Configurations of Aromatic Networks for Power Distribution System
Abstract
:1. Introduction
2. Description of Aromatic Network
3. Configuration of Basic Aromatic Network (DDT Structure)
3.1. Aromatic Network—Configuration 1 (DDT)
Spanning Tree for DDT Structure
3.2. Aromatic Network—Configuration 2 (Triphenylmethanol)
3.3. Aromatic Network–Configuration 3 (Acenaphthylene)
4. Analysis and Discussion
4.1. Load Flow Analysis
4.1.1. Load Flow of Configuration 1 (DDT)
4.1.2. Load Flow of Configuration 2 (Triphenylmethanol)
4.1.3. Load Flow of Configuration 3 (Acenaphthylene)
4.2. Harmonic Analyses of Aromatic Configurations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gasser, P.; Lustenberger, P.; Cinelli, M.; Kim, W.; Spada, M.; Burgherr, P.; Sun, T.Y. A review on resilience assessment of energy systems. Sustain. Resilient Infrastruct. 2019. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.; Wang, N.; Ellingwood, B.R. A risk de-aggregation framework that relates community resilience goals to building performance objectives. Sustain. Resilient Infrastruct. 2016, 1, 1–13. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Wang, J.; Baldick, R. Research on resilience of power systems under natural disasters—A review. IEEE Trans. Power Syst. 2015, 31, 1604–1613. [Google Scholar] [CrossRef]
- Frohlich, T.C. From Elena to Katrina: These Are the Costliest Hurricanes to Ever Hit the US. Available online: https://www.usatoday.com/story/money/2018/09/12/%20most-destructive-hurricanes-of-all-time/36697269/ (accessed on 24 December 2019).
- Li, Z.; Shahidehpour, M.; Aminifar, F.; Alabdulwahab, A.; AlTurki, Y. Networked microgrids for enhancing the power system resilience. Proc. IEEE 2017, 105, 1289–1310. [Google Scholar] [CrossRef]
- Che, L.; Khodayar, M.; Shahidehpour, M. Only connect: Microgrids for distribution system restoration. IEEE Power Energy Mag. 2014, 12, 70–81. [Google Scholar]
- CBS. Hurricane Harvey: Texas Power Outages Affect More than Quarter-Million. Available online: https://www.cbsnews.com/news/hurricane-harvey-texas-power-outages-affect-more-than-255000/ (accessed on 20 December 2019).
- President’s Council of Economic Advisers and the U.S. Department of Energy’s Office of Electricity and Energy Reliability. Economic Benefits of Increasing Electric Grid Resilience to Weather Outages; Executive Office of the President of the United States: Washington, DC, USA, 2013.
- Kavousi-Fard, A.; Wang, M.; Su, W. Stochastic resilient post-hurricane power system recovery based on mobile emergency resources and reconfigurable networked microgrids. IEEE Access 2018, 6, 72311–72326. [Google Scholar] [CrossRef]
- Prakash, K.; Lallu, A.; Islam, F.R.; Mamun, K.A. Review of Power System Distribution Network Architecture. In Proceedings of the 2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), Nadi, Fiji, 5–6 December 2016; pp. 124–130. [Google Scholar]
- Civanlar, S.; Grainger, J.J.; Yin, H.; Lee, S.S.H. Distribution feeder reconfiguration for loss reduction. IEEE Trans. Power Deliv. 1988, 3, 1217–1223. [Google Scholar] [CrossRef]
- Freitas, K.B.; Arantes, M.S.; Toledo, C.F.; Delbem, A.C. MIQP model and improvement heuristic for power loss minimization in distribution system with network reconfiguration. J. Heuristics 2020, 26, 59–81. [Google Scholar] [CrossRef]
- Gangwar, P.; Singh, S.N.; Chakrabarti, S. Network reconfiguration for the DG-integrated unbalanced distribution system. IET Gener. Transm. Distrib. 2019, 13, 3896–3909. [Google Scholar] [CrossRef]
- Abubakar, A.S.; Ekundayo, K.R.; Olaniyan, A.A. Optimal reconfiguration of radial distribution networks using improved genetic algorithm. Niger. J. Technol. Dev. 2019, 16, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.M.; Cheng, F.S.; Tsay, M.T. Distribution feeder reconfiguration with refined genetic algorithm. IEEE Proc.-Gener. Transm. Distrib. 2000, 147, 349–354. [Google Scholar] [CrossRef]
- Goswami, S.; Basu, S. A new algorithm for the reconfiguration of distribution feeders for loss minimization. IEEE Trans. Power Deliv. 1992, 7, 1484–1491. [Google Scholar] [CrossRef]
- Shirmohammadi, D.; Hong, H.W. Reconfiguration of electric distribution networks for resistive line loss reduction. IEEE Trans. Power Deliv. 1989, 4, 1492–1498. [Google Scholar] [CrossRef]
- Wagner, T.P.; Chikhani, A.Y.; Hackam, R. Feeder reconfiguration for loss reduction: An application of distribution automation. IEEE Trans. Power Deliv. 1991, 6, 1922–1931. [Google Scholar] [CrossRef]
- Gomes, F.V.; Carneiro, S.; Pereira, J.L.R.; Vinagre, M.P.; Garcia, P.A.N.; De Araujo, L.R. A new distribution system reconfiguration approach using optimum power flow and sensitivity analysis for loss reduction. IEEE Trans. Power Syst. 2006, 21, 1616–1623. [Google Scholar] [CrossRef]
- Raju, G.; Bijwe, P.R. An efficient algorithm for minimum loss reconfiguration of distribution system based on sensitivity and heuristics. IEEE Trans. Power Syst. 2008, 23, 1280–1287. [Google Scholar] [CrossRef]
- Koziel, S.; Rojas, A.L.; Moskwa, S. Power Loss Reduction through Distribution Network Reconfiguration Using Feasibility-Preserving Simulated Annealing. In Proceedings of the 2018 19th International Scientific Conference on Electric Power Engineering (EPE), Brno, Czech Republic, 16–18 May 2018; pp. 1–5. [Google Scholar]
- Chiang, H.D.; Rene, J.J. Optimal network reconfiguration in distribution systems. Part 1. A new formulation and a solution methodology. IEEE Trans. Power Deliv. 1990, 5, 1902–1908. [Google Scholar] [CrossRef]
- Chiang, H.D.; Rene, J.J. Optimal network reconfiguration in distribution systems. Part 2. Solution algorithms and numerical results. IEEE Trans. Power Deliv. 1992, 5, 1568–1574. [Google Scholar] [CrossRef]
- Muthukumar, K.; Jayalalitha, S. Integrated approach of network reconfiguration with distributed generation and shunt capacitors placement for power loss minimization in radial distribution networks. Appl. Soft Comput. 2017, 52, 1262–1284. [Google Scholar]
- Murty, V.; Kumar, A. Optimal DG integration and network reconfiguration in microgrid system with realistic time varying load model using hybrid optimization. IET Smart Grid 2019, 2, 192–202. [Google Scholar] [CrossRef]
- Huang, Y.C. Enhanced genetic algorithm-based fuzzy multi-objective approach to distribution network reconfiguration. IEEE Proc.-Gener. Transm. Distrib. 2002, 149, 615–620. [Google Scholar] [CrossRef]
- Miguel, A.A.; Hern’an, S.H. Distribution network configuration for minimum energy supply cost. IEEE Trans. Power Syst. 2004, 19, 538–542. [Google Scholar]
- Taleski, R.; Rajicic, D. Distribution network reconfiguration for energy loss reduction. IEEE Trans. Power Syst. 1997, 12, 398–406. [Google Scholar] [CrossRef]
- Schmidt, H.; Ida, N.; Kagan, N.; Guaraldo, J. Fast reconfiguration of distribution systems considering loss minimization. IEEE Trans. Power Syst. 2005, 20, 1311–1319. [Google Scholar] [CrossRef]
- Koutsoukis, N.C.; Siagkas, D.O.; Georgilakis, P.S.; Hatziargyriou, N.D. Online reconfiguration of active distribution networks for maximum integration of distributed generation. IEEE Trans. Autom. Sci. Eng. 2017, 14, 437–448. [Google Scholar] [CrossRef]
- Shu, D.; Huang, Z.; Li, J.; Zou, X. Application of multi-agent particle swarm algorithm in distribution network reconfiguration. Chin. J. Electron. 2016, 25, 1179–1185. [Google Scholar] [CrossRef]
- Larimi, S.M.; Haghifam, M.R.; Moradkhani, A. Risk-based reconfiguration of active electric distribution networks. IET Gener. Transm. Distrib. 2016, 10, 1006–1015. [Google Scholar] [CrossRef]
- Jazebi, S.; Hadji, M.M.; Naghizadeh, R.A. Distribution network reconfiguration in the presence of harmonic loads: Optimization techniques and analysis. IEEE Trans. Smart Grid 2014, 5, 1929–1937. [Google Scholar] [CrossRef]
- Bernardon, D.P.; Garcia, V.J.; Ferreira, A.S.; Canha, L.N. Multicriteria distribution network reconfiguration considering sub-transmission analysis. IEEE Trans. Power Deliv. 2010, 25, 2684–2691. [Google Scholar] [CrossRef]
- Lee, C.; Liu, C.; Mehrotra, S.; Bie, Z. Robust distribution network reconfiguration. IEEE Trans. Smart Grid 2015, 6, 836–842. [Google Scholar] [CrossRef]
- Pham, T.H.; Besanger, Y.; Hadjsaid, N. New challenges in power system restoration with large scale of dispersed generation insertion. IEEE Trans. Power Syst. 2009, 24, 398–406. [Google Scholar] [CrossRef]
- Islam, F.R.; Mamun, K.A.; Prakash, K.; Lallu, A. Aromatic Network for Power Distribution System; IP Australia Grant Certificate (201710): Canberra, Australia, 2017.
- Islam, F.R.; Prakash, K.; Mamun, K.A.; Lallu, A.; Pota, H.R. Aromatic Network: A Novel Structure for Power Distribution System. IEEE Access 2017, 5, 25236–25257. [Google Scholar] [CrossRef]
- Yun, Z.; Junjie, L.; Ji, C.; Hua, W. A Framework Research of Power Distribution Equipment Condition Monitoring Cloud Platform Based on RESTful Web Service. In Proceedings of the IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 26–28 November 2017; pp. 1–6. [Google Scholar]
- Dugan, R. Distribution Test Feeders—Distribution Test Feeder Working Group—IEEE PES Distribution System Analysis Subcommittee. Ewh.ieee.org, 2017. Available online: https://ewh.ieee.org/soc/pes/dsacom/testfeeders/ (accessed on 21 January 2020).
- Lallu, A.; Islam, F.R.; Mamun, K.A.; Prakash, K.; Cirrincione, M. Power Quality Improvement of Distribution Network Using Optimum Combination of Battery Energy Storage System and capacitor Banks. In Proceedings of the 2017 4th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), Nadi, Fiji, 11–13 December 2017; pp. 193–199. [Google Scholar]
Decision Variable | DDT Structure | Reconfigured DDT Structure | Triphenylmethanol Structure | Reconfigured Triphenylmethanol | Acenaphthylene Structure | Reconfigured Acenaphthylene Structure |
---|---|---|---|---|---|---|
a1a2 | 1 | 1 | 1 | 1 | 1 | 1 |
a2a1 | 1 | 1 | 1 | 1 | 1 | 1 |
a2a3 | 1 | 1 | 1 | 1 | 1 | 0 |
a3a2 | 1 | 1 | 1 | 1 | 1 | 0 |
a3a4 | 1 | 1 | 1 | 1 | 1 | 1 |
a4a3 | 1 | 1 | 1 | 1 | 1 | 1 |
a4a5 | 1 | 1 | 1 | 1 | 1 | 1 |
a5a4 | 1 | 1 | 1 | 1 | 1 | 1 |
a5a6 | 1 | 1 | 1 | 1 | 1 | 1 |
a6a5 | 1 | 1 | 1 | 1 | 1 | 1 |
a6a1 | 1 | 0 | 1 | 0 | 1 | 1 |
a1a6 | 1 | 0 | 1 | 0 | 1 | 1 |
a1xi | 1 | 1 | 1 | 1 | 1 | 1 |
xia1 | 1 | 1 | 1 | 1 | 1 | 1 |
b1xi | 1 | 1 | 1 | 1 | 1 | 1 |
xib1 | 1 | 1 | 1 | 1 | 1 | 1 |
b1b2 | 1 | 0 | 1 | 0 | 1 | 0 |
b2b1 | 1 | 0 | 1 | 0 | 1 | 0 |
b2b3 | 1 | 1 | 1 | 1 | 1 | 1 |
b3b2 | 1 | 1 | 1 | 1 | 1 | 1 |
b3b4 | 1 | 1 | 1 | 1 | 1 | 0 |
b4b3 | 1 | 1 | 1 | 1 | 1 | 0 |
b4b5 | 1 | 1 | 1 | 1 | 1 | 1 |
b5b4 | 1 | 1 | 1 | 1 | 1 | 1 |
b5b6 | 1 | 1 | 1 | 1 | 1 | 1 |
b6b5 | 1 | 1 | 1 | 1 | 1 | 1 |
b6b1 | 1 | 1 | 1 | 1 | 1 | 1 |
b1b6 | 1 | 1 | 1 | 1 | 1 | 1 |
xic1 | 0 | 0 | 1 | 1 | 0 | 0 |
c1xi | 0 | 0 | 1 | 1 | 0 | 0 |
c1c2 | 0 | 0 | 1 | 0 | 0 | 0 |
c2c1 | 0 | 0 | 1 | 0 | 0 | 0 |
c2c3 | 0 | 0 | 1 | 1 | 0 | 0 |
c3c2 | 0 | 0 | 1 | 1 | 0 | 0 |
c3c4 | 0 | 0 | 1 | 1 | 0 | 0 |
c4c3 | 0 | 0 | 1 | 1 | 0 | 0 |
c4c5 | 0 | 0 | 1 | 1 | 0 | 0 |
c5c4 | 0 | 0 | 1 | 1 | 0 | 0 |
c5c6 | 0 | 0 | 1 | 1 | 0 | 0 |
c6c5 | 0 | 0 | 1 | 1 | 0 | 0 |
c6c1 | 0 | 0 | 1 | 1 | 0 | 0 |
c1c6 | 0 | 0 | 1 | 1 | 0 | 0 |
a3b3 | 0 | 0 | 0 | 0 | 1 | 1 |
b3a3 | 0 | 0 | 0 | 0 | 1 | 1 |
Bus ID | MW Loading | MVar Loading | Voltage at Aromatic Configuration | Voltage of Reconfigured Networks | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Con. 1 | Con. 2 | Con. 3 | Con. 1 | Con. 2 | Con. 3 | Con. 1 | Con. 2 | Con. 3 | Con. 1 | Con. 2 | Con. 3 | |
Bus 100 | 3.031 | 3.776 | 3.031 | 1.455 | 2.261 | 1.455 | 102.67 | 102.67 | 102.67 | 102.67 | 102.67 | 102.67 |
Bus 101 | 1.218 | 0.201 | 1.218 | 0.88 | 0.094 | 0.88 | 101.93 | 101.89 | 101.93 | 101.78 | 101.78 | 100.7 |
Bus 102 | 1.033 | 0.5 | 1.033 | 0.797 | 0.082 | 0.797 | 101.6 | 101.92 | 101.6 | 101.83 | 101.83 | 100.43 |
Bus 103 | 0.792 | 0.126 | 0.792 | 0.759 | 0.104 | 0.759 | 101.08 | 101.91 | 101.08 | 101.85 | 101.85 | 99.82 |
Bus 104 | 1.29 | 0.126 | 1.29 | 0.757 | 0.058 | 0.757 | 100.8 | 101.88 | 100.8 | 101.84 | 101.84 | 99.5 |
Bus 105 | 1.284 | 0.133 | 1.284 | 0.752 | 0.11 | 0.752 | 100.28 | 101.88 | 100.28 | 101.85 | 101.85 | 101.29 |
Bus 106 | 1.154 | 1.261 | 1.154 | 0.659 | 0.864 | 0.659 | 99.95 | 101.93 | 99.95 | 101.93 | 101.93 | 101.33 |
Bus 107 | 1.696 | 0.27 | 1.696 | 0.551 | 0.468 | 0.551 | 101.93 | 101.94 | 101.93 | 101.7 | 101.7 | 102.6 |
Bus 108 | 0.392 | 1.258 | 0.392 | 0.209 | 0.689 | 0.209 | 101.88 | 101.99 | 101.88 | 101.99 | 101.99 | 102.58 |
Bus 109 | 0.219 | 0.812 | 0.219 | 0.291 | 0.481 | 0.291 | 101.9 | 101.54 | 101.9 | 99.81 | 99.81 | 99.14 |
Bus 110 | 0.045 | 0.843 | 0.045 | 0.561 | 0.462 | 0.561 | 101.95 | 101.38 | 101.95 | 99.87 | 99.87 | 99.2 |
Bus 111 | 0.1 | 0.369 | 0.1 | 0.27 | 0.176 | 0.27 | 101.88 | 101.48 | 101.88 | 100.3 | 100.3 | 102.4 |
Bus 112 | 0.46 | 0.769 | 0.46 | 0.3 | 0.467 | 0.3 | 101.75 | 101.67 | 101.75 | 100.97 | 100.97 | 102.46 |
Bus 113 | - | 0.312 | - | - | 0.137 | - | - | 101.93 | - | - | 101.89 | - |
Bus 114 | - | 0.173 | - | - | 0.185 | - | - | 101.92 | - | - | 101.8 | - |
Bus 115 | - | 0.1 | - | - | 0.418 | - | - | 101.97 | - | - | 101.81 | - |
Bus 116 | - | 0.5 | - | - | 0.29 | - | - | 101.91 | - | - | 101.67 | - |
Bus 117 | - | 0.1 | - | - | 0.115 | - | - | 101.94 | - | - | 101.61 | - |
Bus 118 | - | 1.255 | - | - | 0.683 | - | - | 101.99 | - | - | 102 | - |
Bus ID | MW Loading | MVar Loading | Voltage at Classic Networks | ||||||
---|---|---|---|---|---|---|---|---|---|
Radial | Ring | Mesh | Radial | Ring | Mesh | Radial | Ring | Mesh | |
Bus 632 | 3.528 | 2.547 | 2.520 | 1.467 | 1.472 | 1.378 | 102.56 | 102.67 | 102.67 |
Bus 633 | 0.405 | 0.585 | 1.222 | 0.300 | 0.424 | 0.668 | 102.31 | 102.31 | 102.01 |
Bus 634 | 0.400 | 0.574 | 0.592 | 0.290 | 0.404 | 0.344 | 100.28 | 99.41 | 101.69 |
Bus 645 | 0.424 | 1.846 | 1.187 | 0.217 | 0.970 | 0.637 | 102.34 | 101.69 | 102.04 |
Bus 646 | 0.240 | 1.652 | 0.339 | 0.138 | 0.876 | 0.202 | 102.21 | 100.80 | 101.85 |
Bus 652 | 0.128 | 0.126 | 0.132 | 0.086 | 0.085 | 0.089 | 100.26 | 99.29 | 101.72 |
Bus 671 | 2.569 | 0.598 | 1.584 | 0.796 | 0.717 | 0.719 | 100.44 | 98.55 | 101.69 |
Bus 675 | 0.843 | 0.843 | 0.843 | 0.603 | 0.683 | 0.662 | 100.24 | 98.41 | 101.56 |
Bus 680 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 100.44 | 98.55 | 101.69 |
Bus 684 | 0.299 | 1.734 | 0.500 | 0.086 | 0.743 | 0.089 | 100.32 | 99.34 | 101.78 |
Bus 685 | 0.170 | 1.415 | 0.173 | 0.101 | 0.832 | 0.169 | 100.27 | 100.05 | 101.79 |
Bus 692 | 1.015 | 0.844 | 0.830 | 0.151 | 0.220 | 0.199 | 100.44 | 98.55 | 101.69 |
Bus ID | VIHD at Aromatic Configuration (%) | VIHD at Reconfigured Configuration (%) | Order | ||||
---|---|---|---|---|---|---|---|
Con1 | Con2 | Con3 | Con1 | Con2 | Con3 | ||
Bus100 | 2.92 | 4.75 | 2.93 | 2.91 | 4.78 | 2.92 | 5 |
Bus101 | 3.58 | 5.38 | 3.61 | 4.42 | 6.22 | 3.72 | 5 |
Bus102 | 3.71 | 5.51 | 3.75 | - | 6.23 | 3.94 | 5 |
Bus103 | 3.44 | 5.41 | 3.64 | 4.06 | 5.89 | 3.97 | 5 |
Bus104 | 3.53 | 5.33 | 3.57 | 3.86 | 5.69 | 3.97 | 5 |
Bus105 | 3.44 | 5.24 | 3.47 | 3.61 | 5.45 | 3.32 | 5 |
Bus106 | 3.32 | 5.13 | 3.35 | 3.30 | 5.16 | 3.32 | 5 |
Bus107 | 3.63 | 5.52 | 3.61 | 3.66 | 5.60 | 3.69 | 5 |
Bus108 | 3.43 | 5.30 | 3.42 | 3.41 | 5.32 | 3.43 | 5 |
Bus109 | 3.55 | 5.42 | 3.52 | 4.04 | 5.94 | 3.97 | 5 |
Bus110 | 3.62 | 5.48 | 3.58 | 4.04 | 5.94 | 3.97 | 5 |
Bus111 | 3.69 | 5.56 | 3.66 | 4.04 | 5.94 | 4.07 | 5 |
Bus112 | 3.89 | 5.75 | 3.86 | 4.04 | 5.95 | 4.07 | 5 |
Bus113 | - | 5.45 | - | - | 5.66 | - | 5 |
Bus114 | - | 5.74 | - | - | 6.25 | - | 5 |
Bus115 | - | 5.88 | - | - | 6.55 | - | 5 |
Bus116 | - | 5.94 | - | - | 6.91 | - | 5 |
Bus117 | - | 5.49 | - | - | 6.91 | - | 5 |
Bus118 | - | 5.31 | - | - | 5.36 | - | 5 |
Bus100 | - | 2.79 | 1.65 | - | 2.81 | 1.65 | 7 |
Bus101 | - | 3.04 | 1.99 | - | 3.36 | 2.03 | 7 |
Bus102 | - | 3.09 | 2.06 | - | 3.37 | 2.13 | 7 |
Bus103 | - | 3.07 | 2.03 | - | 3.26 | 2.17 | 7 |
Bus104 | - | 3.04 | 1.99 | - | 3.18 | 2.17 | 7 |
Bus105 | - | 3.00 | 1.93 | - | 3.08 | 1.84 | 7 |
Bus106 | - | 2.94 | 1.86 | - | 2.96 | 1.84 | 7 |
Bus107 | - | 3.28 | 2.06 | - | 3.32 | 2.13 | 7 |
Bus108 | - | 3.13 | 1.94 | - | 3.15 | 1.97 | 7 |
Bus109 | - | 3.19 | 1.98 | - | 3.41 | 2.17 | 7 |
Bus110 | - | 3.22 | 2.00 | - | 3.41 | 2.17 | 7 |
Bus111 | - | 3.25 | 2.05 | - | 3.41 | 2.29 | 7 |
Bus112 | - | 3.34 | 2.15 | - | 3.42 | 2.29 | 7 |
Bus113 | - | 3.26 | - | - | 3.40 | - | 7 |
Bus114 | - | 3.47 | - | - | 3.80 | - | 7 |
Bus115 | - | 3.57 | - | - | 4.00 | - | 7 |
Bus116 | - | 3.51 | - | - | 4.10 | - | 7 |
Bus117 | - | 3.26 | - | - | 4.10 | - | 7 |
Bus118 | - | 3.16 | - | - | 3.20 | - | 7 |
Bus100 | - | - | 1.88 | - | - | 1.97 | 11 |
Bus101 | - | - | 2.13 | - | - | 2.16 | 11 |
Bus102 | - | - | 2.17 | - | - | 2.21 | 11 |
Bus103 | - | - | 2.23 | - | - | 2.30 | 11 |
Bus104 | - | - | 2.21 | - | - | 2.30 | 11 |
Bus105 | - | - | 2.14 | - | - | 2.06 | 11 |
Bus106 | - | - | 2.06 | - | - | 2.06 | 11 |
Bus107 | - | 1.72 | 2.45 | - | 1.61 | 2.72 | 11 |
Bus108 | - | 1.61 | 2.26 | - | 1.52 | 2.47 | 11 |
Bus109 | - | - | 2.25 | - | - | 2.30 | 11 |
Bus110 | - | - | 2.25 | - | - | 2.30 | 11 |
Bus111 | - | - | 2.29 | - | - | 2.73 | 11 |
Bus112 | - | - | 2.40 | - | - | 2.73 | 11 |
Bus ID | Voltage Distortion Fundamental at Original Config. | VTHD (%) at Original Configuration | Voltage Distortion Fundamental at Reconfigured Config. | VTHD (%) at Reconfigured Configuration | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Con1 | Con2 | Con3 | Con1 | Con2 | Con3 | Con1 | Con2 | Con3 | Con1 | Con2 | Con3 | |
Bus100 | - | 102.67 | 102.67 | - | 5.70 | 3.94 | - | 102.67 | 102.67 | - | 5.72 | 3.98 |
Bus101 | - | 101.89 | 101.75 | - | 6.33 | 4.72 | - | 101.78 | 100.70 | - | 7.20 | 4.82 |
Bus102 | - | 101.92 | 101.76 | - | 6.46 | 4.87 | - | 101.83 | 100.43 | - | 7.21 | 5.05 |
Bus103 | 101.79 | 101.91 | 101.71 | 4.64 | 6.38 | 4.82 | 101.85 | 101.85 | 99.82 | 5.15 | 6.87 | 5.14 |
Bus104 | 101.75 | 101.88 | 101.67 | 4.55 | 6.30 | 4.74 | 101.84 | 101.84 | 99.50 | 4.92 | 6.66 | 5.14 |
Bus105 | 101.56 | 101.88 | 101.73 | 4.44 | 6.21 | 4.61 | 101.85 | 101.85 | 101.29 | 4.63 | 6.40 | 4.39 |
Bus106 | 101.48 | 101.93 | 101.81 | 4.31 | 6.09 | 4.43 | 101.93 | 101.93 | 101.33 | 4.29 | 6.10 | 4.39 |
Bus107 | - | 101.94 | 102.07 | - | 6.68 | 4.97 | - | 101.70 | 102.60 | - | 6.75 | 5.22 |
Bus108 | - | 101.99 | 102.11 | - | 6.39 | 4.65 | - | 101.99 | 102.58 | - | 6.41 | 4.80 |
Bus109 | - | 101.54 | 101.74 | - | 6.52 | 4.74 | - | 99.81 | 99.14 | - | 7.04 | 5.14 |
Bus110 | - | 101.38 | 101.61 | - | 6.58 | 4.78 | - | 99.87 | 99.20 | - | 7.04 | 5.14 |
Bus111 | - | 101.48 | 101.69 | - | 6.66 | 4.88 | - | 100.30 | 102.40 | - | 7.04 | 5.53 |
Bus112 | - | 101.67 | 101.84 | - | 6.87 | 5.14 | - | 100.97 | 102.46 | - | 7.05 | 5.53 |
Bus113 | - | 101.93 | - | - | 6.63 | - | - | 101.89 | - | - | 6.87 | - |
Bus114 | - | 101.92 | - | - | 7.03 | - | - | 101.80 | - | - | 7.65 | - |
Bus115 | - | 101.97 | - | - | 7.23 | - | - | 101.81 | - | - | 8.05 | - |
Bus116 | - | 101.91 | - | - | 7.19 | - | - | 101.67 | - | - | 8.35 | - |
Bus117 | - | 101.94 | - | - | 6.65 | - | - | 101.61 | - | - | 8.35 | - |
Bus118 | - | 102.00 | - | - | 6.44 | - | - | 102.00 | - | - | 6.49 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prakash, K.; Islam, F.R.; Mamun, K.A.; Pota, H.R. Configurations of Aromatic Networks for Power Distribution System. Sustainability 2020, 12, 4317. https://doi.org/10.3390/su12104317
Prakash K, Islam FR, Mamun KA, Pota HR. Configurations of Aromatic Networks for Power Distribution System. Sustainability. 2020; 12(10):4317. https://doi.org/10.3390/su12104317
Chicago/Turabian StylePrakash, K., F. R. Islam, K. A. Mamun, and H. R. Pota. 2020. "Configurations of Aromatic Networks for Power Distribution System" Sustainability 12, no. 10: 4317. https://doi.org/10.3390/su12104317
APA StylePrakash, K., Islam, F. R., Mamun, K. A., & Pota, H. R. (2020). Configurations of Aromatic Networks for Power Distribution System. Sustainability, 12(10), 4317. https://doi.org/10.3390/su12104317