Genetic and Molecular Characterization of Avian Influenza A(H9N2) Viruses from Live Bird Markets (LBM) in Senegal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Collection
2.2. Detection of AIVs Using RT-qPCR
2.3. Genome Amplification and NGS Sequencing of AIV
2.3.1. cDNA Synthesis
2.3.2. Multi-Segment PCR of AIV
2.3.3. Next Generation Sequencing
2.3.4. AIV Genome Assembly
2.4. Phylogenetic Analysis
2.5. Genetic Analysis of Amino Acid Residues of A/H9N2 Viruses
2.6. Selection Pressure Analysis
2.7. Data Management and Statistical Analysis
2.8. Ethical Statement and Permission
3. Results
3.1. Sample Collection and Detection of AIV
3.2. Sequencing and Phylogenetic Analysis
3.3. Genetic Analysis of Amino Acid Residues of A/H9N2 Strains
3.4. Antiviral Resistance Mutational Analysis
3.5. Prediction of Potential N-Glycosylation Sites on the HA and NA Genes and Selection Pressure Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayden, F.G. Respiratory viral threats. Curr. Opin. Infect. Dis. 2006, 19, 169–178. [Google Scholar] [CrossRef]
- Jallow, M.M.; Barry, M.A.; Fall, A.; Ndiaye, N.K.; Kiori, D.; Sy, S.; Goudiaby, D.; Niang, M.N.; Fall, G.; Fall, M.; et al. Influenza A Virus in Pigs in Senegal and Risk Assessment of Avian Influenza Virus (AIV) Emergence and Transmission to Human. Microorganisms 2023, 11, 1961. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, J.; Yang, S.; Xie, Y.; Wang, M.; Chen, X.; Zhu, Y.; Luo, L.; Shi, W. The molecular characteristics of avian influenza viruses (H9N2) derived from air samples in live poultry markets. Infect. Genet. Evol. 2018, 60, 191–196. [Google Scholar] [CrossRef]
- Sood, R.; Kumar, N.; Gokhe, S.S.; Pateriya, A.K.; Bhat, S.; Bhatia, S.; Panickan, S.; Mishra, A.; Murugkar, H.V.; Dixit, R.; et al. Identification and molecular characterization of H9N2 viruses carrying multiple mammalian adaptation markers in resident birds in central-western wetlands in India. Infect. Genet. Evol. 2021, 94, 105005. [Google Scholar] [CrossRef]
- Fereidouni, S.; Starick, E.; Karamendin, K.; Di Genova, C.; Scott, S.D.; Khan, Y.; Harder, T.; Kydyrmanov, A. Genetic characterization of a new candidate hemagglutinin subtype of influenza A viruses. Emerg. Microbes Infect. 2023, 12, 2225645. [Google Scholar] [CrossRef] [PubMed]
- Vemula, S.V.; Zhao, J.; Liu, J.; Wang, X.; Biswas, S.; Hewlett, I. Current approaches for diagnosis of influenza virus infections in humans. Viruses 2016, 8, 96. [Google Scholar] [CrossRef]
- Suttie, A.; Tok, S.; Yann, S.; Keo, P.; Horm, S.V.; Roe, M.; Kaye, M.; Sorn, S.; Holl, D.; Tum, S.; et al. Diversity of A (H5N1) clade 2.3. 2.1 c avian influenza viruses with evidence of reassortment in Cambodia, 2014–2016. PLoS ONE 2019, 14, e0226108. [Google Scholar] [CrossRef]
- Hu, Z.; Peng, F.; Xiong, Z.; Zhang, W.; Li, T.; Shi, Y.; Xie, J.; Jin, X.; Huang, J.; Xiao, H.; et al. Genetic and molecular characterization of H9N2 avian influenza viruses isolated from live poultry markets in Hubei Province, Central China, 2013–2017. Virol. Sin. 2021, 36, 291–299. [Google Scholar] [CrossRef]
- Peacock, T.H.P.; James, J.; Sealy, J.E.; Iqbal, M. A global perspective on H9N2 avian influenza virus. Viruses 2019, 11, 620. [Google Scholar] [CrossRef] [PubMed]
- Fusade-Boyer, M.; Djegui, F.; Batawui, K.; Byuragaba, D.K.; Jones, J.C.; Wabwire-Mangeni, F.; Erima, B.; Atim, G.; Ukuli, Q.A.; Tugume, T.; et al. Antigenic and molecular characterization of low pathogenic avian influenza A(H9N2) viruses in sub-Saharan Africa from 2017 through 2019. Emerg. Microbes Infect. 2021, 10, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Jallow, M.M.; Fall, A.; Barry, M.A.; Diop, B.; Sy, S.; Goudiaby, D.; Fall, M.; Enouf, V.; Niang, M.N.; Dia, N. Genetic characterization of the first detected human case of low pathogenic avian influenza A/H9N2 in sub-Saharan Africa, Senegal. Emerg. Microbes Infect. 2020, 9, 1092–1095. [Google Scholar] [CrossRef] [PubMed]
- Philippon, D.A.; Wu, P.; Cowling, B.J.; Lau, E.H. Avian influenza human infections at the human-animal interface. J. Infect. Dis. 2020, 222, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Suttie, A.; Karlsson, E.A.; Deng, Y.M.; Horm, S.V.; Yann, S.; Tok, S.; Sorn, S.; Holl, D.; Tum, S.; Hurt, A.C.; et al. Influenza A(H5N1) viruses with A(H9N2) single gene (matrix or PB1) reassortment isolated from Cambodian live bird markets. Virology 2018, 523, 22–26. [Google Scholar] [CrossRef]
- Lo, F.T.; Zecchin, B.; Diallo, A.A.; Racky, O.; Tassoni, L.; Diop, A.; Diouf, M.; Diouf, M.; Samb, Y.N.; Pastori, A.; et al. Intercontinental spread of Eurasian highly pathogenic avian influenza A (H5N1) to Senegal. Emerg. Infect. Dis. 2022, 28, 234–237. [Google Scholar] [CrossRef]
- Niang, M.N.; Dosseh, A.; Ndiaye, K.; Sagna, M.; Gregory, V.; Goudiaby, D.; Hay, A.; Diop, O.M. Sentinel surveillance for influenza in Senegal, 1996–2009. J. Infect. Dis. 2012, 206 (Suppl. S1), S129–S135. [Google Scholar] [CrossRef] [PubMed]
- Shabat, M.B.; Meir, R.; Haddas, R.; Lapin, E.; Shkoda, I.; Raibstein, I.; Perk, S.; Davidson, I. Development of a real-time TaqMan RT-PCR assay for the detection of H9N2 avian influenza viruses. J. Virol. Methods 2010, 168, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Donnelly, M.E.; Scholes, D.T.; St George, K.; Hatta, M.; Kawaoka, Y.; Wentworth, D.E. Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses. J. Virol. 2009, 83, 10309–10313. [Google Scholar] [CrossRef]
- Walker, G.J.; Foster, C.S.P.; Sevendal, A.; Domazetovska, A.; Kamalakkannan, A.; Williams, P.C.M.; Kim, K.W.; Condylios, A.; Stelzer-Braid, S.; Bartlett, A.W.; et al. Clinical, genomic, and immunological characterization of RSV surge in Sydney, Australia, 2022. Pediatrics. 2024, 153, e2023063667. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Miotto, O.; Heiny, A.T.; Tan, T.W.; August, J.T.; Brusic, V. Identification of human-to-human transmissibility factors in PB2 proteins of influenza A by large-scale mutual information analysis. BMC Bioinform. 2008, 9, S18. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Ma, W.; Sun, N.; Huang, L.; Li, Y.; Zeng, Z.; Wen, Y.; Zhang, Z.; Li, H.; Li, Q.; et al. PB2-588 V promotes the mammalian adaptation of H10N8, H7N9 and H9N2 avian influenza viruses. Sci. Rep. 2016, 6, 19474. [Google Scholar] [CrossRef] [PubMed]
- Herfst, S.; Schrauwen, E.J.; Linster, M.; Chutinimitkul, S.; De Wit, E.; Munster, V.J.; Sorrell, E.M.; Bestebroer, T.M.; Burke, D.F.; Smith, D.J.; et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science 2012, 336, 1534–1541. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, S.; Nakajima, K.; Nobusawa, E.; Zhao, J.; Tanaka, S.; Fukuzawa, K. Comparison of epitope structures of H3HAs through protein modeling of influenza A virus hemagglutinin: Mechanism for selection of antigenic variants in the presence of a monoclonal antibody. Microbiol. Immunol. 2007, 51, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- Auewarakul, P.; Suptawiwat, O.; Kongchanagul, A.; Sangma, C.; Suzuki, Y.; Ungchusak, K.; Louisirirotchanakul, S.; Lerdsamran, H.; Pooruk, P.; Thitithanyanont, A.; et al. An avian influenza H5N1 virus that binds to a human-type receptor. J. Virol. 2007, 81, 9950–9955. [Google Scholar] [CrossRef] [PubMed]
- Busch, M.G.; Bateman, A.C.; Landolt, G.A.; Karasin, A.I.; Brockman-Schneider, R.A.; Gern, J.E.; Suresh, M.; Olsen, C.W. Identification of amino acids in the HA of H3 influenza viruses that determine infectivity levels in primary swine respiratory epithelial cells. Virus Res. 2008, 133, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Naughtin, M.; Dyason, J.C.; Mardy, S.; Sorn, S.; Von Itzstein, M.; Buchy, P. Neuraminidase inhibitor sensitivity and receptor-binding specificity of Cambodian clade 1 highly pathogenic H5N1 influenza virus. Antimicrob. Agents Chemother. 2011, 55, 2004–2010. [Google Scholar] [CrossRef]
- Wang, W.; Lu, B.; Zhou, H.; Suguitan, A.L.; Cheng, X.; Subbarao, K.; Kemble, G.; Jin, H. Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. J. Virol. 2010, 84, 6570–6577. [Google Scholar] [CrossRef] [PubMed]
- Bedair, N.M.; Sakr, M.A.; Mourad, A.; Eissa, N.; Mostafa, A.; Khamiss, O. Molecular characterization of the whole genome of H9N2 avian influenza virus isolated from Egyptian poultry farms. Arch. Virol. 2024, 169, 99. [Google Scholar] [CrossRef]
- Gambaryan, A.; Tuzikov, A.; Pazynina, G.; Bovin, N.; Balish, A.; Klimov, A. Evolution of the receptor binding phenotype of influenza A (H5) viruses. Virology 2006, 344, 432–438. [Google Scholar] [CrossRef]
- Imai, M.; Watanabe, T.; Hatta, M.; Das, S.C.; Ozawa, M.; Shinya, K.; Zhong, G.; Hanson, A.; Katsura, H.; Watanabe, S.; et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 2012, 486, 420–428. [Google Scholar] [CrossRef]
- Kaverin, N.V.; Rudneva, I.A.; Ilyushina, N.A.; Lipatov, A.S.; Krauss, S.; Webster, R.G. Structural differences among hemagglutinins of influenza A virus subtypes are reflected in their antigenic architecture: Analysis of H9 escape mutants. J. Virol. 2004, 78, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Smeenk, C.I.A.; Brown, E.G. The Influenza Virus Variant A/FM/1/47-MA Possesses Single Amino Acid Replacements in the Hemagglutinin. J. Virol. 1994, 68, 530–534. [Google Scholar] [CrossRef]
- Iwatsuki-Horimoto, K.; Horimoto, T.; Fujii, Y.; Kawaoka, Y. Generation of influenza A virus NS2 (NEP) mutants with an altered nuclear export signal sequence. J. Virol. 2004, 78, 10149–10155. [Google Scholar] [CrossRef] [PubMed]
- Klimov, A.I.; Cox, N.J.; Yotov, W.V.; Rocha, E.; Alexandrova, G.I.; Kendal, A.P. Sequence changes in the live attenuated, cold-adapted variants of influenza A/Leningrad/134/57 (H2N2) virus. Virology 1992, 186, 795–797. [Google Scholar] [CrossRef]
- Allen, J.E.; Gardner, S.N.; Vitalis, E.A.; Slezak, T.R. Conserved amino acid markers from past influenza pandemic strains. BMC Microbiol. 2009, 9, 77. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, D.B.; Mukatira, S.; Mehta, P.K.; Obenauer, J.C.; Su, X.; Webster, R.G.; Naeve, C.W. Persistent host markers in pandemic and H5N1 influenza viruses. J. Virol. 2007, 81, 10292–10299. [Google Scholar] [CrossRef]
- Kuo, R.L.; Krug, R.M. Influenza a virus polymerase is an integral component of the CPSF30-NS1A protein complex in infected cells. J. Virol. 2009, 83, 1611–1616. [Google Scholar] [CrossRef] [PubMed]
- Heikkinen, L.S.; Kazlauskas, A.; Melen, K.; Wagner, R.; Ziegler, T.; Julkunen, I.; Saksela, K. Avian and 1918 Spanish influenza a virus NS1 proteins bind to Crk/CrkL Src homology 3 domains to activate host cell signaling. J. Biol. Chem. 2008, 283, 5719–5727. [Google Scholar] [CrossRef]
- Jackson, D.; Hossain, M.J.; Hickman, D.; Perez, D.R.; Lamb, R.A. A new influenza virus virulence determinant: The NS1 protein four C-terminal residues modulate pathogenicity. Proc. Natl. Acad. Sci. USA 2008, 105, 4381–4386. [Google Scholar] [CrossRef] [PubMed]
- Hurt, A.C.; Holien, J.K.; Parker, M.W.; Barr, I.G. Oseltamivir resistance and the H274Y neuraminidase mutation in seasonal, pandemic and highly pathogenic influenza viruses. Drugs 2009, 69, 2523–2531. [Google Scholar] [CrossRef] [PubMed]
- Takashita, E.; Kawakami, C.; Ogawa, R.; Morita, H.; Fujisaki, S.; Shirakura, M.; Miura, H.; Nakamura, K.; Kishida, N.; Kuwahara, T.; et al. Influenza A (H3N2) virus exhibiting reduced susceptibility to baloxavir due to a polymerase acidic subunit I38T substitution detected from a hospitalised child without prior baloxavir treatment, Japan, January 2019. Eurosurveillance 2019, 24, 1900170. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Liu, D.; Shi, W.; Pan, J.; Qi, X.; Li, X.; Guo, X.; Zhou, M.; Li, W.; Li, J.; et al. Dynamic reassortments and genetic heterogeneity of the human-infecting influenza A (H7N9) virus. Nat. Commun. 2014, 5, 3142. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Cao, B.; Hu, Y.; Feng, Z.; Wang, D.; Hu, W.; Chen, J.; Jie, Z.; Qiu, H.; Xu, K.; et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N. Engl. J. Med. 2013, 368, 1888–1897. [Google Scholar] [CrossRef] [PubMed]
- Dia, N.; Ndiaye, M.N.; de Lourdes Monteiro, M.; Koivogui, L.; Bara, M.O.; Diop, O.M.A. subregional analysis of epidemiologic and genetic characteristics of influenza A (H1N1) pdm09 in Africa: Senegal, Cape Verde, Mauritania, and Guinea, 2009–2010. Am. J. Trop. Med. Hyg. 2013, 88, 946. [Google Scholar] [CrossRef] [PubMed]
- Niang, M.N.; Barry, M.A.; Talla, C.; Mbengue, A.; Sarr, F.D.; Ba, I.O.; Hedible, B.G.; Ndoye, B.; Vray, M.; Dia, N.; et al. Estimation of the burden of flu-association influenza-like illness visits on total clinic visits through the sentinel influenza monitoring system in Senegal during the 2013–2015 influenza seasons. Epidemiol. Infect. 2018, 146, 2049–2055. [Google Scholar] [CrossRef]
- Touré, C.T.; Fall, A.; Andriamandimby, S.F.; Jallow, M.M.; Goudiaby, D.; Kiori, D.; Sy, S.; Diaw, Y.; Ndiaye, K.N.; Mbaye, F.; et al. Epidemiology and Molecular Analyses of Influenza B Viruses in Senegal from 2010 to 2019. Viruses 2022, 14, 1063. [Google Scholar] [CrossRef] [PubMed]
- Horwood, P.F.; Horm, S.V.; Suttie, A.; Thet, S.; Phalla, Y.; Rith, S.; Sorn, S.; Holl, D.; Tum, S.; Ly, S.; et al. Co-circulation of influenza A H5, H7, and H9 viruses and co-infected poultry in live bird markets, Cambodia. Emerg. Infect. Dis. 2018, 24, 352–355. [Google Scholar] [CrossRef]
- Sanogo, I.N.; Guinat, C.; Dellicour, S.; Diakité, M.A.; Niang, M.; Koita, O.A.; Camus, C.; Ducatez, M. Genetic insights of H9N2 avian influenza viruses circulating in Mali and phylogeographic patterns in Northern and Western Africa. Virus Evol. 2024, 10, veae011. [Google Scholar] [CrossRef]
- Negovetich, N.J.; Feeroz, M.M.; Jones-Engel, L.; Walker, D.; Alam, S.R.; Hasan, K.; Seiler, P.; Fergunson, A.; Friedman, K.; Barman, S.; et al. Live bird markets of Bangladesh: H9N2 viruses and the near absence of highly pathogenic H5N1 influenza. PLoS ONE 2011, 6, e19311. [Google Scholar] [CrossRef]
- Turner, J.C.; Feeroz, M.M.; Hasan, M.K.; Akhtar, S.; Walker, D.; Seiler, P.; Barman, S.; Francks, J.; Jones-Engel, L.; Mckenzie, P.; et al. Insight into live bird markets of Bangladesh: An overview of the dynamics of transmission of H5N1 and H9N2 avian influenza viruses. Emerg. Microbes Infect. 2017, 6, e12. [Google Scholar] [CrossRef]
- Hassan, K.E.; King, J.; El-Kady, M.; Afifi, M.; Abozeid, H.H.; Pohlmann, A.; Beer, M.; Harder, T. Novel reassortant highly pathogenic avian influenza A (H5N2) virus in broiler chickens, Egypt. Emerg. Infect. Dis. 2020, 26, 129–133. [Google Scholar] [CrossRef]
- Ouoba, L.B.; Habibata-Zerbo, L.; Zecchin, B.; Barbierato, G.; Hamidou-Ouandaogo, S.; Palumbo, E.; Guissani, E.; Bortolami, A.; Niang, M.; Traore-kam, A.; et al. Emergence of a reassortant 2.3. 4.4 b highly pathogenic H5N1 avian influenza virus containing H9N2 PA gene in Burkina Faso, West Africa, in 2021. Viruses 2022, 14, 1901. [Google Scholar] [CrossRef]
- Tosh, C.; Nagarajan, S.; Kumar, M.; Murugkar, H.V.; Venkatesh, G.; Shukla, S.; Mishra, A.; Mishra, P.; Agarwal, S.; Singh, B.; et al. Multiple introductions of a reassortant H5N1 avian influenza virus of clade 2.3.2.1c with PB2 gene of H9N2 subtype into Indian poultry. Infect. Genet. Evol. 2016, 43, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, L.; Shittu, I.; Fusaro, A.; Inuwa, B.; Zecchin, B.; Gado, D.; Schivo, A.; Bianco, A.; Laleye, A.; Gobbo, F.; et al. Live bird markets in Nigeria: A potential reservoir for H9N2 avian influenza viruses. Viruses 2021, 13, 1445. [Google Scholar] [CrossRef] [PubMed]
- Kotey, E.N.; Asante, I.A.; Adusei-Poku, M.; Arjarquah, A.; Ampadu, R.; Rodgers, D.; Nyarko, E.O.; Asiedu, W.; Dafeamekpor, C.; Wiley, M.R.; et al. Phylogenetic and genetic characterization of influenza A H9N2 viruses isolated from backyard poultry in selected farms in Ghana. Vet. Med. Sci. 2022, 8, 1570–1577. [Google Scholar] [CrossRef] [PubMed]
- Atim, G.; Tugume, T.; Ukuli, Q.A.; Erima, B.; Mubiru, A.; Kibuuka, H.; Mworozi, E.; Mckenzie, P.; Turner, J.C.M.; Walker, D.; et al. Genetic Evolution of Avian Influenza A (H9N2) Viruses Isolated from Domestic Poultry in Uganda Reveals Evidence of Mammalian Host Adaptation, Increased Virulence and Reduced Sensitivity to Baloxavir. Viruses 2022, 14, 2074. [Google Scholar] [CrossRef] [PubMed]
- El Houadfi, M.; Fellahi, S.; Nassik, S.; Guérin, J.L.; Ducatez, M.F. First outbreaks and phylogenetic analyses of avian influenza H9N2 viruses isolated from poultry flocks in Morocco. Virol. J. 2016, 13, 140. [Google Scholar] [CrossRef] [PubMed]
- Zecchin, B.; Minoungou, G.; Fusaro, A.; Moctar, S.; Ouedraogo-Kaboré, A.; Schivo, A.; Salviato, A.; Marciano, S.; Monne, I. Influenza A (H9N2) Virus, Burkina Faso. Emerg. Infect. Dis. 2017, 23, 2118. [Google Scholar] [CrossRef]
- Suttie, A.; Tok, S.; Yann, S.; Keo, P.; Horm, S.V.; Roe, M.; Kaye, M.; Sorn, S.; Holl, D.; Tum, S.; et al. The evolution and genetic diversity of avian influenza A (H9N2) viruses in Cambodia, 2015–2016. PLoS ONE 2019, 14, e0225428. [Google Scholar] [CrossRef] [PubMed]
- Awuni, J.A.; Bianco, A.; Dogbey, O.J.; Fusaro, A.; Yingar, D.T.; Salviato, A.; Ababio, P.T.; Milani, A.; Bonfante, F.; Monne, I. Avian influenza H9N2 subtype in Ghana: Virus characterization and evidence of co-infection. Avian Pathol. 2019, 48, 470–476. [Google Scholar] [CrossRef]
- Lindh, E.; Ek-Kommonen, C.; Väänänen, V.M.; Vaheri, A.; Vapalahti, O.; Huovilainen, A. Molecular epidemiology of H9N2 influenza viruses in Northern Europe. Vet. Microbiol. 2014, 172, 548–554. [Google Scholar] [CrossRef]
- Davidson, I.; Fusaro, A.; Heidari, A.; Monne, I.; Cattoli, G. Molecular evolution of H9N2 avian influenza viruses in Israel. Virus Genes 2014, 48, 457–463. [Google Scholar] [CrossRef]
- Wan, H.; Perez, D.R. Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. J. Virol. 2007, 81, 5181–5191. [Google Scholar] [CrossRef]
- El Sayes, M.; Kandeil, A.; Moatasim, Y.; El Taweel, A.; Rubrum, A.; Kutkat, O.; Kamel, M.N.; Badra, R.; Barakat, A.B.; Mckenzie, P.P.; et al. Insights into genetic characteristics and virological features of endemic avian influenza A (H9N2) viruses in Egypt from 2017–2021. Viruses 2022, 14, 1484. [Google Scholar] [CrossRef]
- Ilyushina, N.A.; Govorkova, E.A.; Webster, R.G. Detection of amantadine-resistant variants among avian influenza viruses isolated in North America and Asia. Virology 2005, 341, 102–106. [Google Scholar] [CrossRef]
- Yen, H.L.; McKimm-Breschkin, J.L.; Choy, K.T.; Wong, D.D.Y.; Cheung, P.P.H.; Zhou, J.; Ng, I.H.; Zhu, H.; Webby, R.J.; Guan, Y.; et al. Resistance to neuraminidase inhibitors conferred by an R292K mutation in a human influenza virus H7N9 isolate can be masked by a mixed R/K viral population. mBio 2013, 4, e00396-13. [Google Scholar] [CrossRef] [PubMed]
- Altman, M.O.; Angel, M.; Košík, I.; Trovão, N.S.; Zost, S.J.; Gibbs, J.S.; Casalino, L.; Amaro, R.E.; Hensley, S.E.; Nelson, M.I.; et al. Human influenza A virus hemagglutinin glycan evolution follows a temporal pattern to a glycan limit. mBio 2019, 10, e00204-19. [Google Scholar] [CrossRef]
Type/Subtype | Cloacal Swab, No (%) | Poultry Feces, No (%) | Drinking Water, No (%) | Carcass Wash Water, No (%) | Total, No (%) |
---|---|---|---|---|---|
N = 139 | N = 128 | N = 138 | N = 94 | N = 499 | |
Influenza A | 61 (43.9) | 65 (50.8) | 81 (58.7) | 84 (89.4) | 291 (58.3) |
H9 | 18 (29.5) | 27 (41.5) | 46 (56.8) | 33 (39.3) | 124 (42.6) |
H5 | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
H7 | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
PB2 | PB1 | PA | HA | NP | NA | MP | NS | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample ID | Sample Type | Location | Depth | % Coverage | Depth | % Coverage | Depth | % Coverage | Depth | % Coverage | Depth | % Coverage | Depth | % Coverage | Depth | % Coverage | Depth | % Coverage |
GA/02/2023 | Cloacal swab | Tilene | 41.2 | 99.4 | 66.8 | 95.7 | 137.6 | 95.2 | 31.7 | 97.3 | 83.7 | 95 | 1.6 | 12.1 | 59.7 | 84.1 | 10.3 | 82 |
GA/08/2023 | PDW | Thiaroye | 379.4 | 100 | 472.2 | 100 | 67.1 | 79.8 | 1170 | 100 | 586.7 | 100 | 2191 | 100 | 7737 | 99.7 | 13,108 | 100 |
GA/13/2023 | feces | Thiaroye | 230.3 | 58.8 | 661.5 | 72.8 | 86.8 | 39.3 | 175.7 | 100 | 189 | 100 | 828 | 92. | 10,241 | 99.9 | 31,387 | 100 |
GA/24/2023 | CWW | Thiaroye | 1033.4 | 95.8 | 511.3 | 100 | 436.7 | 99.6 | 1185.6 | 100 | 382.3 | 99.5 | 3054 | 100 | 11,593 | 99.7 | 14,350 | 100 |
GA/08/2024 | PDW | Thiaroye | 804.3 | 100 | 633.6 | 100 | 192.8 | 99.5 | 1252.5 | 100 | 890.8 | 100 | 2258 | 100 | 13,361 | 99.7 | 18,123 | 100 |
GA/46/2024 | PDW | Thiaroye | 375.7 | 100.0 | 571.7 | 100 | 142.3 | 84.5 | 1003.1 | 100 | 506.8 | 100 | 2336 | 100 | 12,504 | 99.8 | 15,386 | 97.6 |
GA/79/2024 | CWW | Thiaroye | 1321.3 | 100 | 655.2 | 100 | 375.7 | 99.9 | 2113.2 | 100 | 576.7 | 100 | 3699 | 100 | 13,925 | 99.7 | 23,532 | 100 |
Mutations in This Study | Equivalent Mutations in the Literature | Protein | Effects | Hosts | References |
---|---|---|---|---|---|
S121T | H103Y from series H103Y, T156A, Q222L, G224S | Host specificity shift | Ferrets | [23] | |
S143T | A131D | Antigenic drift | Human | [24] | |
S145T | L129V from series L129V, A134V | Host specificity shift | Avian, Human | [25] | |
A150S | A134V, S138A | Host specificity shift, Virulence | Swine, avian, Human | [26,27] | |
N167G | S159N | HA | Host specificity shift | Ferrets | [28] |
A168N | T160A | Host specificity shift | Avian, Human | [28] | |
N191H | - | Host specificity shift | Avian | [29] | |
Q235I | S227N | Host specificity shift | Avian, Human | [30] | |
V327I | T381I from series N158D, N224K, Q226L, T381I | Host specificity shift | Ferrets | [31] | |
S353P | P15S | Increased virulence | Mice | [32] | |
T139N | T139A | M1 | Increased virulence | Mice | [33] |
T14M | M14Y | Reduced virulence | Mice | [34] | |
M100I | M100I | NS2 | Reduced virulence | Human | [35] |
E70A | K70E | Host specificity shift | Human | [36] | |
I81T | I81M | Host specificity shift | Avian, Human | [37] | |
I106M | M106I | Virulence | Human | [38] | |
S212P | P212A from series P212A, P215A | Reduced virulence | Human | [39] | |
V222M | C-terminus (RSEV) | NS1 | Increased virulence | Mice | |
E223A | C-terminus (RSEV) | Increased virulence | Mice | ||
I226V | C-terminus (RSEV) | Increased virulence | Mice | [40] | |
E227G | C-terminus (RSEV) | Increased virulence | Mice | ||
P228S | C-terminus (RSEV) | Increased virulence | Mice |
Virus Name | RBS (H3 Numbering) | Cleavage Peptides | HA Predicted N-Glycosylation Sites (H9 Numbering) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I155T | S158N | T190V | Q226L | 29–32 | 82–85 | 105–108 | 141–144 | 298–101 | 305–308 | 492–495 | ||
A/Senegal/0243/2019 * | T | S | R | L | RSSR/GLF | NSTE | NPSC | NGTC | NVTY | NSTM | NISK | NGTY |
A/Chicken/Senegal/GA002/2023 | T | S | M | L | RSSR/GLF | NSTE | NPSC | NGTC | NVTY | NSTM | NISK | NGTY |
A/Environment/Senegal/GA008/2023 | T | S | M | L | RSSR/GLF | NSTE | NPSC | NGTC | NVTY | NSTM | NISK | NGTY |
A/Environment/Senegal/GA013/2023 | T | S | M | L | RSSR/GLF | NSTE | NPSC | NGTC | NVTY | NSTM | NISK | NGTY |
A/Environment/Senegal/GA024/2023 | T | S | M | L | RSSR/GLF | NSTE | NPSC | NGTC | NVTY | NSTM | NISK | NGTY |
A/Environment/Senegal/GA008/2024 | T | S | M | L | RSSR/GLF | NSTE | NPSC | NGTC | NVTY | NSTM | NISK | NGTY |
A/Environment/Senegal/GA046/2024 | T | S | M | L | RSSR/GLF | NSTE | NPSC | NGTC | NVTY | NSTM | NISK | NGTY |
A/Environment/Senegal/GA079/2024 | T | S | M | L | RSSR/GLF | NSTE | NPSC | NGTC | NVTY | NSTM | NISK | NGTY |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jallow, M.M.; Diagne, M.M.; Ndione, M.H.D.; Barry, M.A.; Ndiaye, N.K.; Kiori, D.E.; Mendy, M.P.; Goudiaby, D.; Fall, G.; Fall, M.; et al. Genetic and Molecular Characterization of Avian Influenza A(H9N2) Viruses from Live Bird Markets (LBM) in Senegal. Viruses 2025, 17, 73. https://doi.org/10.3390/v17010073
Jallow MM, Diagne MM, Ndione MHD, Barry MA, Ndiaye NK, Kiori DE, Mendy MP, Goudiaby D, Fall G, Fall M, et al. Genetic and Molecular Characterization of Avian Influenza A(H9N2) Viruses from Live Bird Markets (LBM) in Senegal. Viruses. 2025; 17(1):73. https://doi.org/10.3390/v17010073
Chicago/Turabian StyleJallow, Mamadou Malado, Moussa Moise Diagne, Marie Henriette Dior Ndione, Mamadou Aliou Barry, Ndiendé Koba Ndiaye, Davy Evrard Kiori, Marie Pedapa Mendy, Déborah Goudiaby, Gamou Fall, Malick Fall, and et al. 2025. "Genetic and Molecular Characterization of Avian Influenza A(H9N2) Viruses from Live Bird Markets (LBM) in Senegal" Viruses 17, no. 1: 73. https://doi.org/10.3390/v17010073
APA StyleJallow, M. M., Diagne, M. M., Ndione, M. H. D., Barry, M. A., Ndiaye, N. K., Kiori, D. E., Mendy, M. P., Goudiaby, D., Fall, G., Fall, M., & Dia, N. (2025). Genetic and Molecular Characterization of Avian Influenza A(H9N2) Viruses from Live Bird Markets (LBM) in Senegal. Viruses, 17(1), 73. https://doi.org/10.3390/v17010073