Multitemporal Analysis of Land Cover Changes in Areas with Contrasted Forest Management and Conservation Policies in Northern Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Justification for High-Resolution Satellite Image Classification
2.3. Image Acquisition
2.4. Digitization of Images
2.5. Multitemporal Analysis
2.6. Determination of Losses and Gains in Coverage
2.7. Annual Deforestation Rate
3. Results
3.1. Kappa Index
3.2. Coverage of Different Ecosystems
3.3. Changes in Vegetation Cover
3.4. Deforestation Rate
4. Discussion
4.1. Kappa Index
4.2. Coverage of Different Ecosystems
4.3. Changes in Vegetation Cover
4.4. Deforestation Rate
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bera, D.; Chatterjee, N.D.; Ghosh, S.; Dinda, S.; Bera, S.; Mandal, M. Assessment of forest cover loss and impacts on ecosystem services: Coupling of remote sensing data and people’s perception in the dry deciduous forest of West Bengal, India. J. Clean. Prod. 2022, 356, 131763. [Google Scholar] [CrossRef]
- Fang, L.; Wang, L.; Chen, W.; Sun, J.; Cao, Q.; Wang, S.; Wang, L. Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, F.; He, F. Reconstruction of Forest and Grassland Cover for the Conterminous United States from 1000 AD to 2000 AD. Remote Sens. 2023, 15, 3363. [Google Scholar] [CrossRef]
- Zhang, C.; Ye, Y.; Fang, X.; Li, H.; Wei, X. Synergistic Modern Global 1 Km Cropland Dataset Derived from Multi-Sets of Land Cover Products. Remote Sens. 2019, 11, 2250. [Google Scholar] [CrossRef]
- FAO. El Estado de los Bosques del Mundo 2020. Los Bosques, la Biodiversidad y las Personas; FAO: Rome, Italy, 2020; 197p. [Google Scholar]
- CONAFOR. Estimación de la Tasa de Deforestación Bruta en México para el Período 2001–2018 Mediante el Método de Muestreo. Documento Técnico; ONAFOR: Jalisco, Mexico, 2020. [Google Scholar]
- Wrońska-Pilarek, D.; Rymszewicz, S.; Jagodziński, A.M.; Gawryś, R.; Dyderski, M.K. Temperate forest understory vegetation shifts after 40 years of conservation. Sci. Total Environ. 2023, 895, 165164. [Google Scholar] [CrossRef]
- Nascibem, F.G.; Da Silva, R.F.B.; Viveiro, A.A.; Gonçalves Junior, O. The Role of Private Reserves of Natural Heritage (RPPN) on natural vegetation dynamics in Brazilian biomes. Land Use Policy 2023, 132, 106820. [Google Scholar] [CrossRef]
- Sandoval-García, R.; González-Cubas, R.; Jiménez-Pérez, J. Análisis multitemporal del cambio en la cobertura del suelo en la Mixteca Alta Oaxaqueña. Rev. Mex. Cienc. For. 2021, 12, 96–121. [Google Scholar] [CrossRef]
- Rosero, C.; Otero, X.; Bravo, C.; Frey, C. Multitemporal Incidence of Landscape Fragmentation in a Protected Area of Central Andean Ecuador. Land 2023, 12, 500. [Google Scholar] [CrossRef]
- Aguirre-Calderón, O.A. Manejo forestal en el siglo XXI. Madera Bosques 2015, 21, 17–28. [Google Scholar] [CrossRef]
- Kucsicsa, G.; Bălteanu, D. The influence of man-induced land-use change on the upper forest limit in the Romanian Carpathians. Eur. J. For. Res. 2020, 139, 893–914. [Google Scholar] [CrossRef]
- Kouba, Y.; Alados, C.L. Spatio-temporal dynamics of Quercus faginea forests in the Spanish Central Pre-Pyrenees. Eur. J. For. Res. 2012, 131, 369–379. [Google Scholar] [CrossRef]
- Gopalakrishnan, R.; Kauffman, J.S.; Fagan, M.E.; Coulston, J.W.; Thomas, V.A.; Wynne, R.H.; Fox, T.R.; Quirino, V.F. Creating Landscape-Scale Site Index Maps for the Southeastern US Is Possible with Airborne LiDAR and Landsat Imagery. Forests 2019, 10, 234. [Google Scholar] [CrossRef]
- Solberg, S.; Kvaalen, H.; Puliti, S. Age-independent site index mapping with repeated single-tree airborne laser scanning. Scand. J. For. Res. 2019, 34, 763–770. [Google Scholar] [CrossRef]
- Bontemps, J.-D.; Bouriaud, O. Predictive approaches to forest site productivity: Recent trends, challenges and future perspectives. For. Int. J. For. Res. 2014, 87, 109–128. [Google Scholar] [CrossRef]
- Goodbody, T.R.H.; Coops, N.C.; Luther, J.E.; Tompalski, P.; Mulverhill, C.; Frizzle, C.; Fournier, R.; Furze, S.; Herniman, S. Airborne laser scanning for quantifying criteria and indicators of sustainable forest management in Canada. Can. J. For. Res. 2021, 51, 972–985. [Google Scholar] [CrossRef]
- Tompalski, P.; Coops, N.C.; White, J.C.; Wulder, M.A.; Pickell, P.D. Estimating Forest Site Productivity Using Airborne Laser Scanning Data and Landsat Time Series. Can. J. Remote Sens. 2015, 41, 232–245. [Google Scholar] [CrossRef]
- Blaga, L.; Ilieș, D.C.; Wendt, J.A.; Rus, I.; Zhu, K.; Dávid, L.D. Monitoring Forest Cover Dynamics Using Orthophotos and Satellite Imagery. Remote Sens. 2023, 15, 3168. [Google Scholar] [CrossRef]
- Li, C.; Li, M.; Li, Y. Improving estimation of forest aboveground biomass using Landsat 8 imagery by incorporating forest crown density as a dummy variable. Can. J. For. Res. 2019, 50, 390–398. [Google Scholar] [CrossRef]
- Wu, L.; Li, Z.; Liu, X.; Zhu, L.; Tang, Y.; Zhang, B.; Xu, B.; Liu, M.; Meng, Y.; Liu, B. Multi-Type Forest Change Detection Using BFAST and Monthly Landsat Time Series for Monitoring Spatiotemporal Dynamics of Forests in Subtropical Wetland. Remote Sens. 2020, 12, 341. [Google Scholar] [CrossRef]
- Elhag, M.; Boteva, S.; Al-Amri, N. Forest cover assessment using remote-sensing techniques in Crete Island, Greece. Open Geosci. 2021, 13, 345–358. [Google Scholar] [CrossRef]
- Erfanifard, Y.; Lotfi Nasirabad, M.; Stereńczak, K. Assessment of Iran’s Mangrove Forest Dynamics (1990–2020) Using Landsat Time Series. Remote Sens. 2022, 14, 4912. [Google Scholar] [CrossRef]
- Hernández-Cavazos, M.C.; Sandoval-García, R.; Molina-Guerra, V.M.; Alanís-Rodríguez, E. Análisis multitemporal del cambio de uso de suelo en el municipio de Linares, Nuevo León. Ecosistemas Recur. Agropecu. 2023, 10. [Google Scholar] [CrossRef]
- Anzoategui, L.V.; Gil-Leguizamón, P.A.; Sanabria-Marin, R. Frontera agrícola y multitemporalidad de cobertura vegetal en Páramo del Parque Regional Natural Cortadera (Boyacá, Colombia). Bosque 2023, 44, 159–170. [Google Scholar] [CrossRef]
- Gallardo-Cruz, J.A.; Peralta-Carreta, C.; Solórzano, J.V.; Fernández-Montes de Oca, A.I.; Nava, L.F.; Kauffer, E.; Carabias, J. Deforestation and trends of change in protected areas of the Usumacinta River basin (2000–2018), Mexico and Guatemala. Reg. Environ. Change 2021, 21, 97. [Google Scholar] [CrossRef]
- Gao, J.; O’Neill, B.C. Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nat. Commun. 2020, 11, 2302. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Zhang, C.; Yu, L.; Wang, J.; Wu, X.; Hu, Z.; Zhai, Z.; Li, Q.; Wu, G.; et al. Assessing spatiotemporal variations and predicting changes in ecosystem service values in the Guangdong–Hong Kong–Macao Greater Bay Area. GIScience Remote Sens. 2022, 59, 184–199. [Google Scholar] [CrossRef]
- Estrada-Murrieta, Ó.; Rodríguez-García, S.G. Más de 100 Años de Cultivo al Bosque en Chihuaua. Caso Ejido El Largo y Anexos; Dirección Técnica Forestal de Ejido El Largo y Anexos: Chihuahua, Mexico, 2022; 143p. [Google Scholar]
- CONANP. Programa de Manejo Área de Protección de Flora y Fauna Tutuaca; Comisión Nacional de Áreas Naturales Protegidas: Delegación Tlalpan, Mexico, 2014; 162p. [Google Scholar]
- Cuervo-Robayo, A.P.; Téllez-Valdés, O.; Gómez-Albores, M.A.; Venegas-Barrera, C.S.; Manjarrez, J.; Martínez-Meyer, E. An update of high-resolution monthly climate surfaces for Mexico. Int. J. Climatol. 2014, 34, 2427–2437. [Google Scholar] [CrossRef]
- EOS (Earth Observing System). Spatial Resolution of a Satellite Image. 2020. Available online: https://eos.com/ (accessed on 10 March 2024).
- Astola, H.; Häme, T.; Sirro, L.; Molinier, M.; Kilpi, J. Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal región. Remote Sens. Environ. 2019, 223, 257–273. [Google Scholar] [CrossRef]
- Pham, L.T.; Brabyn, L.; Ashraf, S. Combining QuickBird, LiDAR, and GIS topography indices to identify a single native tree species in a complex landscape using an object-based classification approach. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 187–197. [Google Scholar] [CrossRef]
- Azzari, G.; Jain, M.; Lobell, D.B. Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries. Remote Sens. Environ. 2017, 202, 129–141. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System. Available online: https://qgis.org (accessed on 10 March 2024).
- INEGI. Conjunto de Datos Vectoriales de Uso del Suelo y Vegetación. Escala 1:250, 000. Serie VII (Conjunto Nacional); INEGI: Aguascalientes, Mexico, 2021. [Google Scholar]
- Palacio-Prieto, J.L.; Sánchez-Salazar, T.M.; Casado-Izquierdo, J.M.; Propin-Frejomil, E.; Delgado-Campos, J.; Velázquez-Montes, A.; Chias-Becerril, L.; Ortiz-Álvarez, M.I.; González-Sánchez, J.; Negrete-Fernández, G.; et al. Indicadores para la Caracterización y el Ordenamiento Territorial; Instituto Nacional de Ecología: Coyoacán, Mexico, 2004. [Google Scholar]
- Meshesha, T.W.; Tripathi, S.; Khare, D. Analyses of land use and land cover change dynamics using GIS and remote sensing during 1984 and 2015 in the Beressa Watershed Northern Central Highland of Ethiopia. Model. Earth Syst. Environ. 2016, 2, 1–12. [Google Scholar] [CrossRef]
- Puyravaud, J.-P. Standardizing the calculation of the annual rate of deforestation. For. Ecol. Manag. 2003, 177, 593–596. [Google Scholar] [CrossRef]
- Brennan, R.L.; Prediger, D.J. Coefficient kappa: Some uses, misuses, and alternatives. Educ. Psychol. Meas. 1981, 41, 687–699. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Darabi, S.; Blaschke, T.; Lakes, T. QADI as a New Method and Alternative to Kappa for Accuracy Assessment of Remote Sensing-Based Image Classification. Sensors 2022, 22, 4506. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Blaschke, T.; Tiede, D.; Moghaddam, M.H.R. Evaluating fuzzy operators of an object-based image analysis for detecting landslides and their changes. Geomorphology 2017, 293, 240–254. [Google Scholar] [CrossRef]
- Kvålseth, T.O. Measurement of Interobserver Disagreement: Correction of Cohen’s Kappa for Negative Values. J. Probab. Stat. 2015, 2015, 751803. [Google Scholar] [CrossRef]
- Foody, G.M. Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sens. Environ. 2020, 239, 111630. [Google Scholar] [CrossRef]
- Verma, P.; Raghubanshi, A.; Srivastava, P.K.; Raghubanshi, A. Appraisal of kappa-based metrics and disagreement indices of accuracy assessment for parametric and nonparametric techniques used in LULC classification and change detection. Model. Earth Syst. Environ. 2020, 6, 1045–1059. [Google Scholar] [CrossRef]
- Jiménez-Pérez, J.; Sandoval-García, R.; Alanís-Rodríguez, E.; Yerena-Yamallel, J.I.; Aguirre-Calderón, O.A. Dinámica de cambio en ecosistemas urbanos y periurbanos en el área metropolitana de Monterrey, México. Rev. Cuba. Cienc. For. 2022, 10, 278–291. [Google Scholar]
- Mendes, D.F.; Da Silva, S.; Ferreri, J.; Dos Santos, A.; García, R.F. Acurácia temática do classificador por máxima verossimilhança em imagem de alta resolução espacial do satélite Geoeye-1. Nucleus 2015, 12, 107–118. [Google Scholar] [CrossRef]
- Kamel, M. Monitoring of Land Use and Land Cover Change Detection Using Multi-temporal Remote Sensing and Time Series Analysis of Qena-Luxor Governorates (QLGs), Egypt. J. Indian Soc. Remote Sens. 2020, 48, 1767–1785. [Google Scholar] [CrossRef]
- Raj, S.; Rawat, K.S.; Tripathi, V.K. Multi-Temporal Image Processing for LULC Classification and Change Detection. Env. Ecol. 2024, 42, 1349–1357. [Google Scholar] [CrossRef]
- Oliveira-Andreoli, E.Z.; Moraes, M.C.P.d.; Faustino, A.d.S.; Vasconcelos, A.F.; Costa, C.W.; Moschini, L.E.; Melanda, E.A.; Justino, E.A.; Di Lollo, J.A.; Lorandi, R. Multi-temporal analysis of land use land cover interference in environmental fragility in a Mesozoic basin, southeastern Brazil. Groundw. Sustain. Dev. 2021, 12, 100536. [Google Scholar] [CrossRef]
- Meli Fokeng, R.; Gadinga Forje, W.; Meli Meli, V.; Nyuyki Bodzemo, B. Multi-temporal forest cover change detection in the Metchie-Ngoum Protection Forest Reserve, West Region of Cameroon. Egypt. J. Remote Sens. Space Sci. 2020, 23, 113–124. [Google Scholar] [CrossRef]
- Miller, T.R.; Minteer, B.A.; Malan, L.-C. The new conservation debate: The view from practical ethics. Biol. Conserv. 2011, 144, 948–957. [Google Scholar] [CrossRef]
- Kumar, S.; Shwetank; Jain, K. A Multi-Temporal Landsat Data Analysis for Land-use/Land-cover Change in Haridwar Region using Remote Sensing Techniques. Procedia Comput. Sci. 2020, 171, 1184–1193. [Google Scholar] [CrossRef]
- Bocco, G.; Mendoza, M.; Masera, O.R. La dinámica del cambio del uso del suelo en Michoacán. Una propuesta metodológica para el estudio de los procesos de deforestación. Investig. Geogr. 2001, 1, 18–36. [Google Scholar] [CrossRef]
- Castelán Vega, R.; Ruiz Careaga, J.; Linares Fleites, G.; Pérez Avilés, R.; Tamariz Flores, V. Dinámica de cambio espacio-temporal de uso del suelo de la subcuenca del río San Marcos, Puebla, México. Investig. Geogr. 2007, 64, 75–89. [Google Scholar] [CrossRef]
- Rascón Solano, J.; Galván Moreno, V.S.; Aguirre Calderón, O.A.; García García, S.A. Caracterización estructural y carbono almacenado en un bosque templado frío censado en el noroeste de México. Rev. Mex. Cienc. For. 2022, 13, 136–165. [Google Scholar] [CrossRef]
- García García, S.A.; Alanís Rodríguez, E.; Aguirre Calderón, O.A.; Treviño Garza, E.J.; Graciano Ávila, G. Regeneración y estructura vertical de un bosque de Pseudotsuga menziesii (Mirb.) Franco en Chihuahua, México. Rev. Mex. Cienc. For. 2020, 11, 92–111. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, X.; Wei, Y. Land use change analysis of Daishan Island using multi-temporal remote sensing imagery. Arab. J. Geosci. 2020, 13, 741. [Google Scholar] [CrossRef]
- Azari, M.; Billa, L.; Chan, A. Multi-temporal analysis of past and future land cover change in the highly urbanized state of Selangor, Malaysia. Ecol. Process. 2022, 11, 2. [Google Scholar] [CrossRef]
- Dangulla, M.; Manaf, L.A.; Mohammad, F.R. Spatio-temporal analysis of land use/land cover dynamics in Sokoto Metropolis using multi-temporal satellite data and Land Change Modeller. Indones. J. Geogr. 2020, 52, 306–316. [Google Scholar] [CrossRef]
- Capolupo, A.; Monterisi, C.; Saponaro, M.; Tarantino, E. Multi-Temporal Analysis of Land Cover Changes Using Landsat Data through Google Earth Engine Platform; SPIE: Bellingham, WA, USA, 2020; Volume 11524. [Google Scholar]
- Figueredo Fernández, J.L.; Ramon Puebla, A.M.; Barrero Medel, H. Análisis multitemporal del cambio de cobertura vegetal en el área de manejo “Los Números” Guisa, Granma. Rev. Cuba. Cienc. For. 2020, 8, 1–15. [Google Scholar]
Ecosystem | 1995 | 2008 | 2014 | 2022 | ||||
---|---|---|---|---|---|---|---|---|
Ha | % | Ha | % | Ha | % | Ha | % | |
Ejido El Largo y Anexos | ||||||||
Oak | 23,972 | 22.81 | 19,325 | 20.32 | 16,237 | 18.38 | 14,501 | 19.89 |
Oak–Pine | 13,969 | 13.29 | 13,421 | 14.11 | 12,972 | 14.69 | 11,230 | 15.40 |
Pine | 29,915 | 28.46 | 25,708 | 27.03 | 24,643 | 27.90 | 20,871 | 28.62 |
Pine–Oak | 33,323 | 31.71 | 32,986 | 34.69 | 31,755 | 35.95 | 24,347 | 33.39 |
Grassland | 3922 | 3.73 | 3657 | 3.85 | 2716 | 3.08 | 1965 | 2.69 |
Summation | 105,101 | 100.00 | 95,097 | 100.00 | 88,323 | 100.00 | 72,914 | 100.00 |
Protected Natural Area Tutuaca | ||||||||
Douglas Fir | 242 | 0.27 | 184 | 0.13 | 56 | 0.03 | 10 | 0.00 |
Oak | 22,621 | 25.55 | 51,981 | 36.75 | 60,354 | 36.38 | 73,249 | 35.93 |
Oak–Pine | 28,770 | 32.49 | 42,824 | 30.28 | 50,296 | 30.32 | 62,442 | 30.63 |
Pine | 8461 | 9.55 | 14,373 | 10.16 | 17,896 | 10.79 | 22,135 | 10.86 |
Pine–Oak | 15,880 | 17.93 | 18,648 | 13.19 | 22,879 | 13.79 | 26,621 | 13.06 |
Juniper | 7 | 0.01 | 8 | 0.01 | 5 | 0.00 | 2 | 0.00 |
Grassland | 11,085 | 12.52 | 11,547 | 8.16 | 12,374 | 7.46 | 16,413 | 8.05 |
Tropical deciduous forest | 1488 | 1.68 | 1866 | 1.32 | 2044 | 1.23 | 2998 | 1.47 |
Summation | 88,554 | 100.00 | 141,430 | 100.00 | 165,904 | 100.00 | 203,870 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandoval-García, R.; Rascón-Solano, J.; Alanís-Rodríguez, E.; García-García, S.; Sigala, J.A.; Aguirre-Calderón, O. Multitemporal Analysis of Land Cover Changes in Areas with Contrasted Forest Management and Conservation Policies in Northern Mexico. Sustainability 2024, 16, 7866. https://doi.org/10.3390/su16177866
Sandoval-García R, Rascón-Solano J, Alanís-Rodríguez E, García-García S, Sigala JA, Aguirre-Calderón O. Multitemporal Analysis of Land Cover Changes in Areas with Contrasted Forest Management and Conservation Policies in Northern Mexico. Sustainability. 2024; 16(17):7866. https://doi.org/10.3390/su16177866
Chicago/Turabian StyleSandoval-García, Rufino, Joel Rascón-Solano, Eduardo Alanís-Rodríguez, Samuel García-García, José A. Sigala, and Oscar Aguirre-Calderón. 2024. "Multitemporal Analysis of Land Cover Changes in Areas with Contrasted Forest Management and Conservation Policies in Northern Mexico" Sustainability 16, no. 17: 7866. https://doi.org/10.3390/su16177866
APA StyleSandoval-García, R., Rascón-Solano, J., Alanís-Rodríguez, E., García-García, S., Sigala, J. A., & Aguirre-Calderón, O. (2024). Multitemporal Analysis of Land Cover Changes in Areas with Contrasted Forest Management and Conservation Policies in Northern Mexico. Sustainability, 16(17), 7866. https://doi.org/10.3390/su16177866