Association of Antihyperglycemic Therapy with Risk of Atrial Fibrillation and Stroke in Diabetic Patients
Abstract
:1. Introduction
2. Antihyperglycemic Drugs, Atrial Fibrillation and Stroke
2.1. Insulin
2.2. Metformin
2.3. Sulfonylureas
2.4. Thiazolidinediones
2.5. DPP-4 Inhibitors
2.6. GLP-1 Receptor Agonists
2.7. SGLT-2 Inhibitors
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gæde, P.; Lund-Andersen, H.; Parving, H.-H.; Pedersen, O. Effect of a Multifactorial Intervention on Mortality in Type 2 Diabetes. N. Engl. J. Med. 2008, 358, 580–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawshani, A.; Rawshani, A.; Franzén, S.; Sattar, N.; Eliasson, B.; Svensson, A.-M.; Zethelius, B.; Miftaraj, M.; McGuire, D.K.; Rosengren, A.; et al. Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2018, 379, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.; D’Alessio, D.; Fradkin, J.; Kernan, W.; Mathieu, C.; Mingrone, G.; Rossing, P.; Tsapas, A.; Wexler, D.; Buse, J. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2018, 61, 2461–2498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emerging Risk Factors Collaboration. The Emerging Risk Factors Collaboration Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet 2010, 375, 2215–2222. [Google Scholar] [CrossRef]
- Proietti, R.; Russo, V.; Wu, M.A.; Maggioni, A.P.; Marfella, R. Diabetes mellitus and atrial fibrillation: Evidence of a pathophysiological, clinical and epidemiological association beyond the thromboembolic risk. G. Ital. Cardiol. (Rome) 2017, 18, 199–207. [Google Scholar]
- Mentias, A.; Shantha, G.; Adeola, O.; Barnes, G.D.; Narasimhan, B.; Siontis, K.C.; Levine, D.A.; Sah, R.; Giudici, M.C.; Vaughan-Sarrazin, M. Role of diabetes and insulin use in the risk of stroke and acute myocardial infarction in patients with atrial fibrillation: A Medicare analysis. Am. Heart J. 2019, 214, 158–166. [Google Scholar] [CrossRef]
- Bell, D.; Goncalves, E. Atrial fibrillation and type 2 diabetes: Prevalence, etiology, pathophysiology and effect of anti-diabetic therapies. Diabetes Obes. Metab. 2019, 21, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, F.; Scheen, A. Impact of glucose-lowering therapies on risk of stroke in type 2 diabetes. Diabetes Metab. 2017, 43, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Chiao, Y.W.; Chen, Y.J.; Kuo, Y.H.; Lu, C.Y. Traditional Chinese Medical Care and Incidence of Stroke in Elderly Patients Treated with Antidiabetic Medications. Int. J. Environ. Res. Public Health 2018, 15, 1267. [Google Scholar] [CrossRef]
- Naydenov, S.; Runev, N.; Manov, E.; Vasileva, D.; Rangelov, Y.; Naydenova, N. Risk Factors, Co-Morbidities and Treatment of In-Hospital Patients with Atrial Fibrillation in Bulgaria. Medicina 2018, 54, 34. [Google Scholar] [CrossRef]
- Bandemer, S.V.; Merkel, S.; Nimako-Doffour, A.; Weber, M.M. Diabetes and atrial fibrillation: Stratification and prevention of stroke risks. EPMA J. 2014, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Liou, Y.S.; Yang, F.Y.; Chen, H.Y.; Jong, G.P. Antihyperglycemic drugs use and new-onset atrial fibrillation: A population-based nested case control study. PLoS ONE 2018, 13, e0197245. [Google Scholar] [CrossRef] [PubMed]
- Patti, G.; Lucerna, M.; Cavallari, I.; Ricottini, E.; Renda, G.; Pecen, L.; Romeo, F.; Le Heuzey, J.Y.; Zamorano, J.L.; Kirchhof, P.; et al. Insulin-Requiring Versus Noninsulin-Requiring Diabetes and Thromboembolic Risk in Patients with Atrial Fibrillation. J. Am. Coll. Cardiol. 2017, 69, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Asghar, O.; Alam, U.; Hayat, S.A.; Aghamohammadzadeh, R.; Heagerty, A.M.; Malik, R.A. Obesity, Diabetes and Atrial Fibrillation; Epidemiology, Mechanisms and Interventions. Curr. Cardiol. Rev. 2012, 8, 253–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.H.; Wu, L.S.; Chiou, M.J.; Liu, J.R.; Yu, K.H.; Kuo, C.F.; Wen, M.S.; Chen, W.J.; Yeh, Y.H.; See, L.C. Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus: A population-based dynamic cohort and in vitro studies. Cardiovasc. Diabetol. 2014, 13, 123. [Google Scholar] [CrossRef] [PubMed]
- Homan, E.A.; Reyes, M.V.; Hickey, K.T.; Morrow, J.P. Clinical Overview of Obesity and Diabetes Mellitus as Risk Factors for Atrial Fibrillation and Sudden Cardiac Death. Front. Physiol. 2019, 9, 1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998, 352, 854–865. [Google Scholar] [CrossRef]
- Cheng, Y.Y.; Leu, H.B.; Chen, T.J.; Chen, C.L.; Kuo, C.H.; Lee, S.D.; Kao, C.L. Metformin-inclusive Therapy Reduces the Risk of Stroke in Patients with Diabetes: A 4-Year Follow-up Study. J. Stroke Cerebrovasc. Dis. 2014, 23, 99–105. [Google Scholar] [CrossRef]
- Hatch, G.M.; Parkinson, F.E. Is There Enhanced Risk of Cerebral Ischemic Stroke by Sulfonylureas in Type 2 Diabetes? Diabetes 2016, 65, 2479–2481. [Google Scholar] [Green Version]
- Liu, R.; Wang, H.; Xu, B.; Chen, W.; Turlova, E.; Dong, N.; Sun, C.; Lu, Y.; Fu, H.; Shi, R.; et al. Cerebrovascular Safety of Sulfonylureas: The Role of KATP Channels in Neuroprotection and the Risk of Stroke in Patients with Type 2 Diabetes. Diabetes 2016, 65, 2795–2809. [Google Scholar] [CrossRef]
- Castilla-Guerra, L.; Fernandez-Moreno, M.; Leon-Jimenez, D.; Carmona-Nimo, E. Antidiabetic drugs and stroke risk Current evidence. Eur. J. Intern. Med. 2018, 48, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Kunte, H.; Schmidt, S.; Eliasziw, M.; Del Zoppo, G.J.; Simard, J.M.; Masuhr, F.; Weih, M.; Dirnagl, U. Sulfonylureas Improve Outcome in Patients with Type 2 Diabetes and Acute Ischemic Stroke. Stroke 2007, 38, 2526–2530. [Google Scholar] [CrossRef] [PubMed]
- Weih, M.; Amberger, N.; Wegener, S.; Dirnagl, U.; Reuter, T.; Einhäupl, K. Sulfonylurea Drugs Do Not Influence Initial Stroke Severity and In-Hospital Outcome in Stroke Patients with Diabetes. Stroke 2001, 32, 2029–2032. [Google Scholar] [CrossRef] [PubMed]
- Bannister, C.A.; Holden, S.E.; Morgan, C.L.; Halcox, J.P.; Schernthaner, G.; Mukherjee, J.; Currie, C.J.; Jenkins-Jones, S.; Halcox, J.; Bannister, C.; et al. Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes. Metab. 2014, 16, 1165–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudis, C.A.; Korantzopoulos, P.; Ntalas, I.V.; Kallergis, E.M.; Liu, T.; Ketikoglou, D.G. Diabetes mellitus and atrial fibrillation: Pathophysiological mechanisms and potential upstream therapies. Int. J. Cardiol. 2015, 184, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Nesto, R.W.; Bell, D.; Bonow, R.O.; Fonseca, V.; Grundy, S.M.; Horton, E.S.; Le Winter, M.; Porte, D.; Semenkovich, C.F.; Smith, S.; et al. Thiazolidinedione Use, Fluid Retention, and Congestive Heart Failure. Circulation 2003, 108, 2941–2948. [Google Scholar] [CrossRef] [Green Version]
- Wolski, K.; Nissen, S.E. Effect of Rosiglitazone on the Risk of Myocardial Infarction and Death from Cardiovascular Causes. N. Engl. J. Med. 2007, 356, 2457–2471. [Google Scholar]
- Chao, T.F.; Leu, H.B.; Huang, C.C.; Chen, J.W.; Chan, W.L.; Lin, S.J.; Chen, S.A. Thiazolidinediones can prevent new onset atrial fibrillation in patients with non-insulin dependent diabetes. Int. J. Cardiol. 2012, 156, 199–202. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Shi, H.; Tan, H.; Zhou, L.; Gu, J.; Jiang, W.; Wang, Y. Beneficial effect of pioglitazone on the outcome of catheter ablation in patients with paroxysmal atrial fibrillation and type 2 diabetes mellitus. Europace 2011, 13, 1256–1261. [Google Scholar]
- Korantzopoulos, P.; Kokkoris, S.; Kountouris, E.; Protopsaltis, I.; Siogas, K.; Melidonis, A. Regression of paroxysmal atrial fibrillation associated with thiazolidinedione therapy. Int. J. Cardiol. 2008, 125, e51–e53. [Google Scholar] [CrossRef]
- Pallisgaard, J.; Lindhardt, T.; Staerk, L.; Olesen, J.; Torp-Pedersen, C.; Hansen, M.; Gislason, G. Thiazolidinediones are associated with a decreased risk of atrial fibrillation compared with other antidiabetic treatment: A nationwide cohort study. Eur. Heart J. Cardiovasc. Pharm. 2017, 3, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Dormandy, J.; Charbonnel, B.; Eckland, D.; Erdmann, E.; Massi-Benedetti, M.; Moules, I.; Skene, A.; Tan, M.; Lefèbvre, P.; Murray, G.; et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): A randomised controlled trial. Lancet 2005, 366, 1279–1289. [Google Scholar] [CrossRef]
- Pallisgaard, J.L.; Brooks, M.M.; Chaitman, B.R.; Boothroyd, D.B.; Perez, M.; Hlatky, M.A. Thiazolidinediones and Risk of Atrial Fibrillation among Patients with Diabetes and Coronary Disease. Am. J. Med. 2018, 131, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, X.; Korantzopoulos, P.; Letsas, K.; Tse, G.; Gong, M.; Meng, L.; Li, G.; Liu, T. Thiazolidinedione use and atrial fibrillation in diabetic patients: A meta-analysis. BMC Cardiovasc. Disord. 2017, 17, 96. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, R.; Bousser, M.-G.; Betteridge, D.J.; Schernthaner, G.; Pirags, V.; Kupfer, S.; Dormandy, J. Effects of Pioglitazone in Patients with Type 2 Diabetes with or without Previous Stroke. Stroke 2007, 38, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Kernan, W.; Viscoli, C.; Furie, K.; Young, L.; Inzucchi, S.; Gorman, M.; Guarino, P.; Lovejoy, A.; Peduzzi, P.; Conwit, R.; et al. Pioglitazone after Ischemic Stroke or Transient Ischemic Attack. N. Engl. J. Med. 2016, 374, 1321–1331. [Google Scholar] [CrossRef]
- Lee, M.; Saver, J.L.; Liao, H.-W.; Lin, C.-H.; Ovbiagele, B. Pioglitazone for Secondary Stroke Prevention. Stroke 2017, 48, 388–393. [Google Scholar] [CrossRef]
- Chang, C.Y.; Yeh, Y.H.; Chan, Y.H.; Liu, J.R.; Chang, S.H.; Lee, H.F.; Wu, L.S.; Yen, K.C.; Kuo, C.T.; See, L.C. Dipeptidyl peptidase-4 inhibitor decreases the risk of atrial fibrillation in patients with type 2 diabetes: A nationwide cohort study in Taiwan. Cardiovasc. Diabetol. 2017, 16, 159. [Google Scholar] [CrossRef]
- Ou, H.T.; Chang, K.C.; Li, C.Y.; Wu, J.S. Risks of cardiovascular diseases associated with dipeptidyl peptidase-4 inhibitors and other antidiabetic drugs in patients with type 2 diabetes: A nation-wide longitudinal study. Cardiovasc. Diabetol. 2016, 15, 41. [Google Scholar] [CrossRef]
- Scirica, B.; Bhatt, D.; Braunwald, E.; Steg, P.; Davidson, J.; Hirshberg, B.; Ohman, P.; Frederich, R.; Wiviott, S.; Hoffman, E.; et al. Saxagliptin and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus. N. Engl. J. Med. 2013, 369, 1317–1326. [Google Scholar] [CrossRef] [Green Version]
- White, W.; Cannon, C.; Heller, S.; Nissen, S.; Bergenstal, R.; Bakris, G.; Perez, A.; Fleck, P.; Mehta, C.; Kupfer, S.; et al. Alogliptin after Acute Coronary Syndrome in Patients with Type 2 Diabetes. N. Engl. J. Med. 2013, 369, 1327–1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, J.; Bethel, M.; Armstrong, P.; Buse, J.; Engel, S.; Garg, J.; Josse, R.; Kaufman, K.; Koglin, J.; Korn, S.; et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Gantz, I.; Chen, M.; Suryawanshi, S.; Ntabadde, C.; Shah, S.; O’Neill, E.A.; Engel, S.S.; Kaufman, K.D.; Lai, E. A randomized, placebo-controlled study of the cardiovascular safety of the once-weekly DPP-4 inhibitor omarigliptin in patients with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2017, 16, 112. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Perkovic, V.; Johansen, O.; Cooper, M.; Kahn, S.; Marx, N.; Alexander, J.; Pencina, M.; Toto, R.; Wanner, C.; et al. Effect of Linagliptin vs Placebo on Major Cardiovascular Events in Adults with Type 2 Diabetes and High Cardiovascular and Renal Risk. JAMA 2019, 321, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Barkas, F.; Elisaf, M.; Tsimihodimos, V.; Milionis, H. Dipeptidyl peptidase-4 inhibitors and protection against stroke: A systematic review and meta-analysis. Diabetes Metab. 2017, 43, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sinha, B.; Ghosal, S. Meta-analyses of the effects of DPP-4 inhibitors, SGLT2 inhibitors and GLP1 receptor analogues on cardiovascular death, myocardial infarction, stroke and hospitalization for heart failure. Diabetes Res. Clin. Pract. 2019, 150, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Wu, S.; Guo, S.; Yu, K.; Yang, Z.; Li, L.; Zhang, Y.; Quan, X.; Ji, L.; Zhan, S. Impact of GLP-1 receptor agonists on blood pressure, heart rate and hypertension among patients with type 2 diabetes: A systematic review and network meta-analysis. Diabetes Res. Clin. Pract. 2015, 110, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Smits, M.M.; Muskiet, M.H.A.; Tonneijck, L.; Hoekstra, T.; Kramer, M.H.H.; Diamant, M.; Van Raalte, D.H. Exenatide acutely increases heart rate in parallel with augmented sympathetic nervous system activation in healthy overweight males. Br. J. Clin. Pharmacol. 2016, 81, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, M.; Lawson, F.; Owens, D.; Raccah, D.; Roy-Duval, C.; Lehmann, A.; Perfetti, R.; Blonde, L. Differential effects of glucagon-like peptide-1 receptor agonists on heart rate. Cardiovasc. Diabetol. 2017, 16, 6. [Google Scholar] [CrossRef]
- Fisher, M.; Petrie, M.C.; Ambery, P.D.; Donaldson, J.; Ye, J.; McMurray, J.J.V. Cardiovascular safety of albiglutide in the Harmony programme: A meta-analysis. Lancet Diabetes Endocrinol. 2015, 3, 697–703. [Google Scholar] [CrossRef]
- Pfeffer, M.; Claggett, B.; Diaz, R.; Dickstein, K.; Gerstein, H.; Køber, L.; Lawson, F.; Ping, L.; Wei, X.; Lewis, E.; et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N. Engl. J. Med. 2015, 373, 2247–2257. [Google Scholar] [CrossRef] [PubMed]
- Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results—Study Results—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/results/NCT01179048 (accessed on 20 June 2019).
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monami, M.; Nreu, B.; Scatena, A.; Giannini, S.; Andreozzi, F.; Sesti, G.; Mannucci, E. Glucagon-like peptide-1 receptor agonists and atrial fibrillation: A systematic review and meta-analysis of randomised controlled trials. J. Endocrinol. Investig. 2017, 40, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, A.; Green, J.; Janmohamed, S.; D’Agostino, R.; Granger, C.; Jones, N.; Leiter, L.; Rosenberg, A.; Sigmon, K.; Somerville, M.; et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): A double-blind, randomised placebo-controlled trial. Lancet 2018, 392, 1519–1529. [Google Scholar] [CrossRef]
- Gerstein, H.; Colhoun, H.; Dagenais, G.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Riesmeyer, J.; Riddle, M.; Rydén, L.; et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet 2019, in press. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.; Woerle, H.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; De Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R.; et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef]
- Wiviott, S.; Raz, I.; Bonaca, M.; Mosenzon, O.; Kato, E.; Cahn, A.; Silverman, M.; Zelniker, T.; Kuder, J.; Murphy, S.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef]
- Zinman, B.; Inzucchi, S.E.; Lachin, J.M.; Wanner, C.; Fitchett, D.; Kohler, S.; Mattheus, M.; Woerle, H.J.; Broedl, U.C.; Johansen, O.E.; et al. Empagliflozin and Cerebrovascular Events in Patients with Type 2 Diabetes Mellitus at High Cardiovascular Risk. Stroke 2017, 48, 1218–1225. [Google Scholar] [CrossRef]
- Wu, J.; Foote, C.; Blomster, J.; Toyama, T.; Perkovic, V.; Sundström, J.; Neal, B. Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2016, 4, 411–419. [Google Scholar] [CrossRef]
- Imprialos, K.P.; Boutari, C.; Stavropoulos, K.; Doumas, M.; Karagiannis, A.I. Stroke paradox with SGLT-2 inhibitors: A play of chance or a viscosity-mediated reality? J. Neurol. Neurosurg. Psychiatry 2016, 88, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.S.; Siddiqi, T.J.; Memon, M.M.; Khan, M.S.; Rawasia, W.F.; Ayub, M.T.; Sreenivasan, J.; Golzar, Y. Sodium-glucose co-transporter 2 inhibitors and cardiovascular outcomes: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2018, 25, 495–502. [Google Scholar] [CrossRef] [PubMed]
Drug | Mechanism of Action |
---|---|
Insulin | Activation of insulin receptor; various effects on multiple metabolic pathways |
Metformin | Reduced insulin resistance, mostly by decreasing gluconeogenesis |
Sulfonylureas (SU) | Insulin secretagogues by activation of SUR (SU receptor) unit of ATP-sensitive potassium channels |
Thiazolidinediones (TZD) | Insulin sensitizers by the activation of peroxisome proliferator-activated receptor (PPAR)-γ |
Dipeptidyl peptidase-4 (DPP-4) inhibitors | Inhibition of DPP-4 and subsequent conservation of native human GLP-1 in its active form |
Glucagon-like peptide-1 (GLP-1) receptor agonists | Activation of GLP-1 receptor at high pharmacological concentrations |
Sodium-glucose cotransporter-2 (SGLT-2) inhibitors | Inhibition of active reabsorption of glucose and sodium performed by SGLT-2 in the proximal convoluted tubule |
Drug | Risk for AF | Risk for Stroke |
---|---|---|
Insulin | Increased [12] | Increased [6,13] |
Metformin | Reduced [12,15] | Reduced [17,18] |
Sulfonylureas | Unchanged [12] | Reduced [22], unchanged [23], or increased [20,24] |
Thiazolidinediones | Reduced [12,28,29,31,34] or unchanged [32,33] | Reduced [35,36,37] |
DPP-4 inhibitors | Reduced [38] or unchanged [12] | Reduced [39] or unchanged [40,41,42,43,44,45,46] |
GLP-1 receptor agonists | Increased with albiglutide [50], unchanged with semaglutide, liraglutide, and dulaglutide, or in meta-analyses [51,52,53,54] | Reduced in meta-analyses [46] and with semaglutide [53], unchanged with liraglutide, albiglutide, and dulaglutide [55,56,57] |
SGLT-2 inhibitors | Data not available | Increased in some meta-analyses [62], unchanged in others [46,64] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lăcătușu, C.-M.; Grigorescu, E.-D.; Stătescu, C.; Sascău, R.A.; Onofriescu, A.; Mihai, B.-M. Association of Antihyperglycemic Therapy with Risk of Atrial Fibrillation and Stroke in Diabetic Patients. Medicina 2019, 55, 592. https://doi.org/10.3390/medicina55090592
Lăcătușu C-M, Grigorescu E-D, Stătescu C, Sascău RA, Onofriescu A, Mihai B-M. Association of Antihyperglycemic Therapy with Risk of Atrial Fibrillation and Stroke in Diabetic Patients. Medicina. 2019; 55(9):592. https://doi.org/10.3390/medicina55090592
Chicago/Turabian StyleLăcătușu, Cristina-Mihaela, Elena-Daniela Grigorescu, Cristian Stătescu, Radu Andy Sascău, Alina Onofriescu, and Bogdan-Mircea Mihai. 2019. "Association of Antihyperglycemic Therapy with Risk of Atrial Fibrillation and Stroke in Diabetic Patients" Medicina 55, no. 9: 592. https://doi.org/10.3390/medicina55090592
APA StyleLăcătușu, C. -M., Grigorescu, E. -D., Stătescu, C., Sascău, R. A., Onofriescu, A., & Mihai, B. -M. (2019). Association of Antihyperglycemic Therapy with Risk of Atrial Fibrillation and Stroke in Diabetic Patients. Medicina, 55(9), 592. https://doi.org/10.3390/medicina55090592