Assessment of Heavy Metal Pollution and Potential Ecological Risk in Sewage Sludge from Municipal Wastewater Treatment Plant Located in the Most Industrialized Region in Poland—Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Physicochemical Analysis
2.2.1. Measurement of pH, Redox Potential (Eh), Dry Matter (DM) and Organic Matter (OM)
2.2.2. Determination of Total Heavy Metal Concentrations
2.2.3. Sequential Extraction of Heavy Metals in Sewage Sludge
2.3. Pollution Level and Ecological Risk
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characteristics of Sewage Sludge
3.2. Total Heavy Metal Concentrations
3.3. Chemical Speciation of Heavy Metals
3.4. Assessment of Polluton Level and Ecological Risk
4. Conclusions
Funding
Conflicts of Interest
References
- Zhang, X.; Wang, X.-Q.; Wang, D.-F. Immobilization of Heavy Metals in Sewage Sludge during Land Application Process in China: A Review. Sustainability 2017, 9, 2020. [Google Scholar] [CrossRef]
- Turek, A.; Wieczorek, K.; Wolf, W.M. Digestion Procedure and Determination of Heavy Metals in Sewage Sludge—An Analytical Problem. Sustainability 2019, 11, 1753. [Google Scholar] [CrossRef]
- Spanos, T.; Ene, A.; Styliani Patronidou, C.; Xatzixristou, C. Temporal variability of sewage sludge heavy metal content from Greek wastewater treatment plants. Ecol. Chem. Eng. S 2016, 23, 271–283. [Google Scholar] [CrossRef]
- Feizi, M.; Jalali, M.; Renella, G. Assessment of nutrient and heavy metal content and speciation in sewage sludge from different locations in Iran. Nat. Hazards 2019, 95, 657–675. [Google Scholar] [CrossRef]
- Tytła, M. The Effects of Ultrasonic Disintegration as a Function of Waste Activated Sludge Characteristics and Technical Conditions of Conducting the Process—Comprehensive Analysis. Int. J. Environ. Res. Public Health 2018, 15, 2311. [Google Scholar] [CrossRef]
- Milieu Ltd. Environmental, Economic and Social Impacts of the Use of Sewage Sludge on Land. Final Report. Part II: Project Interim (DGENV.G.4/ETU/2008/0076r.). Final Report for the European Commission. Milieu Ltd., WRc, and RPA. DG Environment 2008. Available online: http://ec.europa.eu/environment/ archives/waste/sludge/pdf/part_ii_report.pdf (accessed on 29 April 2015).
- Sánchez, C.H.; Gutiérrez, Á.; Galindo, J.M.; González-Weller, D.; Rubio, C.; Revert, C.; Burgos, A.; Hardisson, A. Heavy Metal Content in Sewage Sludge: A Management Strategy for an Ocean Island. Rev. Salud Ambient. 2017, 17, 3–9. Available online: http://www.ojs.diffundit.com/index.php/rsa/article/viewFile/758/798 (accessed on 5 February 2019).
- Tytła, M.; Widziewicz, K.; Zielewicz, Z. Heavy metals and its chemical speciation in sewage sludge at different stages of processing. Environ. Technol. 2016, 37, 899–908. [Google Scholar] [CrossRef]
- Duan, B.; Zhang, W.; Zheng, H.; Wu, C.; Zhang, Q.; Bu, Y. Comparison of Health Risk Assessments of Heavy Metals and As in Sewage Sludge from Wastewater Treatment Plants (WWTPs) for Adults and Children in the Urban District of Taiyuan, China. Int. J. Environ. Res. Public Health 2017, 14, 1194. [Google Scholar] [CrossRef]
- Cantinho, P.; Matos, M.; Trancoso, M.A.; Correia dos Santos, M.M. Behaviour and fate of metals in urban wastewater treatment plants: A review. Int. J. Environ. Sci. Technol. 2016, 13, 359–386. [Google Scholar] [CrossRef]
- Duan, B.; Zhang, W.; Zheng, H.; Wu, C.; Zhang, Q.; Bu, Y. Disposal Situation of Sewage Sludge from Municipal Wastewater Treatment Plants (WWTPs) and Assessment of the Ecological Risk of Heavy Metals for Its Land Use in Shanxi, China. Int. J. Environ. Res. Public Health 2018, 14, 823. [Google Scholar] [CrossRef]
- Milik, J.K.; Pasela, R.; Lachowicz, M.; Chalamoński, M. The concentration of trace elements in sewage sludge from wastewater treatment plant in Gniewino. JEE 2017, 18, 118–124. [Google Scholar] [CrossRef]
- Rizzardini, C.B.; Goi, D. Sustainability of domestic sewage sludge disposal. Sustainability 2014, 6, 2424–2434. [Google Scholar] [CrossRef]
- Gawdzik, J. Mobilność Wybranych Metali Ciężkich w Osadach Ściekowych (Mobility of Selected Heavy Metals in Sewage Sludge), 1st ed.; Monographs, Studies, Dissertations (M44); Kielce University of Technology: Kielce, Poland, 2013; pp. 37–46. [Google Scholar]
- Regulation of the Minister of Environment of 6 February 2015 on the Municipal Sewage Sludge (J. L. 2015, Item. 257). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20150000257 (accessed on 29 July 2019).
- Council Directive of 12th June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture (86/278/EEC). Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:31986L0278&from=EN (accessed on 12 June 1986).
- Yang, T.; Huang, H.; Lai, F. Pollution hazards of heavy metals in sewage sludge from four wastewater treatment plants in Nanchang, China. Trans. Nonferrous Met. Soc. China 2017, 27, 2249–2259. [Google Scholar] [CrossRef]
- Karwowska, B.; Dąbrowska, L. Bioavailability of heavy metals in the municipal sewage sludge. Ecol. Chem. Eng. 2017, 24, 75–86. [Google Scholar] [CrossRef]
- Ure, A.M.; Quevauviller, P.; Mantau, H.; Griepink, B. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BRC of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. [Google Scholar] [CrossRef]
- Álvarez, E.A.; Callejón Mochón, M.; Jiménez Sánchez, J.C.; Ternero Rodríguez, M. Heavy metal extractable forms in sludge from wastewater treatment plants. Chemosphere 2002, 47, 765–775. [Google Scholar] [CrossRef]
- Gusiatin, Z.M.; Kulikowska, D.; Klik, B.K.; Hajdukiewicz, K. Ecological risk assessment of sewage sludge from municipal wastewater treatment plants: A case study. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 2018, 53, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Zhao, S.; Feng, C.; Yang, Y.; Niu, J.; Shen, Z. Risk assessment of sedimentary metals in the Yangtze Estuary: New evidence of the relationships between two typical index methods. J. Hazard. Mater. 2012, 241–242, 164–172. [Google Scholar] [CrossRef]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. Geo J. 1969, 2, 108–118. [Google Scholar]
- Hakanson, L. Ecological risk index for aquatic pollution control, a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Ikem, A.; Egiebor, N.O.; Nyavor, K. Trace elements in water fish and sediment from Tuskegee Lake, Southeastern USA. Water Air Soil Pollut. 2003, 149, 51–75. [Google Scholar] [CrossRef]
- Perin, G.; Craboledda, L.; Lucchese, M.; Cirillo, R.; Dotta, L.; Zanette, M.L.; Orio, A.A. Heavy metal speciation in the sediments of Northern Adriatic Sea—A new approach for environmental toxicity determination. In Heavy Metal in the Environment 2; Lakkas, T.D., Ed.; CEP Consultants Limited: Edinburgh, Scotland, 1985; pp. 454–456. [Google Scholar]
- Saleem, M.; Iqbal, J.; Shah, M.H. Geochemical speciation, anthropogenic contamination, risk assessment and source identification of selected metals in fresh water sediments—A case study from Mangla Lake, Pakistan. Environ. Nano Monit. Manag. 2015, 4, 27–36. [Google Scholar] [CrossRef]
- Mamut, A.; Eziz, M.; Mohammad, A. Pollution and Ecological Risk Assessment of Heavy Metals in Farmland Soils in Yanqi County, Xinjiang, Northwest China. Eurasian Soil Sci. 2018, 51, 985–993. [Google Scholar] [CrossRef]
- Baran, A.; Tarnawski, M.; Koniarz, T. Spatial distribution of trace elements and ecotoxicity of bottom sediments in Rybnik reservoir, Silesian–Poland. ESPR 2016, 23, 17255–17268. [Google Scholar] [CrossRef] [PubMed]
- Tytła, M.; Kostecki, M. Ecological risk assessment of metals and metalloid in bottom sediments of water reservoir located in the key anthropogenic “hot spot” area (Poland). Environ. Earth Sci. 2019, 78, 179. [Google Scholar] [CrossRef]
- Central Statistical Office (CSO). Sludge Produced during the Year 2017 (Tables), Warsaw, Poland 2017. Available online: https://stat.gov.pl/ (accessed on 23 May 2019).
- Google Maps. Available online: https://www.google.pl/maps/@52.0122001,29.5346949,3.17z/data=!5m1!1e4?hl=en (accessed on 29 May 2019).
- Google Maps. Available online: https://www.google.pl/maps/@50.3650717,18.80662,12z/data=!5m1!1e4?hl=enfgg (accessed on 29 May 2019).
- European Pollutant Release and Transfer Register (E-PRTR). Available online: https://prtr.eea.europa.eu/#/industrialactivity (accessed on 29 May 2019).
- Polish Committee for Standardization. Characteristics of Sewage Sludge, Determination of Dry Residue and Water Content; PN−EN 12880:2004; Polish Committee for Standardization: Warszawa, Poland, 2004. [Google Scholar]
- Polish Committee for Standardization. Characteristics of Sewage Sludge, Determination of Loss on Ignition of Dry Matter; PN−EN 12879:2004; Polish Committee for Standardization: Warszawa, Poland, 2004. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; Taylor & Francis: London, UK, 2011; pp. 41–42. [Google Scholar]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwąg, M.; Rorat, A.; Brattebo, H.; Almas, A.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Luo, G.; Gao, J.; Yuan, S.; Du, J.; Wang, Z. Quantitative evaluation of potential ecological risk of heavy metals in sewage sludge from three wastewater treatment plants in the main urban area of Wuxi, China. Chem. Ecol. 2015, 31, 235–251. [Google Scholar] [CrossRef]
- Tiruneh, A.T.; Fadiran, A.O.; Mtshali, J.S. Evaluation of the risk of heavy metals in sewage sludge intended for agricultural application in Swaziland. Int. J. Environ. Sci. Technol. 2014, 5, 197–216. [Google Scholar] [CrossRef]
- Tytła, M.; Widziewicz, K. The influence of sewage sludge processing in wastewater treatment plant on the heavy metals contents. ACEE 2013, 6, 43–48. [Google Scholar]
- Fuentes, A.; Llorens, M.; Saez, J.; Soler, A.; Aguilar, M.I.; Ortuno, J.F.; Meseguer, V.F. Simple and sequential extractions of heavy metals from different sewage sludges. Chemosphere 2004, 54, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, X.-C.; Ma, H.-T.; Qian, J.; Zhai, J.-B. Distribution of extractable fractions of heavy metals in sludge during the wastewater treatment process. J. Hazard. Mater. 2006, 137, 1277–1283. [Google Scholar] [CrossRef] [PubMed]
- Merrington, G.; Oliver, I.; Smernik, R.J.; McLaughlin, M.J. The influence of sewage sludge properties on sludge-borne metal availability. Adv. Environ. Res. 2003, 8, 21–36. [Google Scholar] [CrossRef]
- Milik, J.; Pasela, R.; Szymczak, M.; Chalamoński, M. Evaluation of the Physico-chemical Composition of Sludge from Municipal Sewage Treatment Plant. Ann. Set Environ. Prot. 2016, 18, 579–590. [Google Scholar]
- Gomes, J.; Matos, A.; Quinta-Ferreira, R.M.; Martins, R.C. Environmentally applications of invasive bivalves for water and wastewater decontamination. Sci. Total Environ. 2018, 630, 1016–1027. [Google Scholar] [CrossRef] [PubMed]
- Rosa, I.C.; Costa, R.; Gonçalves, F.; Pereira, J.L. Bioremediation of metal-rich effluents: Could the invasive bivalve Corbicula fluminea work as a biofilter? J. Environ. Qual. 2014, 43, 1536–1545. [Google Scholar] [CrossRef] [PubMed]
- Magni, S.; Parolini, M.; Soave, C.; Marazzi, F.; Mezzanotte, V.; Binelli, A. Removal of metallic elements from real wastewater using zebra mussel bio-filtration process. J. Environ. Chem. Eng. 2015, 3, 915–921. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
Population equivalent (PE) | - | 143,368 |
Average flow (Q) | m3·d−1 | 19,330 |
Hydraulic retention time (HRT) of sludge in anaerobic digester | d | 21 |
Temperature in the anaerobic digester | °C | 36 |
Fraction | BCR Procedure | |
---|---|---|
F1 | Acid soluble/exchangeable fraction; bound to carbonates (mobile) | Add 20 mL of 0.11 mol·L−1 acetic acid (CH3COOH) to 0.5 g of sludge sample. Shake for 16-h. |
F2 | Reducible fraction; bound to Mn and Fe oxides (mobile) | Add 20 mL 0.1 mol·L−1 hydroxylamine hydrochloride (NH2OH·HCl; adjusted with HNO3 to pH = 2) to residue from first step of extraction. Shake for 16 h. |
F3 | Oxidizable fraction; bound to organic matter and sulfides (immobile) | Add 5 mL of 8.8 mol·L−1 hydrogen peroxide (H2O2) and incubate at 85 °C for 1 h (repeat the procedure twice). Afterwards, add 25 mL of 1 mol L−1 ammonium acetate (CH3COONH4; adjusted with HNO3 to pH = 2) to residue from second step of extraction. Shake for 16 h. |
F4 | Residual fraction (immobile) | Add 5 ml HNO3 and 15 mL HCl to residue from third step of extraction. |
Indices | Equation with Description | Category | Description and Abbreviations |
---|---|---|---|
Geoaccumulation Index (Igeo) [24] | Cn—measured concentration of metal in the sludge sample; Bn—geochemical background value in the Earth’s crust [38] | Igeo ≤ 0 0 < Igeo ≤ 1 1 < Igeo ≤ 2 2 < Igeo ≤ 3 3 < Igeo ≤ 4 4 < Igeo ≤ 5 5 < Igeo | Practically uncontaminated (PUC) Uncontam. to moderately contam. (U-MC) Moderately contaminated (MC) Moderately to heavily contam. (M-HC) Heavily contaminated (HC) Heavily to extremely contam. (H-EC) Extremely contaminated (EC) |
Potential Ecological Risk Factor (ER) [25] | —the toxic response factor of metal; Cf—single metal pollution factor | ER ≤ 40 40 < ER ≤ 80 80 < ER ≤ 160 160 < ER ≤ 320 ER > 320 | Low risk (LR) Moderate risk (MR) Considerable risk (CR) High risk (HR) Very high risk (VHR) |
Individual Contamination Factor (ICF) [23,26] | F1, F2, F3, F4—the content of metal in exchangeable, reducible, oxidizable, and residual fraction | ICF ≤ 1 1 < ICF ≤ 3 3 < ICF ≤ 6 ICF > 6 | Low contamination (LC) Moderate contamination (MC) Considerable contamination (CC) Very high contamination (VHC) |
modified Risk Assessment Code (RACm) (based on criteria specified in reference [27]) | F1, F2—the percentage share of metal in exchangeable and reducible fractions | RACm ≤ 1% 1% < RACm ≤ 10% 10% < RACm ≤ 30% 30% < RACm ≤ 50% 50% < RACm | No risk (NR) Low risk (LR) Medium risk (MR) High risk (HR) Very high risk (VHR) |
Ecological Risk Factor (ERF)—author’s index (this study) | F1, F2, F3, F4—the content of metal in exchangeable, reducible, oxidizable, and residual fractions | 0 < ERF ≤ 0.4 0.4 < ERF ≤ 1 1 < ERF | Low risk (LR) Medium risk (MR) High risk (HR) |
Sampling Points | pH | Eh | DM | OM | Moisture |
---|---|---|---|---|---|
mV | % | %DM | % | ||
S1 | 7.4 | −175 | 0.6 | 83.3 | 99.4 |
S2 | 5.4 | −350 | 6.5 | 78.5 | 97.5 |
S3 | 7.4 | −188 | 0.9 | 77.8 | 99.1 |
S4 | 7.1 | −177 | 7.1 | 70.4 | 92.8 |
S5 | 5.7 | −273 | 5.4 | 75.9 | 94.6 |
S6 | 6.7 | −343 | 3.4 | 61.8 | 96.6 |
S7 | 7.4 | −272 | 20.3 | 64.0 | 79.7 |
Metal | S1 | S2 | S3 | S4 | S5 | S6 | S7 |
---|---|---|---|---|---|---|---|
mg·kg−1 | |||||||
Cd | 2.7 ± 0.1 | 1.8 ± 0.2 | 3.0 ± 0.2 | 3.1 ± 0.4 | 2.3 ± 0.1 | 4.0 ± 0.2 | 4.1 ± 0.8 |
Cr | 57.3 ± 8.7 | 34.9 ± 3.7 | 54.8 ± 6.0 | 62.7 ± 5.9 | 53.4 ± 16.5 | 68.3 ± 2.4 | 67.1 ± 8.8 |
Cu | 123.6 ± 13.1 | 104.1 ± 20.2 | 138.3 ± 11.4 | 143.0 ± 26.2 | 117.7 ± 2.4 | 188.9 ± 12.5 | 194.0 ± 45.0 |
Ni | 55.0 ± 21.1 | 51.2 ± 18.8 | 62.0 ± 14.8 | 64.1 ± 22.0 | 58.7 ± 22.7 | 98.1 ± 21.0 | 95.2 ± 20.2 |
Pb | 123.5 ± 1.3 | 97.6 ± 5.6 | 137.7 ± 12.8 | 141.0 ± 13.6 | 123.7 ± 6.7 | 189.2 ± 6.2 | 187.8 ± 20.4 |
Zn | 1429.5 ± 41.8 | 1092.2 ± 63.3 | 1641.0 ± 41.4 | 1558.1 ± 87.0 | 1407.8 ± 80.4 | 1847.1 ± 30.2 | 1851.6 ± 53.2 |
Hg | 1.0 ± 2.8 | 0.3 ± 1.3 | 0.7 ± 1.6 | 0.5 ± 4.0 | 1.0 ± 3.5 | 1.1 ± 3.7 | 1.0 ± 1.3 |
Sum | 1792.6 | 1382.1 | 2037.5 | 1972.5 | 1764.6 | 2396.7 | 2400.8 |
Cd | Cr | Cu | Ni | Pb | Zn | Hg | |
---|---|---|---|---|---|---|---|
Cd | 1.0000 | ||||||
Cr | 0.9098 | 1.0000 | |||||
Cu | 0.9823 | 0.8430 | 1.0000 | ||||
Ni | 0.9287 | 0.7703 | 0.9780 | 1.0000 | |||
Pb | 0.9825 | 0.8811 | 0.9925 | 0.9752 | 1.0000 | ||
Zn | 0.9716 | 0.9245 | 0.9359 | 0.8767 | 0.9579 | 1.0000 | |
Hg | 0.5109 | 0.6440 | 0.4734 | 0.4937 | 0.5534 | 0.5940 | 1.0000 |
Metal | Fraction | S1 | S2 | S3 | S4 | S5 | S6 | S7 |
---|---|---|---|---|---|---|---|---|
mg·kg−1DM | ||||||||
Cd | F1 | BDL | BDL | BDL | BDL | BDL | BDL | BDL |
F2 | 0.9 ± 0.0 | 1.1 ± 0.0 | 1.2 ± 0.1 | 0.9 ± 0.1 | 1.1 ± 0.0 | 1.3 ± 0.0 | 1.1 ± 0.1 | |
F3 | 1.2 ± 0.3 | 1.1 ± 0.2 | 1.2 ± 0.1 | 1.3 ± 0.1 | 1.1 ± 0.3 | 1.9 ± 0.1 | 2.2 ± 0.2 | |
F4 | 0.8 ± 0.1 | BDL | 1.1 ± 0.4 | 1.4 ± 0.2 | 0.7 ± 0.0 | 1.8 ± 0.0 | 1.5 ± 0.1 | |
R, % | 106.8 | 124.4 | 112.2 | 114.1 | 126.7 | 123.6 | 119.2 | |
Cr | F1 | BDL | BDL | BDL | BDL | 0.6 ± 0.0 | BDL | 1.2 ± 0.0 |
F2 | BDL | BDL | BDL | BDL | BDL | BDL | BDL | |
F3 | 19.7 ± 8.2 | 17.0 ± 4.5 | 23.5 ± 1.4 | 22.1 ± 0.4 | 17.7 ± 1.6 | 25.2 ± 0.5 | 25.5 ± 0.7 | |
F4 | 16.0 ± 0.6 | 8.0 ± 0.8 | 15.3 ± 1.3 | 19.0 ± 2.6 | 12.6 ± 0.5 | 24.8 ± 0.7 | 22.2 ± 0.2 | |
R, % | 62.3 | 71.6 | 70.9 | 65.5 | 58.0 | 73.3 | 73.0 | |
Cu | F1 | 0.7 ± 0.1 | 2.3 ± 0.1 | 0.8 ± 0.1 | 0.9 ± 0.0 | 1.9 ± 0.0 | 0.5 ± 0.1 | 1.4 ± 0.1 |
F2 | 4.8 ± 1.2 | 6.9 ± 2.4 | 1.6 ± 0.2 | 1.1 ± 0.1 | 3.5 ± 05 | 0.7 ± 0.1 | 1.7 ± 0.1 | |
F3 | 118.3 ± 30.4 | 110.8 ± 23.1 | 141.1 ± 7.0 | 151.7 ± 5.6 | 126.9 ± 14.8 | 210.5 ± 3.8 | 198.8 ± 6.3 | |
F4 | 13.4 ± 2.1 | 4.9 ± 0.5 | 11.1 ± 1.6 | 12.1 ± 0.4 | 7.6 ± 0.5 | 16.5 ± 0.4 | 14.5 ± 0.5 | |
R; % | 110.9 | 120.0 | 111.8 | 116.0 | 118.8 | 120.8 | 111.5 | |
Ni | F1 | 5.4 ± 0.2 | 5.4 ± 0.2 | 5.8 ± 0.9 | 5.6 ± 0.2 | 7.6 ± 0.1 | 9.4 ± 0.0 | 11.2 ± 0.1 |
F2 | 3.6 ± 0.1 | 1.8 ± 0.0 | 3.7 ± 0.2 | 3.6 ± 0.2 | 2.6 ± 0.1 | 4.7 ± 0.1 | 2.9 ± 0.0 | |
F3 | 8.3 ± 8.9 | 4.2 ± 2.8 | 8.2 ± 1.1 | 9.5 ± 0.1 | 3.7 ± 0.1 | 7.3 ± 0.3 | 7.1 ± 0.4 | |
F4 | 13.9 ± 1.1 | 10.9 ± 4.0 | 13.2 ± 2.3 | 15.2 ± 3.3 | 11.1 ± 0.4 | 19.1 ± 2.4 | 18.0 ± 0.8 | |
R; % | 56.9 | 43.7 | 49.9 | 52.9 | 42.5 | 41.4 | 41.1 | |
Pb | F1 | BDL | BDL | BDL | 1.1 ± 0.7 | BDL | BDL | BDL |
F2 | BDL | 1.2 ± 0.1 | BDL | BDL | BDL | BDL | BDL | |
F3 | 18.0 ± 14.8 | 19.5 ± 10.0 | 7.9 ± 1.0 | 3.8 ± 0.3 | 10.2 ± 0.6 | 13.3 ± 0.4 | 19.4 ± 1.0 | |
F4 | 65.3 ± 4.8 | 24.3 ± 2.0 | 74.5 ± 10.7 | 80.3 ± 14.2 | 52.8 ± 4.9 | 107.9 ± 1.1 | 93.9 ± 5.5 | |
R; % | 67.4 | 46.1 | 59.5 | 60.4 | 50.9 | 64.1 | 60.3 | |
Zn | F1 | 123.0 ± 6.6 | 308.1 ± 10.2 | 137.4 ± 17.0 | 94.1 ± 4.8 | 220.9 ± 3.5 | 230.5 ± 7.4 | 252.5 ± 4.9 |
F2 | 538.1 ± 11.3 | 334.2 ± 10.8 | 555.6 ± 23.1 | 568.9 ± 20.6 | 482.1 ± 15.4 | 600.5 ± 6.7 | 545.1 ± 10.4 | |
F3 | 304.7 ± 187.2 | 256.2 ± 135.0 | 377.3 ± 28.8 | 455.6 ± 34.6 | 285.5 ± 30.9 | 560.1 ± 20.3 | 571.3 ± 44.2 | |
F4 | 57.5 ± 6.7 | 14.3 ± 2.5 | 59.1 ± 10.0 | 70.0 ± 12.2 | 34.6 ± 3.0 | 96.5 ± 1.9 | 81.8 ± 3.2 | |
R; % | 71.6 | 83.6 | 68.8 | 76.3 | 72.7 | 80.5 | 78.3 |
Cd | F1 | F2 | F3 | F4 |
---|---|---|---|---|
ph | -* | −0.2487 | 0.3950 | 0.6567 |
Eh | -* | −0.6903 | −0.3144 | 0.1519 |
DM | -* | 0.0675 | 0.6888 | 0.2389 |
OM | -* | 0.0493 | 0.6342 | 0.1709 |
Cr | F1 | F2 | F3 | F4 |
pH | 0.0624 | -* | 0.7280 | 0.6414 |
Eh | −0.1557 | -* | 0.0872 | 0.0460 |
DM | 0.8499 | -* | 0.3444 | 0.3007 |
OM | 0.8356 | -* | 0.2720 | 0.2303 |
Cu | F1 | F2 | F3 | F4 |
ph | −0.8119 | −0.5937 | 0.4028 | 0.7781 |
Eh | −0.4887 | −0.2252 | −0.2829 | 0.2106 |
DM | 0.3224 | −0.1630 | 0.4778 | 0.1323 |
OM | 0.3957 | −0.1056 | 0.4206 | 0.0513 |
Ni | F1 | F2 | F3 | F4 |
ph | 0.1668 | 0.6162 | 0.8836 | 0.5867 |
Eh | −0.4328 | 0.2535 | 0.6893 | −0.1007 |
DM | 0.7112 | −0.3795 | −0.1092 | 0.3833 |
OM | 0.6677 | −0.4475 | −0.1637 | 0.3164 |
Pb | F1 | F2 | F3 | F4 |
ph | 0.1932 | −0.6909 | −0.1555 | 0.6942 |
Eh | 0.4488 | −0.5595 | −0.4874 | 0.1307 |
DM | 0.0486 | 0.0129 | 0.3426 | 0.2183 |
OM | 0.0694 | 0.0776 | 0.3361 | 0.1439 |
Zn | F1 | F2 | F3 | F4 |
ph | −0.6627 | 0.7872 | 0.5452 | 0.7196 |
Eh | −0.9238 | 0.4600 | −0.1032 | 0.1377 |
DM | 0.4299 | −0.0416 | 0.5198 | 0.2137 |
OM | 0.4601 | −0.1153 | 0.4616 | 0.1389 |
Index | Cd | Cr | Cu | Ni | Pb | Zn | Hg | |
---|---|---|---|---|---|---|---|---|
S1 | Igeo | 2.7 (M-HC) | −1.3 | 2.3 (M-HC) | 0.0 | 1.4 (MC) | 3.8 (HC) | 3.5 (HC) |
ER | 293.6 (HR) | 1.2 | 35.7 | 7.4 | 19.3 | 21.0 | 664.8 (VHR) | |
ICF | 2.6 (MC) | 1.2 (MC) | 9.2 (VHC) | 1.3 (MC) | 0.3 | 16.8 (VHC) | - | |
RACm | 32.0 (HR) | 0.0 | 4.0 | 29.0 (MR) | 0.0 | 64.6 (VHR) | - | |
ERF | 0.5 (MR) | 0.0 | 0.0 | 0.4 | 0.0 | 1.8 (HR) | - | |
S2 | Igeo | 2.1 (M-HC) | −2.0 | 2.0 (MC) | −0.1 | 1.0 | 3.4 (HC) | 1.5 (MC) |
ER | 189.0 (HR) | 0.7 | 30.1 | 6.9 | 15.2 | 16.0 | 172.4 (HR) | |
ICF | 0.0 | 2.1 (MC) | 24.7 (VHC) | 1.1 (MC) | 0.9 | 63.0 (VHC) | - | |
RACm | 51.0 (VHR) | 1.7 | 7.4 | 32.4 (HR) | 2.7 | 70.4 (VHR) | - | |
ERF | 1.0 (MR) | 0.0 | 0.1 | 0.5 (MR) | 0.0 | 2.4 (HR) | - | |
S3 | Igeo | 2.9 (M-HC) | −1.4 | 2.4 (M-HC) | 0.2 | 1.5 (MC) | 4.0 (HC) | 3.0 (M-HC) |
ER | 91.4 (CR) | 109.5 (CR) | 691.4 (VHR) | 310.2 (HR) | 688.5 (VHR) | 1641.0 (VHR) | 29.1 | |
ICF | 2.1 (MC) | 1.5 (MC) | 12.9 (VHC) | 1.3 (MC) | 0.1 | 18.1 (VHC) | - | |
RACm | 35.5 (HR) | 0.0 | 1.5 | 30.9 (HR) | 0.0 | 61.4 (VHR) | - | |
ERF | 0.5 (MR) | 0.0 | 0.0 | 0.4 | 0.0 | 1.6 (HR) | - | |
S4 | Igeo | 2.9 (M-HC) | −1.2 | 2.5 (M-HC) | 0.2 | 1.6 (MC) | 3.9 (HC) | 2.3 (M-HC) |
ER | 337.4 (VHR) | 1.3 | 41.3 (MR) | 8.7 | 22.0 | 22.9 | 301.0 (HR) | |
ICF | 1.6 (MC) | 1.2 (MC) | 12.7 (VHC) | 1.2 (MC) | 0.1 | 16.0 (VHC) | - | |
RACm | 25.0 (MR) | 0.0 | 1.2 | 27.0 (MR) | 1.2 | 55.8 (VHR) | - | |
ERF | 0.3 | 0.0 | 0.0 | 0.4 | 0.0 | 1.3 (HR) | - | |
S5 | Igeo | 2.5 (M-HC) | −1.4 | 2.2 (M-HC) | 0.1 | 1.4 (MC) | 3.8 (HC) | 3.5 (HC) |
ER | 251.4 (HR) | 1.1 | 34.0 | 7.9 | 19.3 | 20.7 | 684.4 (VHR) | |
ICF | 3.1 (CC) | 1.5 (MC) | 17.4 (VHC) | 1.3 (MC) | 0.2 | 28.6 (VHC) | - | |
RACm | 37.7 (HR) | 2.0 | 3.8 | 40.8 (HR) | 0.0 | 68.7 (VHR) | - | |
ERF | 0.6 (MR) | 0.0 | 0.0 | 0.7 (MR) | 0.0 | 2.2 (HR) | - | |
S6 | Igeo | 3.3 (HC) | −1.1 | 2.9 (M-HC) | 0.8 | 2.0 (MC) | 4.2 (HC) | 3.5 (HC) |
ER | 431.5 (VHR) | 1.4 | 54.6 (MR) | 13.3 | 29.6 | 27.1 | 692.7 (VHR) | |
ICF | 1.8 (MC) | 1.0 | 12.8 (VHC) | 1.1 (MC) | 0.1 | 14.4 (VHC) | - | |
RACm | 25.3 (MR) | 0.0 | 0.5 | 34.8 (HR) | 0.0 | 55.9 (VHR) | - | |
ERF | 0.3 | 0.0 | 0.0 | 0.5 (MR) | 0.0 | 1.3 (HR) | - | |
S7 | Igeo | 3.3 (HC) | −1.1 | 2.9 (M-HC) | 0.8 | 2.0 (MC) | 4.2 (HC) | 3.4 (HC) |
ER | 435.7 (VHR) | 1.4 | 56.1 (MR) | 12.9 | 29.4 | 27.2 | 627.2 (VHR) | |
ICF | 2.2 (MC) | 1.2 (MC) | 13.9 (VHC) | 1.2 (MC) | 0.2 | 16.7 (VHC) | - | |
RACm | 23.4 (MR) | 2.4 | 1.4 | 35.9 (HR) | 0.0 | 55.0 (VHR) | - | |
ERF | 0.3 | 0.0 | 0.0 | 0.6 (MR) | 0.0 | 1.2 (HR) | - |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tytła, M. Assessment of Heavy Metal Pollution and Potential Ecological Risk in Sewage Sludge from Municipal Wastewater Treatment Plant Located in the Most Industrialized Region in Poland—Case Study. Int. J. Environ. Res. Public Health 2019, 16, 2430. https://doi.org/10.3390/ijerph16132430
Tytła M. Assessment of Heavy Metal Pollution and Potential Ecological Risk in Sewage Sludge from Municipal Wastewater Treatment Plant Located in the Most Industrialized Region in Poland—Case Study. International Journal of Environmental Research and Public Health. 2019; 16(13):2430. https://doi.org/10.3390/ijerph16132430
Chicago/Turabian StyleTytła, Malwina. 2019. "Assessment of Heavy Metal Pollution and Potential Ecological Risk in Sewage Sludge from Municipal Wastewater Treatment Plant Located in the Most Industrialized Region in Poland—Case Study" International Journal of Environmental Research and Public Health 16, no. 13: 2430. https://doi.org/10.3390/ijerph16132430
APA StyleTytła, M. (2019). Assessment of Heavy Metal Pollution and Potential Ecological Risk in Sewage Sludge from Municipal Wastewater Treatment Plant Located in the Most Industrialized Region in Poland—Case Study. International Journal of Environmental Research and Public Health, 16(13), 2430. https://doi.org/10.3390/ijerph16132430