Upcycling Waste Cotton Cloth into a Carbon Textile: A Durable and Scalable Layer for Vanadium Redox Flow Battery Applications
Abstract
:1. Introduction
2. Experimental
2.1. CWC Electrode Preparation
2.2. Electrode Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. General Morphology
3.2. Pore Structure and Distribution
3.3. Crystalline Structural and Surface Composition Characteristics
3.4. Electrochemical Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Allam, M.A.; Fetyan, A.; Alawadhi, H.; Abdelkareem, M.A. Advancements in Electrode Materials for Next-Generation Metal Batteries: A Comprehensive Review. In Proceedings of the 2024 IEEE Third International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Kuala Lumpur, Malaysia, 26–28 April 2024; pp. 1219–1224. [Google Scholar]
- Strielkowski, W.; Civín, L.; Tarkhanova, E.; Tvaronavičienė, M.; Petrenko, Y. Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review. Energies 2021, 14, 8240. [Google Scholar] [CrossRef]
- Olabi, A.G.; Allam, M.A.; Abdelkareem, M.A.; Deepa, T.D.; Alami, A.H.; Abbas, Q.; Alkhalidi, A.; Sayed, E.T. Redox Flow Batteries: Recent Development in Main Components, Emerging Technologies, Diagnostic Techniques, Large-Scale Applications, and Challenges and Barriers. Batteries 2023, 9, 409. [Google Scholar] [CrossRef]
- Skyllas-Kazacos, M.; Chakrabarti, M.H.; Hajimolana, S.A.; Mjalli, F.S.; Saleem, M. Progress in Flow Battery Research and Development. J. Electrochem. Soc. 2011, 158, R55. [Google Scholar] [CrossRef]
- Fetyan, A.; Bamgbopa, M.O.; Andisetiawan, A.; Alhammadi, A.; Susantyoko, R.A. Evaluation of Asymmetric Flow Rates for Better Performance Vanadium Redox Flow Battery. Batter. Supercaps 2023, 6, e202300301. [Google Scholar] [CrossRef]
- He, Z.; Lv, Y.; Zhang, T.; Zhu, Y.; Dai, L.; Yao, S.; Zhu, W.; Wang, L. Electrode materials for vanadium redox flow batteries: Intrinsic treatment and introducing catalyst. Chem. Eng. J. 2022, 427, 131680. [Google Scholar] [CrossRef]
- Kim, K.J.; Park, M.-S.; Kim, Y.-J.; Kim, J.H.; Dou, S.X.; Skyllas-Kazacos, M. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. J. Mater. Chem. A 2015, 3, 16913–16933. [Google Scholar] [CrossRef]
- Castañeda, L.F.; Walsh, F.C.; Nava, J.L.; Ponce de León, C. Graphite felt as a versatile electrode material: Properties, reaction environment, performance and applications. Electrochim. Acta 2017, 258, 1115–1139. [Google Scholar] [CrossRef]
- Sun, B.; Skyllas-Kazacos, M.J.E.a. Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment. Electrochim. Acta 1992, 37, 1253–1260. [Google Scholar] [CrossRef]
- Sun, B.; Skyllas-Kazacos, M.J.E.A. Chemical modification of graphite electrode materials for vanadium redox flow battery application—Part II. Acid treatments. Electrochim. Acta 1992, 37, 2459–2465. [Google Scholar] [CrossRef]
- Zhang, W.; Xi, J.; Li, Z.; Zhou, H.; Liu, L.; Wu, Z.; Qiu, X. Electrochemical activation of graphite felt electrode for VO2+/VO2+ redox couple application. Electrochim. Acta 2013, 89, 429–435. [Google Scholar] [CrossRef]
- Cho, Y.I.; Park, S.J.; Hwang, H.J.; Lee, J.G.; Jeon, Y.K.; Chu, Y.H.; Shul, Y.G. Effects of microwave treatment on carbon electrode for vanadium redox flow battery. ChemElectroChem 2015, 2, 872–876. [Google Scholar] [CrossRef]
- Yao, C.; Zhang, H.; Liu, T.; Li, X.; Liu, Z.J.J.o.P.S. Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery. J. Power Sources 2012, 218, 455–461. [Google Scholar] [CrossRef]
- Kim, K.J.; Park, M.-S.; Kim, J.-H.; Hwang, U.; Lee, N.J.; Jeong, G.; Kim, Y.-J. Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries. Chem. Commun. 2012, 48, 5455–5457. [Google Scholar] [CrossRef]
- Zhou, H.; Xi, J.; Li, Z.; Zhang, Z.; Yu, L.; Liu, L.; Qiu, X.; Chen, L. CeO2 decorated graphite felt as a high-performance electrode for vanadium redox flow batteries. RSC Adv. 2014, 4, 61912–61918. [Google Scholar] [CrossRef]
- Li, B.; Gu, M.; Nie, Z.; Wei, X.; Wang, C.; Sprenkle, V.; Wang, W. Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery. Nano Lett. 2014, 14, 158–165. [Google Scholar] [CrossRef]
- Mahanta, V.; Raja, M.; Khan, H.; Kothandaraman, R. Drastic improvement in capacity-retention and polarization of vanadium redox flow battery with hydrophilic CO3O4 nanostructure modified activated graphite felt electrodes. J. Electrochem. Soc. 2020, 167, 160504. [Google Scholar] [CrossRef]
- Yun, N.; Park, J.J.; Park, O.O.; Lee, K.B.; Yang, J.H. Electrocatalytic effect of NiO nanoparticles evenly distributed on a graphite felt electrode for vanadium redox flow batteries. Electrochim. Acta 2018, 278, 226–235. [Google Scholar] [CrossRef]
- Vázquez-Galván, J.; Flox, C.; Jervis, J.; Jorge, A.; Shearing, P.; Morante, J. High-power nitrided TiO2 carbon felt as the negative electrode for all-vanadium redox flow batteries. Carbon 2019, 148, 91–104. [Google Scholar] [CrossRef]
- Wei, L.; Zhao, T.; Zeng, L.; Zeng, Y.; Jiang, H. Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries. J. Power Sources 2017, 341, 318–326. [Google Scholar] [CrossRef]
- Fetyan, A.; Alhammadi, A.; Matouk, Z.; Andisetiawan, A.; Bahaa, A. Influence of eco-friendly agar-derivatives on the electrochemical performance of carbon felts electrodes of vanadium redox flow battery. J. Energy Storage 2024, 84, 110599. [Google Scholar] [CrossRef]
- Wei, G.; Jia, C.; Liu, J.; Yan, C. Carbon felt supported carbon nanotubes catalysts composite electrode for vanadium redox flow battery application. J. Power Sources 2012, 220, 185–192. [Google Scholar] [CrossRef]
- Fetyan, A.; Benetho, B.P.; Alkindi, T.; Andisetiawan, A.; Bamgbopa, M.O.; Alhammadi, A.; El-Nagar, G.A. Performance enhancement of vanadium redox flow battery with novel streamlined design: Simulation and experimental validation. J. Energy Storage 2024, 99, 113397. [Google Scholar] [CrossRef]
- Xue, J.; Zhao, Y.; Cheng, H.; Hu, C.; Hu, Y.; Meng, Y.; Shao, H.; Zhang, Z.; Qu, L. An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor. Phys. Chem. Chem. Phys. 2013, 15, 8042–8045. [Google Scholar] [CrossRef]
- Jain, A.; Balasubramanian, R.; Srinivasan, M.P. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chem. Eng. J. 2016, 283, 789–805. [Google Scholar] [CrossRef]
- Zheng, B.; Li, N.; Yang, J.; Xi, J. Waste cotton cloth derived carbon microtube textile: A robust and scalable interlayer for lithium-sulfur batteries. Chem. Commun. 2019, 55, 2289–2292. [Google Scholar] [CrossRef]
- Thielke, M.W.; Tian, G.; Sobrido, A.J. Sustainable electrodes for the next generation of redox flow batteries. J. Phys. Mater. 2022, 5, 024004. [Google Scholar] [CrossRef]
- Ulaganathan, M.; Jain, A.; Aravindan, V.; Jayaraman, S.; Ling, W.C.; Lim, T.M.; Srinivasan, M.P.; Yan, Q.; Madhavi, S. Bio-mass derived mesoporous carbon as superior electrode in all vanadium redox flow battery with multicouple reactions. J. Power Sources 2015, 274, 846–850. [Google Scholar] [CrossRef]
- Park, M.; Ryu, J.; Kim, Y.; Cho, J. Corn protein-derived nitrogen-doped carbon materials with oxygen-rich functional groups: A highly efficient electrocatalyst for all-vanadium redox flow batteries. Energy Environ. Sci. 2014, 7, 3727–3735. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Zhao, T.S.; Bai, B.F.; Zeng, L.; Wei, L. A highly active biomass-derived electrode for all vanadium redox flow batteries. Electrochim. Acta 2017, 248, 197–205. [Google Scholar] [CrossRef]
- Jiao, M.; Liu, T.; Chen, C.; Yue, M.; Pastel, G.; Yao, Y.; Xie, H.; Gan, W.; Gong, A.; Li, X.; et al. Holey three-dimensional wood-based electrode for vanadium flow batteries. Energy Storage Mater. 2020, 27, 327–332. [Google Scholar] [CrossRef]
- Wang, R.; Li, Y. Twin-cocoon-derived self-standing nitrogen-oxygen-rich monolithic carbon material as the cost-effective electrode for redox flow batteries. J. Power Sources 2019, 421, 139–146. [Google Scholar] [CrossRef]
- Lee, M.E.; Jang, D.; Lee, S.; Yoo, J.; Choi, J.; Jin, H.-J.; Lee, S.; Cho, S.Y. Silk Protein-Derived carbon fabric as an electrode with high Electro-Catalytic activity for All-Vanadium redox flow batteries. Appl. Surf. Sci. 2021, 567, 150810. [Google Scholar] [CrossRef]
- Lim, H.; Shin, M.; Noh, C.; Koo, E.; Kwon, Y.; Chung, K.Y. Performance evaluation of aqueous all iron redox flow batteries using heat treated graphite felt electrode. Korean J. Chem. Eng. 2022, 39, 3146–3154. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Z.; Kohandehghan, A.; Li, Z.; Cui, K.; Tan, X.; Stephenson, T.J.; King’ondu, C.K.; Holt, C.M.B.; Olsen, B.C.; et al. Interconnected Carbon Nanosheets Derived from Hemp for Ultrafast Supercapacitors with High Energy. ACS Nano 2013, 7, 5131–5141. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, D.; Yan, T.; Wen, X.; Zhang, J.; Shi, L.; Zhong, Q. Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization. J. Mater. Chem. A 2013, 1, 11778–11789. [Google Scholar] [CrossRef]
- Maharjan, M.; Bhattarai, A.; Ulaganathan, M.; Wai, N.; Oo, M.O.; Wang, J.-Y.; Lim, T.M. High surface area bio-waste based carbon as a superior electrode for vanadium redox flow battery. J. Power Sources 2017, 362, 50–56. [Google Scholar] [CrossRef]
- Zhang, H.; Diao, C.; Liu, S.; Jiang, S.; Jing, X.; Shi, F. XRD and Raman study on crystal structures and dielectric properties of Ba[Mg(1−x)/3ZrxNb2(1−x)/3]O3 solid solutions. Ceram. Int. 2014, 40, 2427–2434. [Google Scholar] [CrossRef]
- Fetyan, A.; Derr, I.; Kayarkatte, M.K.; Langner, J.; Bernsmeier, D.; Kraehnert, R.; Roth, C. Electrospun Carbon Nanofibers as Alternative Electrode Materials for Vanadium Redox Flow Batteries. ChemElectroChem 2015, 2, 2055–2060. [Google Scholar] [CrossRef]
- Selvan, R.K.; Zhu, P.; Yan, C.; Zhu, J.; Dirican, M.; Shanmugavani, A.; Lee, Y.S.; Zhang, X. Biomass-derived porous carbon modified glass fiber separator as polysulfide reservoir for Li-S batteries. J. Colloid Interface Sci. 2018, 513, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Nda-Umar, U.I.; Ramli, I.; Muhamad, E.N.; Taufiq-Yap, Y.H.; Azri, N. Synthesis and characterization of sulfonated carbon catalysts derived from biomass waste and its evaluation in glycerol acetylation. Biomass Convers. Biorefin. 2022, 12, 2045–2060. [Google Scholar] [CrossRef]
- Malins, K.; Brinks, J.; Kampars, V.; Malina, I. Esterification of rapeseed oil fatty acids using a carbon-based heterogeneous acid catalyst derived from cellulose. Appl. Catal. A Gen. 2016, 519, 99–106. [Google Scholar] [CrossRef]
- Li, R.; Wang, X.; Yang, J. Preparation and characterization of a flexible lithium ion electrode based on carbonized cotton fabric. J. Ind. Text. 2022, 52, 15280837221121936. [Google Scholar] [CrossRef]
- Orlando, A.; Franceschini, F.; Muscas, C.; Pidkova, S.; Bartoli, M.; Rovere, M.; Tagliaferro, A. A Comprehensive Review on Raman Spectroscopy Applications. Chemosensors 2021, 9, 262. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, J.; Yano, T.; Ooie, T.; Yoneda, M.; Sakakibara, J.J.J.o.A.P. Observation of sp3 bonding in tetrahedral amorphous carbon using visible Raman spectroscopy. J. Appl. Phys. 2000, 88, 2305–2308. [Google Scholar] [CrossRef]
- Elcey, C.; Manoj, B.J.A.J.o.C. Graphitization of coal by bio-solubilization: Structure probe by Raman spectroscopy. Asian J. Chem. 2016, 28, 1557. [Google Scholar] [CrossRef]
- Kong, X.; Zhu, Y.; Lei, H.; Wang, C.; Zhao, Y.; Huo, E.; Lin, X.; Zhang, Q.; Qian, M.; Mateo, W.; et al. Synthesis of graphene-like carbon from biomass pyrolysis and its applications. Chem. Eng. J. 2020, 399, 125808. [Google Scholar] [CrossRef]
- Fu, P.; Zhou, L.; Sun, L.; Huang, B.; Yuan, Y. Nitrogen-doped porous activated carbon derived from cocoon silk as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. RSC Adv. 2017, 7, 13383–13389. [Google Scholar] [CrossRef]
- Park, M.; Jung, Y.-j.; Kim, J.; Lee, H.i.; Cho, J. Synergistic effect of carbon nanofiber/nanotube composite catalyst on carbon felt electrode for high-performance all-vanadium redox flow battery. Nano Lett. 2013, 13, 4833–4839. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Chen, J.-Y.; Kabtamu, D.M.; Lin, G.-Y.; Hsu, N.-Y.; Chou, Y.-S.; Wei, H.-J.; Wang, C.-H. High efficiency of CO2-activated graphite felt as electrode for vanadium redox flow battery application. J. Power Sources 2017, 364, 1–8. [Google Scholar] [CrossRef]
- Kabtamu, D.M.; Chen, J.-Y.; Chang, Y.-C.; Wang, C.-H. Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries. J. Power Sources 2017, 341, 270–279. [Google Scholar] [CrossRef]
- González, Z.; Flox, C.; Blanco, C.; Granda, M.; Morante, J.R.; Menéndez, R.; Santamaría, R. Outstanding electrochemical performance of a graphene-modified graphite felt for vanadium redox flow battery application. J. Power Sources 2017, 338, 155–162. [Google Scholar] [CrossRef]
- Li, J.; Murphy, E.; Winnick, J.; Kohl, P.A. Studies on the cycle life of commercial lithium ion batteries during rapid charge–discharge cycling. J. Power Sources 2001, 102, 294–301. [Google Scholar] [CrossRef]
- Leuaa, P.; Priyadarshani, D.; Choudhury, D.; Maurya, R.; Neergat, M. Resolving charge-transfer and mass-transfer processes of VO2+/VO2+ redox species across the electrode/electrolyte interface using electrochemical impedance spectroscopy for vanadium redox flow battery. RSC Adv. 2020, 10, 30887–30895. [Google Scholar] [CrossRef] [PubMed]
- Ariyoshi, K.; Siroma, Z.; Mineshige, A.; Takeno, M.; Fukutsuka, T.; Abe, T.; Uchida, S. Electrochemical Impedance Spectroscopy Part 1: Fundamentals. Electrochemistry 2022, 90, 102007. [Google Scholar] [CrossRef]
- He, Z.; Cheng, G.; Jiang, Y.; Li, Y.; Zhu, J.; Meng, W.; Zhou, H.; Dai, L.; Wang, L. Novel 2D porous carbon nanosheet derived from biomass: Ultrahigh porosity and excellent performances toward V2+/V3+ redox reaction for vanadium redox flow battery. Int. J. Hydrogen Energy 2020, 45, 3959–3970. [Google Scholar] [CrossRef]
- Abbas, A.; Abbas, S.; Bhattarai, A.; Latiff, N.M.; Wai, N.; Phan, A.N.; Lim, T.M. Effect of electrode porosity on the charge transfer in vanadium redox flow battery. J. Power Sources 2021, 488, 229411. [Google Scholar] [CrossRef]
- Zhang, T.; Zhu, Y.; Lv, Y.; Yu, Q.; Yao, S.; Zhu, W.; He, Z. N-doped biomass carbon materials as superior catalyst to improve electrochemical performance of vanadium redox flow battery. Ionics 2021, 27, 4771–4781. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Q.; Jiang, Y.; Lv, Y.; He, Z.; Dai, L.; Wang, L. Low-cost marine biomass carbon as a high-performance electrocatalyst for vanadium redox flow battery. Int. J. Green Energy 2022, 19, 1357–1366. [Google Scholar] [CrossRef]
Electrode Precursor | Charge/Discharge Potential | Current Density (mA cm−2) | Energy Efficiency (%) | Voltage Efficiency (%) | Discharge Capacity (mAh) | Ref |
---|---|---|---|---|---|---|
Fish scale | 0.7−1.7 V | 75 | 78% | 81% | 1st cycle, 106 mAh; 50th cycles, 70 mAh | [57] |
black tea bags | 1.1−1.6 V | 10 | 90% | 93% | 1st cycle, 16.2 mAh; 50th cycles, 2.84 mAh | [58] |
Persimmon | --- | 50 | 79% | 84% | 1st cycle, 85 mAh; 50th cycles, 74 mAh | [59] |
Cuttlefish bone | 0.7−1.65 V | 100 | 79% | 81% | 1st cycle, 106.87 mAh; 50th cycles, 80.877 mAh | [60] |
Wasted clothes | 0.8−1.7 V | 100 | 67% | 69% | 1st cycle, 943 mAh; 50th cycles, 790 mAh | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allam, M.A.; Abdelkareem, M.A.; Alawadhi, H.; Olabi, A.G.; Fetyan, A. Upcycling Waste Cotton Cloth into a Carbon Textile: A Durable and Scalable Layer for Vanadium Redox Flow Battery Applications. Sustainability 2024, 16, 11289. https://doi.org/10.3390/su162411289
Allam MA, Abdelkareem MA, Alawadhi H, Olabi AG, Fetyan A. Upcycling Waste Cotton Cloth into a Carbon Textile: A Durable and Scalable Layer for Vanadium Redox Flow Battery Applications. Sustainability. 2024; 16(24):11289. https://doi.org/10.3390/su162411289
Chicago/Turabian StyleAllam, Mohamed Adel, Mohammad Ali Abdelkareem, Hussain Alawadhi, Abdul Ghani Olabi, and Abdulmonem Fetyan. 2024. "Upcycling Waste Cotton Cloth into a Carbon Textile: A Durable and Scalable Layer for Vanadium Redox Flow Battery Applications" Sustainability 16, no. 24: 11289. https://doi.org/10.3390/su162411289
APA StyleAllam, M. A., Abdelkareem, M. A., Alawadhi, H., Olabi, A. G., & Fetyan, A. (2024). Upcycling Waste Cotton Cloth into a Carbon Textile: A Durable and Scalable Layer for Vanadium Redox Flow Battery Applications. Sustainability, 16(24), 11289. https://doi.org/10.3390/su162411289