Prevalence, Reasons, and Predisposing Factors Associated with 30-day Hospital Readmissions in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statistical Analysis
- Patient’s gender (male or female);
- Patient’s age grouped into five categories (<5; 5–17; 18–29; 30–49; 50–65; >65 years);
- Place of residence grouped into six categories (single rural and five urban sub-categories depending on the population size: ≤20.000; 20.001–50.000; 50.001–200.000; 200.001–500.000; >500.000 population);
- Patient’s distance from home to hospital (≤15 km; 16–35 km; >35 km);
- Type of admission (emergency or scheduled);
- Day of admission (weekday or weekend);
- Day of discharge (weekday or weekend);
- Time of admission (7:00–14:59; 15:00–22:59; 23:00–6:59);
- Length of stay (LOS) categorized in intervals (≤1; 1.01–4.00; 4.01–7.00; 7.01–14.00; >14 days) [27];
2.2. Ethics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jha, A.K.; Orav, E.J.; Dobson, A.; Book, R.A.; Epstein, A.M. Measuring efficiency: The association of hospital costs and quality of care. Health Aff. 2009, 28, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Narcı, H.Ö.; Ozcan, Y.A.; Şahin, İ.; Tarcan, M.; Narcı, M. An examination of competition and efficiency for hospital industry in Turkey. Health Care Manag. Sci. 2015, 18, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Varabyova, Y.; Blankart, C.R.; Torbica, A.; Schreyögg, J. Comparing the efficiency of hospitals in Italy and Germany: Nonparametric conditional approach based on partial frontier. Health Care Manag. Sci. 2017, 20, 379–394. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lei, X.; Morton, A. Performance evaluation of nonhomogeneous hospitals: The case of Hong Kong hospitals. Health Care Manag. Sci. 2018. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.; Lingsma, H.F.; Marang-van de Mheen, P.J.; Kringos, D.S.; Klazinga, N.S.; Steyerberg, E.W. Is the readmission rate a valid quality indicator? A review of the evidence. PLoS ONE 2014, 9, e112282. [Google Scholar] [CrossRef] [PubMed]
- Kansagara, D.; Englander, H.; Salanitro, A.; Kagen, D.; Theobald, C.; Freeman, M.; Kripalani, S. Risk prediction models for hospital readmission: A systematic review. JAMA 2011, 306, 1688–1698. [Google Scholar] [CrossRef] [PubMed]
- Shulan, M.; Gao, K.; Moore, C.D. Predicting 30-day all-cause hospital readmissions. Health Care Manag. Sci. 2013, 16, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Bottle, A.; Aylin, P.; Majeed, A. Identifying patients at high risk of emergency hospital admissions: A logistic regression analysis. J. R. Soc. Med. 2006, 99, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Bianco, A.; Molè, A.; Nobile, C.G.A.; Di Giuseppe, G.; Pileggi, C.; Angelillo, I.F. Hospital readmission prevalence and analysis of those potentially avoidable in Southern Italy. PLoS ONE 2012, 7, e48263. [Google Scholar] [CrossRef] [PubMed]
- Van Walraven, C.; Bennett, C.; Jennings, A.; Austin, P.C.; Forster, A.J. Proportion of hospital readmissions deemed avoidable: A systematic review. CMAJ 2011, 183, E391–E402. [Google Scholar] [CrossRef] [PubMed]
- Bradley, E.H.; Curry, L.; Horwitz, L.I.; Sipsma, H.; Wang, Y.; Walsh, M.N.; Goldmann, D.; White, N.; Piña, I.L.; Krumholz, H.M. Hospital strategies associated with 30-day readmission rates for patients with heart failure. Circ. Cardiovasc. Qual. Outcomes 2013, 6, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Zuckerman, R.B.; Maddox, K.E.J.; Sheingold, S.H.; Chen, L.M.; Epstein, A.M. Effect of a hospital-wide measure on the Readmissions Reduction Program. N. Engl. J. Med. 2017, 377, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Puente, A.; del Río-Mata, J.; Arjona-Huertas, J.L.; Mora-Ordóñez, B.; Martínez-Reina, A.; Martínez Del Campo, M.; Nieto-de Haro, L.; Lara-Blanquer, A. Which unscheduled return visits indicate a quality-of-care issue? Emerg. Med. J. 2017, 34, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Sabbatini, A.K.; Kocher, K.E.; Basu, A.; Hsia, R.Y. In-hospital outcomes and costs among patients hospitalized during a return visit to the emergency department. JAMA 2016, 315, 663–671. [Google Scholar] [CrossRef]
- Di Giuseppe, G.; Abbate, R.; Albano, L.; Marinelli, P.; Angelillo, I.F.; The Collaborative Research Group. Characteristics of patients returning to emergency departments in Naples, Italy. BMC Health Serv. Res. 2008, 8, 97. [Google Scholar] [CrossRef]
- Cardin, S.; Afilalo, M.; Lang, E.; Collet, J.P.; Colacone, A.; Tselios, C.; Dankoff, J.; Guttman, A. Intervention to decrease emergency department crowding: Does it have an effect on return visits and hospital readmissions? Ann. Emerg. Med. 2003, 41, 173–185. [Google Scholar] [CrossRef]
- Westert, G.P.; Lagoe, R.J.; Keskimӓki, I.; Leyland, A.; Murphy, M. An international study of hospital readmissions and related utilization in Europe and the USA. Health Policy 2002, 61, 269–278. [Google Scholar] [CrossRef]
- Laudicella, M.; Li Donni, P.; Smith, P.C. Hospital readmission rates: Signal of failure or success? J. Health Econ. 2013, 32, 909–921. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Hung, W.W.; Paik, M.C.; Ross, J.S.; Zhao, Z.; Kim, G.-S.; Boockvar, K. Predictors and outcomes of unplanned readmission to a different hospital. Int. J. Qual. Health Care 2015, 27, 512–518. [Google Scholar] [CrossRef]
- Singh, S.; Lin, Y.-L.; Kuo, Y.-F.; Nattinger, A.B.; Goodwin, J.S. Variation in the risk of readmission among hospitals: The relative contribution of patient, hospital and inpatient provider characteristics. J. Gen. Intern. Med. 2014, 29, 572–578. [Google Scholar] [CrossRef]
- Lichtman, J.H.; Leifheit-Limson, E.C.; Jones, S.B.; Wang, Y.; Goldstein, L.B. Preventable readmissions within 30 days of ischemic stroke among Medicare beneficiaries. Stroke 2013, 44, 3429–3435. [Google Scholar] [CrossRef] [PubMed]
- Strom, J.B.; Kramer, D.B.; Wang, Y.; Shen, C.; Wasfy, J.H.; Landon, B.E.; Wilker, E.H.; Yeh, R.W. Short-term rehospitalization across the spectrum of age and insurance types in the United States. PLoS ONE 2017, 12, e0180767. [Google Scholar] [CrossRef] [PubMed]
- American Hospital Association. TrendWatch: Examining the Drivers of Readmissions and Reducing Unnecessary Readmissions for Better Patient Care; American Hospital Association: Washington, DC, USA, September 2011. [Google Scholar]
- Heck, R.H.; Thomas, S.L.; Tabata, L.N. Multilevel and Longitudinal Modeling with IBM SPSS: Quantitative Methodology Series, 2nd ed.; Routledge: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Rabe-Hasketh, S.; Skrondal, A. Multilevel and Longitudinal Models Using Stata, Volume II: Categorical Responses, Counts, and Survival, 3rd ed.; Stata Press: College Station, TX, USA, 2012. [Google Scholar]
- Snijders, T.A.B.; Bosker, R.J. Multilevel Analysis: An. Introduction to Basic and Advanced Multilevel Modeling, 2nd ed.; Sage: London, UK, 2011. [Google Scholar]
- Haneuse, S.; Dominici, F.; Normand, S.-L.; Schrag, D. Assessment of between-hospital variation in readmission and mortality after cancer surgical procedures. Jama Netw. Open 2018, 1, e183038. [Google Scholar] [CrossRef] [PubMed]
- Cole, A.P.; Ramaswamy, A.; Harmouch, S.; Fletcher, S.A.; Gild, P.; Sun, M.; Stuart, R.; Lipsitz, S.R.; Chiang, H.A.; Haider, A.H.; et al. Multilevel analysis of readmissions after radical cystectomy for bladder cancer in the USA: Does the hospital make a difference? Eur. Urol. Oncol. 2018. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, B.; Yu, G.; Li, Y.; Liu, H. Age-adjusted Charlson comorbidity index score as predictor of prolonged postoperative ileus in patients with colorectal cancer who underwent surgical resection. Onco_target 2017, 8, 20794–20801. [Google Scholar] [CrossRef]
- Wu, C.-C.; Hsu, T.-W.; Chang, C.-M.; Yu, C.-H.; Lee, C.-C. Age-adjusted Charlson comorbidity index scores as predictor of survival in colorectal cancer patients who underwent surgical resection and chemoradiation. Medicine 2015, 94, e431. [Google Scholar] [CrossRef]
- Morris, E.J.; Taylor, E.F.; Thomas, J.D.; Quirke, P.; Finan, P.J.; Coleman, M.P.; Rachet, B.; Forman, D. Thirty-day postoperative mortality after colorectal cancer surgery in England. Gut 2011, 60, 806–813. [Google Scholar] [CrossRef] [Green Version]
- Luo, R.; Giordano, S.H.; Freeman, J.L.; Zhang, D.; Goodwin, J.S. Referral to medical oncology: A crucial step in the treatment of older patients with stage III colon cancer. Oncologist 2006, 11, 1025–1033. [Google Scholar] [CrossRef]
- Scheil-Adlung, X. Global Evidence on Inequities in Rural Health Protection; ESS Document No. 47; International Labour Office: Geneva, Switzerland, 2015. [Google Scholar]
- Buchanan, R.J.; Stuifbergen, A.; Chakravorty, B.J.; Wang, S.; Zhu, L.; Kim, M. Urban/rural differences in access and barriers to health care for people with multiple sclerosis. J. Health Hum. Serv. Adm. 2006, 29, 360–375. [Google Scholar]
- Angelillo, I.F.; Riccardi, G.; Nante, N.; Boccia, A.; Bianco, A.; La Torre, G.; Vinci, V.; De Giusti, M. Appropriateness of hospital utilisation in Italy. Public Health 2000, 114, 9–14. [Google Scholar] [CrossRef]
- Hammill, B.G.; Curtis, L.H.; Fonarow, G.C.; Heidenreich, P.A.; Yancy, C.W.; Peterson, E.D.; Hernandez, A.F. Incremental value of clinical data beyond clamis data in predicting 30-day outcomes after heart failure hospitalization. Circ. Cardiovasc. Qual. Outcomes 2011, 4, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Allaudeen, N.; Vidyarthi, A.; Maselli, J.; Auerbach, A. Redefining readmission risk factors for general medicine patients. J. Hosp. Med. 2011, 6, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Casalini, F.; Salvetti, S.; Memmini, S.; Lucaccini, E.; Massimetti, G.; Lopalco, P.L.; Privitera, G.P. Unplanned readmissions within 30 days after discharge: Improving quality through easy prediction. Int. J. Qual. Health Care 2017, 29, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Deschodt, M.; Devriendt, E.; Sabbe, M.; Knockaert, D.; Deboutte, P.; Boonen, S.; Flamaing, J.; Milisen, K. Characteristics of older adults admitted to the emergency department (ED) and their risk factors for ED readmission based on comprehensive geriatric assessment: A prospective cohort study. Bmc. Geriatr. 2015, 15, 54. [Google Scholar] [CrossRef] [PubMed]
- Shadmi, E.; Flaks-Manov, N.; Hoshen, M.; Goldman, O.; Bitterman, H.; Balicer, R.D. Predicting 30-day readmissions with preadmission electronic health record data. Med. Care 2015, 53, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Tabak, Y.P.; Sun, X.; Nunez, C.M.; Gupta, V.; Johannes, R.S. Predicting readmission at early hospitalization using electronic clinical data: An early readmission risk score. Med. Care 2017, 55, 267–275. [Google Scholar] [CrossRef]
- Jencks, S.F.; Williams, M.V.; Coleman, E.A. Rehospitalizations among patients in the Medicare fee-for-service program. N. Engl. J. Med. 2009, 360, 1418–1428. [Google Scholar] [CrossRef]
- Spiva, L.; Hand, M.; VanBrackle, L.; McVay, F. Validation of a predictive model to identify patients at high risk for hospital readmission. J. Healthc Qual. 2016, 38, 34–41. [Google Scholar] [CrossRef]
- Van Walraven, C.; Dhalla, I.A.; Bell, C.; Etchells, E.; Stiell, I.G.; Zarnke, K.; Austin, P.C.; Forster, A.J. Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. CMAJ 2010, 182, 551–557. [Google Scholar] [CrossRef] [Green Version]
- Hasan, O.; Meltzer, D.O.; Shaykevich, S.A.; Bell, C.M.; Kaboli, P.J.; Auerbach, A.D.; Wetterneck, T.B.; Arora, V.M.; Zhang, J.; Schnipper, J.L. Hospital readmission in general medicine patients: A prediction model. J. Gen. Intern. Med. 2010, 25, 211–219. [Google Scholar] [CrossRef]
- Vest, J.R.; Gamm, L.D.; Oxford, B.A.; Gonzalez, M.I.; Slawson, K.M. Determinants of preventable readmission in the United States: A systematic review. Implement. Sci. 2010, 5, 88. [Google Scholar] [CrossRef] [PubMed]
Hospitalizations (N) | Hospitalizations (%) | Readmissions (N) | Readmissions (%) | Readmissions Rate | |
---|---|---|---|---|---|
Number of cases/Rate | 34,008 | - | 3789 | - | 12.5 |
PATIENTS’ CHARACTERISTICS | |||||
Gender | χ2 = 0.1, p = 0.716 | ||||
Male | 16,492 | 48.5 | 1848 | 48.8 | 12.6 |
Female | 17,516 | 51.5 | 1942 | 51.2 | 12.5 |
Age group, years | χ2 = 1346.1, p < 0.001 | ||||
0–4 | 3312 | 9.7 | 779 | 20.6 | 30.8 |
5–17 | 4292 | 12.6 | 954 | 25.2 | 28.6 |
18–29 | 1826 | 5.4 | 136 | 3.6 | 8.0 |
30–49 | 4379 | 12.9 | 344 | 9.1 | 8.5 |
50–65 | 8633 | 25.4 | 657 | 17.3 | 8.2 |
66 and more | 11,566 | 34.0 | 919 | 24.3 | 8.6 |
Mean ± SD | 48.9 ± 27.4 | 36.5 ± 30.0 | |||
Place of residence, population | χ2 = 110.8, p < 0.001 | ||||
rural | 10,448 | 30.7 | 1408 | 37.2 | 15.6 |
urban—up to 20.000 | 4834 | 14.2 | 504 | 13.3 | 11.6 |
urban—20.001–50.000 | 1190 | 3.5 | 136 | 3.6 | 12.9 |
urban—50.001–200.000 | 2226 | 6.5 | 289 | 7.6 | 14.9 |
urban—200.001–500.000 | 15,190 | 44.7 | 1438 | 38.0 | 10.5 |
urban—above 500.000 | 120 | 0.4 | 14 | 0.4 | 13.2 |
Distance from patient’s home to hospital, km * | χ2 = 197.3, p < 0.001 | ||||
up to 15 | 14,896 | 43.8 | 1373 | 36.2 | 10.2 |
16 to 35 | 4161 | 12.2 | 350 | 9.2 | 9.2 |
36 and more | 14,920 | 43.9 | 2066 | 54.5 | 16.1 |
Type of admission | χ2 = 18.6, p < 0.001 | ||||
emergency | 13,475 | 39.6 | 1379 | 36.4 | 11.4 |
scheduled | 20,533 | 60.4 | 2410 | 63.6 | 13.3 |
Day of admission | χ2 = 9.0, p = 0.003 | ||||
week-day | 29,323 | 86.2 | 3327 | 87.8 | 12.8 |
week-end | 4685 | 13.8 | 462 | 12.2 | 10.9 |
Day of discharge from the hospital | χ2 = 6.0, p = 0.014 | ||||
week-day | 30,476 | 89.6 | 3439 | 90.8 | 12.7 |
week-end | 3532 | 10.4 | 350 | 9.2 | 11.0 |
Time of admission | χ2 = 3.0, p = 0.228 | ||||
7.00 a.m.–2.59 p.m. | 27,175 | 79.9 | 2992 | 79.0 | 12.4 |
3.00 p.m.–10.59 p.m. | 5627 | 16.5 | 664 | 17.5 | 13.4 |
11.00 p.m.–6.59 a.m. | 1206 | 3.5 | 133 | 3.5 | 12.4 |
Length of stay, days | χ2 = 509.5, p < 0.001 | ||||
up to 1 | 3276 | 10.8 | 863 | 22.8 | 35.8 |
1.01 to 4 | 15,139 | 51.0 | 1428 | 37.7 | 10.4 |
4.01 to 7 | 4974 | 16.5 | 575 | 15.2 | 13.1 |
7.01 to 14 | 4058 | 13.4 | 564 | 14.9 | 16.1 |
14.01 and more | 2772 | 9.2 | 359 | 9.5 | 14.9 |
Mean ± SD | 6.2 ± 11.0 | 6.1 ± 10.9 | |||
Age-adjusted Charlson comorbidity index, score | χ2 = 437.6, p < 0.001 | ||||
0–1 | 11,704 | 34.4 | 1182 | 31.2 | 11.2 |
2–3 | 9602 | 28.2 | 1598 | 42.2 | 20.0 |
4–5 | 9482 | 27.9 | 749 | 19.8 | 8.6 |
6 and more | 3220 | 9.5 | 260 | 6.9 | 8.8 |
Mean ± SD | 2.6 ± 2.2 | 2.3 ± 2.0 | |||
HOSPITAL SECTORS’ CHARACTERISTICS | |||||
Sectors by number of hospitalizations | χ2 = 541.9, p < 0.001 | ||||
up to 1000 | 4449 | 13.1 | 259 | 6.8 | 6.2 |
1001 to 3000 | 11,457 | 33.7 | 844 | 22.3 | 8.0 |
3001 and more | 18,102 | 53.2 | 2686 | 70.9 | 17.4 |
Sectors by number of physicians | χ2 = 537.8, p < 0.001 | ||||
up to 1000 | 4973 | 14.6 | 310 | 8.2 | 6.6 |
1001 to 3000 | 10,933 | 32.1 | 793 | 20.9 | 7.8 |
3001 and more | 18,102 | 53.2 | 2686 | 70.9 | 17.4 |
Sectors by number of cases | χ2 = 739.1, p < 0.001 | ||||
up to 1000 | 3661 | 10.8 | 117 | 3.1 | 3.3 |
1001 to 3000 | 15,131 | 44.5 | 1232 | 32.5 | 8.9 |
3001 and more | 15,216 | 44.7 | 2440 | 64.4 | 19.1 |
Sector | Hospitalizations | Readmissions | Readmissions Rate (%) | Share in Total Readmissions (%) |
---|---|---|---|---|
Pediatrics | 6992 | 1771 | 33.9 | 46.7 |
Transplantation | 788 | 153 | 24.1 | 4.0 |
Urology | 2168 | 316 | 17.1 | 8.3 |
Vascular surgery | 1004 | 106 | 11.8 | 2.8 |
Liver surgery | 2153 | 179 | 9.1 | 4.7 |
Internal medicine | 7470 | 619 | 9.0 | 16.3 |
Ophthalmology | 3640 | 296 | 8.9 | 7.8 |
Psychiatry | 693 | 50 | 7.8 | 1.3 |
Otolaryngology | 1729 | 87 | 5.3 | 2.3 |
Dermatology | 1439 | 66 | 4.8 | 1.7 |
Neurosurgery | 1270 | 56 | 4.6 | 1.5 |
Strokes | 943 | 29 | 3.2 | 0.8 |
Plastic surgery | 625 | 17 | 2.8 | 0.4 |
Palliative medicine | 88 | 2 | 2.3 | 0.1 |
Orthopedics | 1694 | 34 | 2.0 | 0.9 |
Neurological rehabilitation | 336 | 3 | 0.9 | 0.1 |
Neurology | 685 | 5 | 0.7 | 0.1 |
Rehabilitation | 61 | 0 | 0.0 | 0.0 |
Orthopedic rehabilitation | 230 | 0 | 0.0 | 0.0 |
Code | Reason for Readmission | Readmission Category | Number of Cases (Share in Total Readmissions) |
---|---|---|---|
1 | Index hospitalization was diagnostic | A | 151 (4.0%) |
2 | Certain circumstances found during index hospitalization that prevented from performing procedure | A | 175 (4.6%) |
3 | Patient’s non-adherence to therapeutic recommendations after index hospitalization | C | 92 (2.4%) |
4a | Patient discharged too early due to clinic’s organizational factors | C | 37 (1.0%) |
4b | Patient discharged too early due to too small number of beds in relation to needs | C | 6 (0.2%) |
4c | Patient discharged too early due to inadequate clinical assessment on discharge | C | 16 (0.4%) |
4d | Patient discharged on own request | C | 13 (0.3%) |
5a | Diagnostic difficulties during index hospitalization due to care for cost optimization | C | 108 (2.9%) |
5b | Diagnostic difficulties during index hospitalization due to inadequate availability of diagnostics | C | 116 (3.1%) |
5c | Incomplete diagnostics during index hospitalization due to incorrect initial diagnosis | C | 2 (0.1%) |
6 | Postoperative complications | C | 144 (3.8%) |
7a | Non-optimal therapy during index hospitalization due to patient refusal of planned treatment | C | 5 (0.1%) |
7b | Non-optimal therapy during index hospitalization due to incorrect initial diagnosis | C | 2 (0.1%) |
8 | Readmission resulting from specific nature of the disease and its routine treatment practice; unavoidable | C | 1631 (43.0%) |
9a | Readmission due to disease different to that of the index hospitalization – scheduled readmission | B | 123 (3.2%) |
9b | Readmission due to disease different to that of the index hospitalization – emergency readmission | D | 238 (6.3%) |
10 | Disease progression, e.g. cancer progression | C | 219 (5.8%) |
11 | Infection acquired in index hospitalization not detected on discharge | C | 29 (0.8%) |
12 | Results from specificity of reimbursement process with third-party payer (National Health Fund) | A | 150 (4.0%) |
13 | Ailments not confirmed during readmission | D | 3 (0.1%) |
14 | Radiotherapy sessions and chemotherapy cycles | A | 529 (14.0%) |
Dependent Variable: Readmission During 30 Days after Index Hospitalization | ||||
---|---|---|---|---|
Odds Ratio | St. Error | 95% CI | p-value | |
Gender (ref.: Men) | ||||
Women | 1.14 | 0.04 | 1.06–1.23 | 0.001 |
Age, years (ref.: 18–29) | ||||
0–4 | 0.84 | 0.16 | 0.58–1.21 | 0.342 |
5–17 | 0.81 | 0.15 | 0.56–1.16 | 0.252 |
30–49 | 1.05 | 0.14 | 0.82–1.35 | 0.694 |
50–65 | 0.23 | 0.03 | 0.18–0.30 | <0.001 |
66 and more | 0.24 | 0.03 | 0.18–0.32 | <0.001 |
Distance from patient’s home to hospital, km * (ref.: up to 15) | ||||
16 to 35 | 0.89 | 0.06 | 0.78–1.02 | 0.090 |
36 and more | 1.17 | 0.05 | 1.08–1.27 | <0.001 |
Length of stay, days (ref.: 4.01 to 7) | ||||
up to 1 | 1.94 | 0.14 | 1.69–2.22 | <0.001 |
1.01 to 4 | 0.79 | 0.05 | 0.71–0.89 | <0.001 |
7.01 to 14 | 1.43 | 0.10 | 1.24–1.64 | <0.001 |
14.01 and more | 1.51 | 0.13 | 1.28–1.78 | <0.001 |
Age-adjusted Charlson comorbidity index, score (ref.: 0–1) | ||||
2–3 | 9.65 | 0.62 | 8.50–10.96 | <0.001 |
4–5 | 9.07 | 0.87 | 7.52–10.94 | <0.001 |
6 and more | 11.38 | 1.33 | 8.68–13.64 | <0.001 |
Sectors by number of hospitalizations (ref.: up to 1000) | ||||
1001 to 3000 | 4.47 | 2.38 | 1.58–12.67 | 0.005 |
3001 and more | 9.81 | 6.72 | 2.56–37.56 | 0.001 |
Constant term | 0.01 | 0.00 | 0.00–0.01 | <0.001 |
c statistic = 0.749; 95% CI: 0.740–757 Log likelihood: −9865.6; χ2 = 1772.8; p < 0.001 Observations: 33,977. Minimum (maximum) number of observations per sector: 61 (7468) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kryś, J.; Łyszczarz, B.; Wyszkowska, Z.; Kędziora-Kornatowska, K. Prevalence, Reasons, and Predisposing Factors Associated with 30-day Hospital Readmissions in Poland. Int. J. Environ. Res. Public Health 2019, 16, 2339. https://doi.org/10.3390/ijerph16132339
Kryś J, Łyszczarz B, Wyszkowska Z, Kędziora-Kornatowska K. Prevalence, Reasons, and Predisposing Factors Associated with 30-day Hospital Readmissions in Poland. International Journal of Environmental Research and Public Health. 2019; 16(13):2339. https://doi.org/10.3390/ijerph16132339
Chicago/Turabian StyleKryś, Jacek, Błażej Łyszczarz, Zofia Wyszkowska, and Kornelia Kędziora-Kornatowska. 2019. "Prevalence, Reasons, and Predisposing Factors Associated with 30-day Hospital Readmissions in Poland" International Journal of Environmental Research and Public Health 16, no. 13: 2339. https://doi.org/10.3390/ijerph16132339
APA StyleKryś, J., Łyszczarz, B., Wyszkowska, Z., & Kędziora-Kornatowska, K. (2019). Prevalence, Reasons, and Predisposing Factors Associated with 30-day Hospital Readmissions in Poland. International Journal of Environmental Research and Public Health, 16(13), 2339. https://doi.org/10.3390/ijerph16132339