Kaya, Guyu, kopi, and TehO, which _target clinical strains of Pseudomonas aeruginosa. Microbiol. Resour. Announc. 2021, 10, e01043-21. [Google Scholar] [CrossRef]
- Clark, S.; Le, T.; Moreland, R.; Liu, M.; Gonzalez, C.F.; Gill, J.J.; Ramsey, J. Complete genome sequence of Xanthomonas siphophage Samson. Microbiol. Resour. Announc. 2019, 8, e01097-19. [Google Scholar] [CrossRef]
- Domingo-Calap, M.L.; Bernabeu-Gimeno, M.; Aure, C.M.; Marco-Noales, E.; Domingo-Calap, P. Comparative Analysis of Novel Lytic Phages for Biological Control of Phytopathogenic Xanthomonas spp. Microbiol. Spectr. 2022, 10, e0296022. [Google Scholar] [CrossRef]
- Kwan, T.; Liu, J.; DuBow, M.; Gros, P.; Pelletier, J. Comparative genomic analysis of 18 Pseudomonas aeruginosa bacteriophages. J. Bacteriol. 2006, 188, 1184–1187. [Google Scholar] [CrossRef] [PubMed]
- Essoh, C.; Latino, L.; Midoux, C.; Blouin, Y.; Loukou, G.; Nguetta, S.P.A.; Lathro, S.; Cablanmian, A.; Kouassi, A.K.; Vergnaud, G.; et al. Investigation of a large collection of Pseudomonas aeruginosa bacteriophages collected from a single environmental source in Abidjan, Côte d’Ivoire. PLoS ONE 2015, 10, e0130548. [Google Scholar] [CrossRef] [PubMed]
- Campbell, R.A.; Farlow, J.; Freyberger, H.R.; He, Y.; Ward, A.M.; Ellison, D.W.; Getnet, D.; Swierczewski, B.E.; Nikolich, M.P.; Filippov, A.A. Genome Sequences of 17 Diverse Pseudomonas aeruginosa Phages. Microbiol. Resour. Announc. 2021, 10, e00031-21. [Google Scholar] [CrossRef] [PubMed]
- Karumidze, N.; Thomas, J.A.; Kvatadze, N.; Goderdzishvili, M.; Hakala, K.W.; Weintraub, S.T.; Alavidze, Z.; Hardies, S.C. Characterization of lytic Pseudomonas aeruginosa bacteriophages via biological properties and genomic sequences. Appl. Microbiol. Biotechnol. 2012, 94, 1609–1617. [Google Scholar] [CrossRef] [PubMed]
- Shahraki, A.H.; Vahed, M.; Mirsaeidi, M. Complete Genome Sequencing of the Novel Pseudomonas aeruginosa Phage UF_RH1. Microbiol. Resour. Announc. 2023, 12, e00139-23. [Google Scholar] [CrossRef]
- Holloway, B.W.; Egan, J.B.; Monk, M. Lysogeny in Pseudomonas aeruginosa. Aust. J. Exp. Biol. Med. Sci. 1960, 38, 321–330. [Google Scholar] [CrossRef]
- Neves, P.R.; Cerdeira, L.T.; Mitne Neto, M.; Oliveira, T.G.M.D.; Mcculloch, J.A.; Sampaio, J.L.M.; Mamizuka, E.M.; Levy, C.E.; Sato, M.I.Z.; Lincopan, N. Complete genome sequence of an F8 like ltic myovirus (φSPM-1) that infects metallo-β-lactamase-producing Pseudomonas aeruginosa. Genome Announc. 2014, 2, e00061-14. [Google Scholar] [CrossRef]
- Watkins, S.C.; Sible, E.; Putonti, C. Pseudomonas PB1-like phages: Whole genomes from metagenomes offer insight into an abundant group of bacteriophages. Viruses 2018, 10, 331. [Google Scholar] [CrossRef]
- Yuan, Y.; Qu, K.; Tan, D.; Li, X.; Wang, L.; Cong, C.; Xiu, Z.; Xu, Y. Isolation and characterization of a bacteriophage and its potential to disrupt multi-drug resistant Pseudomonas aeruginosa biofilms. Microb. Pathog. 2019, 128, 329–336. [Google Scholar] [CrossRef]
- Forti, F.; Roach, D.R.; Cafora, M.; Pasini, M.E.; Horner, D.S.; Fiscarelli, E.V.; Rossitto, M.; Cariani, L.; Briani, F.; Debarbieux, L.; et al. Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrob. Agents Chemother. 2018, 62, 10–1128. [Google Scholar] [CrossRef]
- Ceyssens, P.J.; Miroshnikov, K.; Mattheus, W.; Krylov, V.; Robben, J.; Noben, J.P.; Vanderschraeghe, S.; Sykilinda, N.; Kropinski, A.M.; Volckaert, G.; et al. Comparative analysis of the widespread and conserved PB1-like viruses infecting Pseudomonas aeruginosa. Environ. Microbiol. 2009, 11, 2874–2883. [Google Scholar] [CrossRef] [PubMed]
- Danis-Wlodarczyk, K.; Olszak, T.; Arabski, M.; Wasik, S.; Majkowska-Skrobek, G.; Augustyniak, D.; Gula, G.; Briers, Y.; Bin Jang, H.; Vandenheuvel, D.; et al. Characterization of the newly isolated lytic bacteriophages KTN6 and KT28 and their efficacy against Pseudomonas aeruginosa biofilm. PLoS ONE 2015, 10, e0127603. [Google Scholar]
- Oliveira, V.C.; Bim, F.L.; Monteiro, R.M.; Macedo, A.P.; Santos, E.S.; Silva-Lovato, C.H.; Paranhos, H.F.O.; Melo, L.D.R.; Santos, S.B.; Watanabe, E. Identification and characterization of new bacteriophages to control multidrug-resistant Pseudomonas aeruginosa biofilm on endotracheal tubes. Front. Microbiol. 2020, 11, 580779. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Chen, P.; Lin, Z.; Wang, T. Characterization of two Pseudomonas aeruginosa viruses vB_PaeM_SCUT-S1 and vB_PaeM_SCUT-S2. Viruses 2019, 11, 318. [Google Scholar] [CrossRef]
- Cingolani, G.; Iglesias, S.; Hou, C.F.; Lemire, S.; Soriaga, A.; Kyme, P. Cryo-EM analysis of Pseudomonas phage Pa193 structural components. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Aleshkin, A.V.; Ershova, O.N.; Volozhantsev, N.V.; Svetoch, E.A.; Popova, A.V.; Rubalskii, E.O.; Borzilov, A.I.; Alёshkin, V.A.; Afanas’Ev, S.S.; Karaulov, A.; et al. Phagebiotics in treatment and prophylaxis of healthcare-associated infections. Bacteriophage 2016, 6, 40–46. [Google Scholar] [CrossRef]
- Latz, S.; Krüttgen, A.; Häfner, H.; Buhl, E.M.; Ritter, K.; Horz, H.P. Differential effect of newly isolated phages belonging to PB1-like, phiKZ-like and LUZ24-like viruses against multi-drug resistant Pseudomonas aeruginosa under varying growth conditions. Viruses 2017, 9, 315. [Google Scholar] [CrossRef]
- Fujiki, J.; Furusawa, T.; Munby, M.; Kawaguchi, C.; Matsuda, Y.; Shiokura, Y.; Nakamura, K.; Nakamura, T.; Sasaki, M.; Usui, M.; et al. Susceptibility of Pseudomonas aeruginosa veterinary isolates to Pbunavirus PB1-like phages. Microbiol. Immunol. 2020, 64, 778–782. [Google Scholar] [CrossRef]
- De Smet, J.; Wagemans, J.; Hendrix, H.; Staes, I.; Visnapuu, A.; Horemans, B.; Aertsen, A.; Lavigne, R. Bacteriophage-mediated interference of the c-di-GMP signalling pathway in Pseudomonas aeruginosa. Microb. Biotechnol. 2021, 14, 967–978. [Google Scholar] [CrossRef]
- Alves, D.R.; Perez-Esteban, P.; Kot, W.; Bean, J.E.; Arnot, T.; Hansen, L.H.; Enright, M.C.; Jenkins, A.T.A. A novel bacteriophage cocktail reduces and disperses P seudomonas aeruginosa biofilms under static and flow conditions. Microb. Biotechnol. 2016, 9, 61–74. [Google Scholar] [CrossRef]
- Turner, D.; Kropinski, A.M.; Adriaenssens, E.M. A roadmap for genome-based phage taxonomy. Viruses 2021, 13, 506. [Google Scholar] [CrossRef] [PubMed]
- Moraru, C.; Varsani, A.; Kropinski, A.M. VIRIDIC-A novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses 2020, 12, 1268. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, P.; Adriaenssens, E.M.; Zerbini, F.M.; Abrescia, N.G.; Aiewsakun, P.; Alfenas-Zerbini, P.; Bao, Y.; Barylski, J.; Drosten, C.; Duffy, S.; et al. Four principles to establish a universal virus taxonomy. PLoS Biol. 2023, 21, e3001922. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Göker, M. VICTOR: Genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics 2017, 33, 3396–3404. [Google Scholar] [CrossRef] [PubMed]
- Xuan, G.; Dou, Q.; Kong, J.; Lin, H.; Wang, J. Pseudomonas aeruginosa resists phage infection via eavesdropping on indole signaling. Microbiol. Spectr. 2023, 11, e03911-22. [Google Scholar] [CrossRef]
- Su, Q.; Lu, D.; Kong, J.; Lin, H.; Xuan, G.; Wang, J. PqsA mutation-mediated enhancement of phage-mediated combat against Pseudomonas aeruginosa. Front. Cell. Infect. Microbiol. 2024, 14, 1296777. [Google Scholar] [CrossRef]
- Li, F.; Hou, C.F.D.; Lokareddy, R.K.; Yang, R.; Forti, F.; Briani, F.; Cingolani, G. High-resolution cryo-EM structure of the Pseudomonas bacteriophage E217. Nat. Commun. 2023, 14, 4052. [Google Scholar] [CrossRef]
- Fong, S.A.; Drilling, A.; Morales, S.; Cornet, M.E.; Woodworth, B.A.; Fokkens, W.J.; Psaltis, A.J.; Vreugde, S.; Wormald, P.-J. Activity of bacteriophages in removing biofilms of Pseudomonas aeruginosa isolates from chronic rhinosinusitis patients. Front. Cell. Infect. Microbiol. 2017, 7, 418. [Google Scholar] [CrossRef]
- Wannasrichan, W.; Htoo, H.H.; Suwansaeng, R.; Pogliano, J.; Nonejuie, P.; Chaikeeratisak, V. Phage-resistant Pseudomonas aeruginosa against a novel lytic phage JJ01 exhibits hypersensitivity to colistin and reduces biofilm production. Front. Microbiol. 2022, 13, 1004733. [Google Scholar] [CrossRef]
- Mangalea, M.R.; Duerkop, B.A. Fitness trade-offs resulting from bacteriophage resistance potentiate synergistic antibacterial strategies. Infect. Immun. 2020, 88, e00926-19. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dai, W.; Li, J.; Xie, R.; Dunstan, R.A.; Stubenrauch, C.; Zhang, Y.; Lithgow, T. PaCRISPR: A server for predicting and visualizing anti-CRISPR proteins. Nucleic Acids Res. 2020, 48, W348–W357. [Google Scholar] [CrossRef] [PubMed]
- Eitzinger, S.; Asif, A.; Watters, K.E.; Iavarone, A.T.; Knott, G.J.; Doudna, J.A.; Minhas, F.U.A.A. Machine learning predicts new anti-CRISPR proteins. Nucleic Acids Res. 2020, 48, 4698–4708. [Google Scholar] [CrossRef]
- McNair, K.; Zhou, C.; Dinsdale, E.A.; Souza, B.; Edwards, R.A. PHANOTATE: A novel approach to gene identification in phage genomes. Bioinformatics 2019, 35, 4537–4542. [Google Scholar] [CrossRef] [PubMed]
- Bouras, G.; Nepal, R.; Houtak, G.; Psaltis, A.J.; Wormald, P.J.; Vreugde, S. Pharokka: A fast scalable bacteriophage annotation tool. Bioinformatics 2023, 39, btac776. [Google Scholar] [CrossRef] [PubMed]
- Terzian, P.; Olo Ndela, E.; Galiez, C.; Lossouarn, J.; Pérez Bucio, R.E.; Mom, R.; Toussaint, A.; Petit, M.-A.; Enault, F. PHROG: Families of prokaryotic virus proteins clustered using remote homology. NAR Genom. Bioinform. 2021, 3, lqab067. [Google Scholar] [CrossRef]
- Marino, N.D.; Pinilla-Redondo, R.; Csörgő, B.; Bondy-Denomy, J. Anti-CRISPR protein applications: Natural brakes for CRISPR-Cas technologies. Nat. Methods 2020, 17, 471–479. [Google Scholar] [CrossRef]
- Bondy-Denomy, J.; Pawluk, A.; Maxwell, K.L.; Davidson, A.R. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 2013, 493, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Yang, L.; Gao, T.; Dong, C.; Zhang, B.; Yin, P.; Feng, Y. A type IF anti-CRISPR protein inhibits the CRISPR-Cas surveillance complex by ADP-ribosylation. Mol. Cell 2020, 80, 512–524. [Google Scholar] [CrossRef]
- Pires, J.; Novais, A.; Peixe, L. Blue-carba, an easy biochemical test for detection of diverse carbapenemase producers directly from bacterial cultures. J. Clin. Microbiol. 2013, 51, 4281–4283. [Google Scholar] [CrossRef]
- Reller, L.B.; Weinstein, M.; Jorgensen, J.H.; Ferraro, M.J. Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Clin. Infect. Dis. 2009, 49, 1749–1755. [Google Scholar]
- Kropinski, A.M.; Mazzocco, A.; Waddell, T.E.; Lingohr, E.; Johnson, R.P. Enumeration of bacteriophages by double agar overlay plaque assay. In Bacteriophages: Methods and protocols, Volume 1: Isolation, Characterization, and interactions; Humana: Totowa, NJ, USA, 2009; pp. 69–76. [Google Scholar]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 20 April 2024).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Adriaenssens, E.M.; Tolstoy, I.; Kropinski, A.M. Phage annotation guide: Guidelines for assembly and high-quality annotation. Phage 2021, 2, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Afgan, E.; Baker, D.; Batut, B.; Van Den Beek, M.; Bouvier, D.; Čech, M.; Chilton, J.; Clements, D.; Coraor, N.; Grüning, B.A.; et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018, 46, W537–W544. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, J.; Rasche, H.; Maughmer, C.; Criscione, A.; Mijalis, E.; Liu, M.; Hu, J.C.; Young, R.; Gill, J.J. Galaxy and Apollo as a biologist-friendly interface for high-quality cooperative phage genome annotation. PLoS Comput. Biol. 2020, 16, e1008214. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Shen, A.; Millard, A. Phage genome annotation: Where to begin and end. Phage 2021, 2, 183–193. [Google Scholar] [CrossRef]
- Shen, W.; Le, S.; Li, Y.; Hu, F. SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 2016, 11, e0163962. [Google Scholar] [CrossRef]
- Olson, R.D.; Assaf, R.; Brettin, T.; Conrad, N.; Cucinell, C.; Davis, J.J.; Dempsey, D.M.; Dickerman, A.; Dietrich, E.M.; Kenyon, R.W.; et al. Introducing the bacterial and viral bioinformatics resource center (BV-BRC): A resource combining PATRIC, IRD and ViPR. Nucleic Acids Res. 2023, 51, D678–D689. [Google Scholar] [CrossRef]
- Wick, R.R.; Schultz, M.B.; Zobel, J.; Holt, K.E. Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics 2015, 31, 3350–3352. [Google Scholar] [CrossRef]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014, 9, e112963. [Google Scholar] [CrossRef] [PubMed]
- Adriaenssens, E.M.; Krupovic, M.; Knezevic, P.; Ackermann, H.W.; Barylski, J.; Brister, J.R.; Clokie, M.R.C.; Duffy, S.; Dutilh, B.E.; Edwards, R.A.; et al. Taxonomy of prokaryotic viruses: 2016 update from the ICTV bacterial and archaeal viruses subcommittee. Arch. Virol. 2017, 162, 1153–1157. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, Y.; Yoshida, T.; Kuronishi, M.; Uehara, H.; Ogata, H.; Goto, S. ViPTree: The viral proteomic tree server. Bioinformatics 2017, 33, 2379–2380. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Tang, X.; Sun, Y. PhaTYP: Predicting the lifestyle for bacteriophages using BERT. Brief. Bioinform. 2023, 24, bbac487. [Google Scholar] [CrossRef] [PubMed]
- Tynecki, P.; Guziński, A.; Kazimierczak, J.; Jadczuk, M.; Dastych, J.; Onisko, A. PhageAI-bacteriophage life cycle recognition with machine learning and natural language processing. bioRxiv 2020. [Google Scholar] [CrossRef]
- Steinegger, M.; Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 2017, 35, 1026–1028. [Google Scholar] [CrossRef]
- Lazeroff, M.; Ryder, G.; Harris, S.L.; Tsourkas, P.K. Phage commander, an application for rapid gene identification in bacteriophage genomes using multiple programs. Phage 2021, 2, 204–213. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef]
- Besemer, J.; Lomsadze, A.; Borodovsky, M. GeneMarkS: A self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001, 29, 2607–2618. [Google Scholar] [CrossRef]
- Hyatt, D.; Chen, G.W.; LoCascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef]
- Delcher, A.L.; Harmon, D.; Kasif, S.; White, O.; Salzberg, S.L. Improved microbial gene identification with GLIMMER. Nucleic Acid Res. 1999, 27, 4636–4641. [Google Scholar] [CrossRef] [PubMed]
- Laslett, D.; Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004, 32, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.Y.; Graham, M.; Van Domselaar, G.; Stothard, P. Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 2023, 51, W484–W492. [Google Scholar] [CrossRef] [PubMed]
- Gilchrist, C.L.; Chooi, Y.H. Clinker & clustermap. js: Automatic generation of gene cluster comparison figures. Bioinformatics 2021, 37, 2473–2475. [Google Scholar]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K.; et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef]
- Joensen, K.G.; Scheutz, F.; Lund, O.; Hasman, H.; Kaas, R.S.; Nielsen, E.M.; Aarestrup, F.M. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 2014, 52, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
Phage | IS with PaCCP1 | Species Cluster | Genus Cluster | Genome Size | GC Content | No of CDSs | Host | Reference | Accession |
---|---|---|---|---|---|---|---|---|---|
PaCCP1 | 100.0 | 11 | 2 | 43,176 | 54.4 | 60 | P. aeruginosa | This work | PQ492277 |
guyu | 94.1 | 7 | 2 | 43,141 | 55 | 54 | P. aeruginosa | [39] | NC_069743, MZ927746 |
samson | 92.6 | 17 | 2 | 43,314 | 54.5 | 57 | Xanthomonas sp. | [40] | NC_069744, MN062187 |
yazdi | 89.6 | 22 | 2 | 42,439 | 54.5 | 55 | P. aeruginosa | --- | NC_069742, LC552830 |
DoCa1 | 88.8 | 5 | 2 | 43,553 | 54.5 | 54 | Xanthomonas sp. | [41] | NC_069745, ON911538 |
kaya | 85.3 | 9 | 2 | 43,067 | 54.5 | 58 | P. aeruginosa | [39] | NC_069741, MZ927745 |
PX5 | 71.2 | 16 | 1 | 42,828 | 53.5 | 60 | P. aeruginosa | --- | NC_069750, OP422637 |
kopi | 71.1 | 10 | 1 | 42,82 | 53.5 | 55 | P. aeruginosa | [39] | NC_069746, OK330455 |
sv73 | 70.7 | 19 | 1 | 42,999 | 53.5 | 75 | P. aeruginosa | [42] | NC_007806, DQ163913 |
C1 | 70.3 | 2 | 1 | 43,133 | 53.5 | 59 | P. aeruginosa | --- | NC_069749, MG897800 |
DLP2 | 70.1 | 4 | 1 | 42,593 | 53.5 | 58 | Stenotrophomonas maltophilia | [38] | NC_029019, KR537871 |
Ab26 | 69.8 | 1 | 1 | 43,056 | 53.5 | 52 | P. aeruginosa | [43] | NC_024381, HG962376 |
DLP1 | 69.6 | 3 | 1 | 42,887 | 53.5 | 57 | Stenotrophomonas maltophilia | [38] | NC_069751, KR537872 |
epa40 | 69.3 | 6 | 1 | 42,788 | 53 | 58 | P. aeruginosa | [44] | NC_069747, MT118304 |
kakheti25 | 69.0 | 8 | 1 | 42,844 | 54 | 58 | P. aeruginosa | [45] | NC_017864, JQ307387 |
UFRH1 | 68.7 | 21 | 1 | 42,567 | 53.5 | 57 | P. aeruginosa | [46] | NC_072810, OQ259603 |
tehO | 67.9 | 20 | 1 | 43,015 | 53.5 | 56 | P. aeruginosa | [39] | NC_069748, OK330456 |
PSV32 | 67.9 | 13 | 1 | 43315 | 53.3 | 73 | P. aeruginosa | --- | NC_069755, OP712466 |
PSV31 | 66.6 | 12 | 1 | 46,326 | 53.5 | 86 | P. aeruginosa | --- | NC_069754, OP712460 |
PSV33 | 65.3 | 14 | 1 | 40,244 | 53.2 | 71 | P. aeruginosa | --- | NC_069752, OP712474 |
PSV34 | 63.9 | 15 | 1 | 39,019 | 53.3 | 63 | P. aeruginosa | --- | NC_069753, OP712479 |
SCUTS3 | 59.4 | 18 | 3 | 42,622 | 53.5 | 62 | P. aeruginosa | --- | NC_072809, MK165657 |
Phage | IS with PaCCP2 | Species Cluster | Genus Cluster | Genome Size | GC Content | No of CDSs | Host | Reference | Accession |
---|---|---|---|---|---|---|---|---|---|
PaCCP2 | 100.0 | 10 | 1 | 66,333 | 55.6 | 102 | P. aeruginosa | This work | PQ492278 |
LS1 | 97.6 | 10 | 1 | 66,095 | 55.5 | 93 | P. aeruginosa | [50] | NC_048699, MG897799 |
E217 | 96.8 | 10 | 1 | 66,291 | 55.5 | 94 | P. aeruginosa | [51] | NC_042079, MF490240 |
PaGU11 | 96.3 | 10 | 1 | 65,554 | 55.5 | 90 | P. aeruginosa | -- | NC_050145, AP018815 |
DP1 | 96.3 | 8 | 1 | 66,158 | 55.5 | 92 | P. aeruginosa | [14] | NC_041870, KR869157 |
LMA2 | 95.2 | 8 | 1 | 66,530 | 55.5 | 94 | P. aeruginosa | [52] | NC_011166, FM201282 |
KTN6 | 94.9 | 8 | 1 | 65,994 | 55.5 | 91 | P. aeruginosa | [53] | NC_041865, KP340288 |
USP1 | 94.4 | 28 | 1 | 65,918 | 55.5 | 87 | P. aeruginosa | [54] | NC_050149, MT491204 |
KPP12 | 94.3 | 15 | 1 | 64,144 | 55.5 | 88 | P. aeruginosa | [21] | NC_019935, AB560486 |
S1 | 93.8 | 25 | 1 | 66,086 | 55.5 | 94 | P. aeruginosa | [55] | NC_048745, MK340760 |
Pa193 | 93.6 | 18 | 1 | 66,657 | 55.5 | 92 | P. aeruginosa | [56] | NC_050148, MK837009 |
Epa7 | 93.6 | 13 | 1 | 65,629 | 55.5 | 94 | P. aeruginosa | [44] | NC_050146, MT118289 |
BrSP1 | 93.5 | 4 | 1 | 66,189 | 55.5 | 94 | P. aeruginosa | --- | NC_048675, MF623055 |
E215 | 93.4 | 9 | 1 | 66,789 | 55.5 | 95 | P. aeruginosa | [51] | NC_042080, MF490241 |
PA5 | 93.1 | 19 | 1 | 66,182 | 55.5 | 101 | P. aeruginosa | [57] | NC_041902, KY000082 |
SN | 92.3 | 27 | 1 | 66,390 | 55.5 | 92 | P. aeruginosa | [52] | NC_011756, FM887021 |
PA8P1 | 92.3 | 20 | 1 | 65,690 | 55.5 | 93 | P. aeruginosa | --- | NC_048806, MN131142 |
SL1 | 92.2 | 26 | 1 | 65,847 | 55.5 | 91 | P. aeruginosa | [58] | NC_048676, MF768470 |
PA01 | 91.9 | 17 | 1 | 66,220 | 55.5 | 92 | P. aeruginosa | --- | NC_048626, AP019535 |
PS44 | 91.5 | 22 | 1 | 68,871 | 55.5 | 97 | P. aeruginosa | --- | NC_028939, KM434184 |
141 | 91.4 | 1 | 1 | 66,235 | 55.5 | 90 | P. aeruginosa | [52] | NC_011703, FM897211 |
crassa | 90.9 | 5 | 1 | 66,295 | 55 | 92 | P. aeruginosa | --- | NC_050151, MT119377 |
LBL3 | 90.4 | 16 | 1 | 64,427 | 55.5 | 88 | P. aeruginosa | [52] | NC_011165, FM201281 |
Epa14 | 89.6 | 11 | 1 | 65,797 | 55.5 | 93 | P. aeruginosa | [44] | NC_050144, MT118293 |
R12 | 89.5 | 23 | 1 | 65,415 | 55.5 | 90 | P. aeruginosa | [59] | NC_048662, LC472881 |
Antinowhere | 89.0 | 3 | 1 | 65,852 | 55 | 92 | P. aeruginosa | [60] | NC_050150, MT119374 |
R26 | 88.3 | 24 | 1 | 65,737 | 55.5 | 93 | P. aeruginosa | [59] | NC_048663, LC472882 |
F8 | 87.6 | 14 | 1 | 66,015 | 55 | 91 | P. aeruginosa | [42] | NC_007810, DQ163917 |
Epa61 | 87.4 | 12 | 1 | 65,905 | 55 | 92 | P. aeruginosa | --- | NC_048744, MK317959 |
PB1 | 86.9 | 21 | 1 | 65,764 | 55.5 | 93 | P. aeruginosa | [52] | NC_011810, EU716414 |
Ab28 | 86.4 | 2 | 1 | 66,181 | 55 | 91 | P. aeruginosa | [43] | NC_026600, LN610589 |
DL60 | 86.1 | 7 | 1 | 66,103 | 55 | 89 | P. aeruginosa | [61] | NC_028745, KR054030 |
datas | 82.5 | 6 | 1 | 60,746 | 55 | 89 | P. aeruginosa | --- | NC_050143, MT119378 |
Strain | AMK | CIP | MEM | IPM | CZA | CAZ | FEP | TZP |
---|---|---|---|---|---|---|---|---|
UC522 a | 21 | 25 | 11 | 10 | 25 | 20 | 25 | 23 |
UC528 a | 22 | 30 | 12 | 8 | 21 | 12 | 14 | 22 |
UC529 b | 20 | 26 | 20 | 12 | 24 | 12 | 6 | 24 |
UC532 ab | 14 | 15 | 6 | 6 | 22 | 16 | 20 | 23 |
UC533 a | 22 | 20 | 19 | 20 | 26 | 15 | 22 | 21 |
UC535 b | 13 | 19 | 10 | 6 | 21 | 16 | 22 | 23 |
UC536 a | 22 | 26 | 29 | 25 | 28 | 26 | 26 | 26 |
CDS | PaCRISP Score | AcRanker Score | Rank by AcRanker | Length (AA) | Sequence |
---|---|---|---|---|---|
PaCCP1 | |||||
41 | 0.73 | −2.57 | 1 | 69 | MKRNVKVLLAIAAIVAAFGVVGSMDYRDEVREQLSYCENVKNGVWPDFKEWGKTECSPERIAELENILR |
33 | 0.62 | −3.01 | 2 | 101 | MGAYTVTTEFEMNDGRILSCEYGVSFTPGNYSGLPENCYPDESEAGEPTYYIDGEEVDYKDLPKGLDKIADKLYEAGPGEYGYSETEPDYDGPDYEPDDYY |
28 | 0.56 | −4.45 | 3 | 69 | MKRNVKVLLAIAAIVAAFGVVGSMDYRDEVREQLSYCENVKNGVWPDFKEWGKTECSPERIAELENILR |
PaCCP2 | |||||
39 | 0.88 | −2.66 | 1 | 100 | MTKQVQIEVTNLDEAFVQHLLTGGHLFDVDDYEVADRILMEVDGEQMVQFELNAELWNEETLGVPMDIDSDEFADELQDWVESKVNFAFEEWLSADEGEE |
43 | 0.52 | −3.59 | 2 | 64 | MNATYQALKTLRDSCEAAKDEKGTINGNKLNALRNKAVKEMEAGGETYSDAIAMAHDLIKKYRK |
73 | 0.59 | −4.03 | 5 | 123 | MAFGVIGTQIVKYRKFEQRVKNDQAQYVSMFEEPFDLAASVQRVRRDQYVQFNLEFQRNYVMIFANFEMVDLDRDVAGDQFLWTGRVFQLESQGSWFYQDGWGVCLAVDIGAAKLTDDGKPTF |
35 | 0.59 | −4.39 | 10 | 83 | MTSSKWTIGRNDTIEVEAVNSREDFRWNGKIRVIHYSAGQIVNIIEFYHHDLDWAIKNFGIKLKAISKGMEILHTCYFGKYVK |
36 | 0.60 | −4.51 | 12 | 61 | MTKAEQLLKARLEDIAAAAVRRERLDWAVSYTFDDGSSIQCRKLSGRSAFARNGWSLGSTD |
1 | 0.79 | −4.71 | 14 | 68 | MSIELVYRTSDGTVFSSVQEAEEYESRLEACELLKEEIEQYGLRKEQAQGLALALTEKFHFTPIPEDF |
Raw Reads | After Random Subsampling (2%) | |||
---|---|---|---|---|
Total Reads (×2) | Total Bases (×2) | Total Reads (×2) | Total Bases (×2) | |
PaCCP1 | 1,716,957 | 249.9 Mbp | 34,189 | 4.9 Mbp |
PaCCP2 | 1,283,165 | 190 Mbp | 25,587 | 3.7 Mbp |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parra, B.; Sandoval, M.; Arriagada, V.; Amsteins, L.; Aguayo, C.; Opazo-Capurro, A.; Dechesne, A.; González-Rocha, G. Isolation and Characterization of Lytic Bacteriophages Capable of Infecting Diverse Multidrug-Resistant Strains of Pseudomonas aeruginosa: PaCCP1 and PaCCP2. Pharmaceuticals 2024, 17, 1616. https://doi.org/10.3390/ph17121616
Parra B, Sandoval M, Arriagada V, Amsteins L, Aguayo C, Opazo-Capurro A, Dechesne A, González-Rocha G. Isolation and Characterization of Lytic Bacteriophages Capable of Infecting Diverse Multidrug-Resistant Strains of Pseudomonas aeruginosa: PaCCP1 and PaCCP2. Pharmaceuticals. 2024; 17(12):1616. https://doi.org/10.3390/ph17121616
Chicago/Turabian StyleParra, Boris, Maximiliano Sandoval, Vicente Arriagada, Luis Amsteins, Cristobal Aguayo, Andrés Opazo-Capurro, Arnaud Dechesne, and Gerardo González-Rocha. 2024. "Isolation and Characterization of Lytic Bacteriophages Capable of Infecting Diverse Multidrug-Resistant Strains of Pseudomonas aeruginosa: PaCCP1 and PaCCP2" Pharmaceuticals 17, no. 12: 1616. https://doi.org/10.3390/ph17121616
APA StyleParra, B., Sandoval, M., Arriagada, V., Amsteins, L., Aguayo, C., Opazo-Capurro, A., Dechesne, A., & González-Rocha, G. (2024). Isolation and Characterization of Lytic Bacteriophages Capable of Infecting Diverse Multidrug-Resistant Strains of Pseudomonas aeruginosa: PaCCP1 and PaCCP2. Pharmaceuticals, 17(12), 1616. https://doi.org/10.3390/ph17121616