Effects of Biochar Extract and Mineral Potassium Fulvic Acid on Salt Tolerance of Shanghai Bok Choy
Abstract
:1. Introduction
2. Materials and Methods
2.1. BE and MPFA
2.1.1. BE Preparation
2.1.2. MPFA Preparation
2.2. Experimental Design
2.3. Indicator Observation and Measurement
2.4. Data Analysis
3. Results
3.1. The Changes in MDA, H2O2, Chlorophyll Content, and Antioxidant Enzyme Activity
3.2. The Changes in the Leaves, Dry Weight, and Fresh Weight
3.3. Correlation Analysis
4. Discussion
4.1. Effects of BE and MPFA on Antioxidant Responses
4.2. Effects of Different Amendments on Chlorophyll Content
4.3. Effects of Different Amendments on Growth Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, P.; Tan, M. Challenges for sustainable urbanization: A case study of water shortage and water environment changes in Shandong, China. Procedia Environ. Sci. 2012, 13, 919–927. [Google Scholar] [CrossRef]
- He, F.; Tao, X.; Xiang, D.; Wang, A. Research on Agricultural Water-Saving Irrigation Engineering in Shandong Province. In Geo-China 2016; American Society of Civil Engineers: Reston, VA, USA, 2016; pp. 71–75. [Google Scholar] [CrossRef]
- Yang, J.; Pang, X.; Jin, T.; Jia, J.; Han, W.; Zhang, G. A Study on the Characteristics of the Yellow River Paleochannels in Shanghe area of Shandong Province. In Proceedings of the Near Surface Geophysics Asia Pacific Conference, Beijing, China, 17–19 July 2013; pp. 330–333. [Google Scholar]
- Liu, G.; Miller, C.F.; Wells, B.; Li, Y.; Dittmar, P.; Wang, Q.J.E. 2020–2021 Vegetable Production Handbook: Chapter 5. Ethnic Vegetable Production: CV301, rev. 6/2020. Ask IFAS. 2020. Available online: https://edis.ifas.ufl.edu/publication/CV301 (accessed on 22 August 2024).
- Heaney, R.; Weaver, C.; Hinders, S.; Martin, B.; Packard, P. Absorbability of calcium from brassica vegetables: Broccoli, bok choy, and kale. J. Food Sci. 1993, 58, 1378–1380. [Google Scholar] [CrossRef]
- Azzolina, D.; Vedovelli, L.; Gallipoli, S.; French, M.; Ghidina, M.; Lamprecht, M.; Tsiountsioura, M.; Lorenzoni, G.; Gregori, D. Nutrients and Caloric Intake Associated with Fruits, Vegetables, and Legumes in the Elderly European Population. Nutrients 2020, 12, 2746. [Google Scholar] [CrossRef] [PubMed]
- Krishnasree, R.; Raj, S.K.; Chacko, S.R. Foliar nutrition in vegetables: A review. J. Pharmacogn. Phytochem. 2021, 10, 2393–2398. [Google Scholar] [CrossRef]
- Gallegos-Cedillo, V.M.; Nájera, C.; Gruda, N.S.; Signore, A.; Galleges, J.; Rodríguez, R.; Ochoa, J.; Egea-Gilabert, C.; Fernández, J.A. An in-depth analysis of sustainable practices in vegetable seedlings nurseries: A review. Sci. Hortic. 2024, 334, 113342. [Google Scholar] [CrossRef]
- Zhang, F.; Jin, G.; Liu, G. Evaluation of virtual water trade in the Yellow River Delta, China. Sci. Total Environ. 2021, 784, 147285. [Google Scholar] [CrossRef]
- Zhi, C.S.; Cao, W.E.; Wang, Z.; Li, Z.Y.; Ren, Y. Genesis of As in the groundwater with extremely high salinity in the Yellow River Delta, China. Appl Geochem. 2022, 139, 105229. [Google Scholar] [CrossRef]
- Ibrahimi, M.K.; Miyazaki, T.; Nishimura, T.; Imoto, H. Contribution of shallow groundwater rapid fluctuation to soil salinization under arid and semiarid climate. Arab. J. Geosci. 2014, 7, 3901–3911. [Google Scholar] [CrossRef]
- Zhang, K.; Wei, H.Y.; Chai, Q.; Li, L.L.; Wang, Y.; Sun, J. Biological soil conditioner with reduced rates of chemical fertilization improves soil functionality and enhances rice production in vegetable-rice rotation. Appl. Soil Ecol. 2024, 195, 105242. [Google Scholar] [CrossRef]
- Sarsekeyeva, F.K.; Sadvakasova, A.K.; Sandybayeva, S.K.; Kossalbayev, B.D.; Huang, Z.Y.; Zayadan, B.K.; Akmukhanova, N.R.; Leong, Y.K.; Chang, J.S.; Allakhverdiev, S.I. Microalgae- and cyanobacteria-derived phytostimulants for mitigation of salt stress and improved agriculture. Algal Res. Biomass Biofuels Bioprod. 2024, 82, 103686. [Google Scholar] [CrossRef]
- Han, P.T.; Viet, V.H.; Trang, D.T.T.; Tung, N.C.T.; Dong, N.M.; Nishimura, T.; Van Toan, P.; Trang, N.T.D. Effects of salt stress on plant growth and biomass allocation in some wetland grass species in the Mekong Delta. Vietnam. J. Sci. Technol. 2020, 58, 50–58. [Google Scholar]
- Chaudhry, U.K.; Gökçe, Z.; Gökçe, A.F. Salt stress and plant molecular responses. In Plant Defense Mechanisms; IntechOpen: London, UK, 2022. [Google Scholar]
- Vennam, R.R.; Bheemanahalli, R.; Reddy, K.R.; Dhillon, J.; Zhang, X.; Adeli, A. Early-season maize responses to salt stress: Morpho-physiological, leaf reflectance, and mineral composition. J. Agric. Food Res. 2024, 15, 100994. [Google Scholar] [CrossRef]
- Habibi, R.; Delshad, M.; Rahimikhoob, H. Establishment of lettuce critical nitrogen dilution curves based on total dry matter, total leaf area and leaf area duration. Arch. Agron. Soil Sci. 2024, 70, 1–14. [Google Scholar] [CrossRef]
- Shalaby, O.A. Moringa leaf extract increases tolerance to salt stress, promotes growth, increases yield, and reduces nitrate concentration in lettuce plants. Sci. Hortic. 2024, 325, 112654. [Google Scholar] [CrossRef]
- Moncada, A.; Vetrano, F.; Miceli, A. Alleviation of Salt Stress by Plant Growth-Promoting Bacteria in Hydroponic Leaf Lettuce. Agronomy 2020, 10, 1523. [Google Scholar] [CrossRef]
- Ahmad, I.; Zhu, G.L.; Zhou, G.S.; Younas, M.U.; Suliman, M.S.E.; Liu, J.; Zhu, Y.M.; Salih, E.G.I. Integrated approaches for increasing plant yield under salt stress. Front Plant Sci. 2023, 14, 1215343. [Google Scholar] [CrossRef]
- Cristofano, F.; El-Nakhel, C.; Colla, G.; Cardarelli, M.; Pii, Y.; Lucini, L.; Rouphael, Y. Modulation of Morpho-Physiological and Metabolic Profiles of Lettuce Subjected to Salt Stress and Treated with Two Vegetal-Derived Biostimulants. Plants 2023, 12, 709. [Google Scholar] [CrossRef] [PubMed]
- Makhtoum, S.; Sabouri, H.; Gholizadeh, A.; Ahangar, L.; Katouzi, M.; Mastinu, A. Genomics and Physiology of Chlorophyll Fluorescence Parameters in Hordeum vulgare L. under Drought and Salt Stresses. Plants 2023, 12, 3515. [Google Scholar] [CrossRef]
- Li, X.R.; Cen, K.H.; Wang, L.C.; Jia, D.X.; Zhu, X.F.; Chen, D.Y. Co-pyrolysis of cellulose and lignin: Effects of pyrolysis temperature, residence time, and lignin percentage on the properties of biochar using response surface methodology. Ind. Crops Prod. 2024, 219, 119071. [Google Scholar] [CrossRef]
- Cai, M.; Dai, L.; Huang, Y.; Xie, Y.; Zhang, Y.; Wang, Y. Waste baijiu distillers’ grains-derived biochar for efficient removal of organophosphate esters from water through adsorption. Ind. Crops Prod. 2024, 221, 119402. [Google Scholar] [CrossRef]
- Feng, Q.; Wang, B.; Chen, M.; Zhang, J.; Zhang, X.; Wu, P. Calcium alginate− biochar composite promotes nutrient retention, enzyme activity, and plant growth in lime soil. Environ. Technol. Innov. 2024, 35, 103670. [Google Scholar] [CrossRef]
- Liu, Y.L.; Jiang, W.T.; Zhao, W.L.; Xu, L.X.; Wang, M.Q.; Jian, J.J.; Chen, X.W.; Wang, E.H.; Yan, J.X. Effects of biochar application on soil properties and the growth of L. under salt stress. Sci. Hortic. 2024, 338, 113704. [Google Scholar] [CrossRef]
- He, Y.D.; Yang, Y.; Lin, Q.H.; Jin, T.; Zang, X.P.; Yun, T.Y.; Ding, Z.L.; Rekaby, S.A.; Zhao, Z.X.; Eissa, M.A. Physio-biochemical evaluation of Si-rich biochar amendment to improve the salt stress tolerance of Grand Nain and Williams banana genotypes. Ind. Crops Prod. 2023, 204, 117333. [Google Scholar] [CrossRef]
- Farhangi-Abriz, S.; Torabian, S. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicol. Environ. Saf. 2017, 137, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Shahzadi, A.; Noreen, Z.; Alamery, S.; Zafar, F.; Haroon, A.; Rashid, M.; Aslam, M.; Younas, A.; Attia, K.A.; Mohammed, A.A. Effects of biochar on growth and yield of Wheat (Triticum aestivum L.) under salt stress. Sci. Rep. 2024, 14, 20024. [Google Scholar] [CrossRef]
- Bozaba, T.O.; Kuru, İ.S. The effect of the combined application of elicitors to Salvia virgata Jacq. under salinity stress on physiological and antioxidant defense. BMC Plant Biol. 2024, 24, 788. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Tomar, N.S.; Tittal, M.; Argal, S.; Agarwal, R. Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol. Mol. Biol. Plants 2017, 23, 731–744. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, M.; Orellana-Palacios, J.C.; Aghababaei, F.; Gonzalez-Serrano, D.J.; Moreno, A.; Lorenzo, J.M. Plant by-product antioxidants: Control of protein-lipid oxidation in meat and meat products. LWT 2022, 169, 114003. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef] [PubMed]
- Hamoud, Y.A.; Saleem, T.; Zia-ur-Rehman, M.; Shaghaleh, H.; Usman, M.; Rizwan, M.; Alharby, H.F.; Alamri, A.M.; Al-Sarraj, F.; Alabdallah, N.M. Synergistic effect of biochar with gypsum, lime, and farm manure on the growth and tolerance in rice plants under different salt-affected soils. Chemosphere 2024, 360, 142357. [Google Scholar] [CrossRef]
- Huang, H.; Cai, W.-L.; Zheng, Q.; Chen, P.-N.; Huang, C.-R.; Zeng, Q.-J.; Kumar, H.; Zhu, H.-H.; Garg, A.; Zheenbek, K.; et al. Gas permeability in soil amended with biochar at different compaction states. IOP Conf. Ser. Earth Environ. Sci. 2020, 463, 012073. [Google Scholar] [CrossRef]
- Rashid, I.; Murtaza, G.; Dar, A.A.; Wang, Z.Y. The influence of humic and fulvic acids on Cd bioavailability to wheat cultivars grown on sewage irrigated Cd-contaminated soils. Ecotoxicol. Environ. Saf. 2020, 205, 111347. [Google Scholar] [CrossRef]
- Wang, Q.; Wen, J.Y.; Zheng, J.X.; Zhao, J.Q.; Qiu, C.S.; Xiao, D.; Mu, L.; Liu, X.W. Arsenate phytotoxicity regulation by humic acid and related metabolic mechanisms. Ecotoxicol. Environ. Saf. 2021, 207, 111379. [Google Scholar] [CrossRef]
- Zhang, M.M.; Li, X.Y.; Wang, X.L.; Feng, J.P.; Zhu, S.P. Potassium fulvic acid alleviates salt stress of citrus by regulating rhizosphere microbial community, osmotic substances and enzyme activities. Front Plant Sci. 2023, 14, 1161469. [Google Scholar] [CrossRef]
- Yao, Y.Y.; Wang, C.; Wang, X.Q.; Yang, Y.C.; Wan, Y.S.; Chen, J.Q.; Ding, F.J.; Tang, Y.F.; Wang, Z.H.; Liu, L.; et al. Activation of fulvic acid-like in paper mill effluents using HO/TiO catalytic oxidation: Characterization and salt stress bioassays. J. Hazard. Mater. 2019, 378, 120702. [Google Scholar] [CrossRef] [PubMed]
- Zhe, Z.; Hongjiao, Z.; Tongtong, Y.; Kexin, W.; Jingjing, X.; Hongrui, Z.; Siyue, Q.; Hong, A.; Bo, Q.; Huihui, Z. The homeostasis of ions and reactive oxygen species in root and shoot play crucial roles in the tolerance of alfalfa to salt alkali stress. Plant Physiol. Biochem. 2024, 216, 109175. [Google Scholar] [CrossRef]
- Bu, R.; Zhang, H.; Zhang, S.; Wang, L.; Peng, C.; Zhao, X.; Zhang, X.; Xie, J. Silicon alleviates autotoxicity by regulating membrane lipid peroxidation and improving photosynthetic efficiency in cucumber seedlings (Cucumis sativus L.). Sci. Hortic. 2024, 325, 112692. [Google Scholar] [CrossRef]
- Grotto, D.; Maria, L.S.; Valentini, J.; Paniz, C.; Schmitt, G.; Garcia, S.C.; Pomblum, V.J.; Rocha, J.B.T.; Farina, M. Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Química Nova 2009, 32, 169–174. [Google Scholar] [CrossRef]
- Gunes, H.; Demir, S.; Erdinc, C.; Furan, M.A. Effects of Arbuscular Mycorrhizal Fungi (AMF) and Biochar On the Growth of Pepper (Capsicum annuum L.) Under Salt Stress (Jun, 10.1007/s10343-023-00897-2, 2023). Gesunde Pflanz. 2023, 75, 2683. [Google Scholar] [CrossRef]
- Irin, I.J.; Hasanuzzaman, M. Role of organic amendments in improving the morphophysiology and soil quality of Setaria italica under salinity. Heliyon 2024, 10, e38159. [Google Scholar] [CrossRef]
- El Nahhas, N.; AlKahtani, M.D.; Abdelaal, K.A.; Al Husnain, L.; AlGwaiz, H.I.; Hafez, Y.M.; Attia, K.A.; El-Esawi, M.A.; Ibrahim, M.F.; Elkelish, A. Biochar and jasmonic acid application attenuates antioxidative systems and improves growth, physiology, nutrient uptake and productivity of faba bean (Vicia faba L.) irrigated with saline water. Plant Physiol. Biochem. 2021, 166, 807–817. [Google Scholar] [CrossRef] [PubMed]
- McLean, R.M. Salt substitutes—An important tool to increase potassium and reduce sodium intakes? Nutrients 2023, 15, 2647. [Google Scholar] [CrossRef] [PubMed]
- Abdelrasheed, K.G.; Mazrou, Y.; Omara, A.E.; Osman, H.S.; Nehela, Y.; Hafez, E.M.; Rady, A.M.S.; El-Moneim, D.A.; Alowaiesh, B.F.; Gowayed, S.M. Soil Amendment Using Biochar and Application of K-Humate Enhance the Growth, Productivity, and Nutritional Value of Onion (Allium cepa L.) under Deficit Irrigation Conditions. Plants 2021, 10, 2598. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Wang, J.Y.; Riaz, M.; Babar, S.; Li, Y.X.; Wang, X.L.; Xia, X.Y.; Liu, B.; Jiang, C.C. Co-application of biochar and potassium fertilizer improves soil potassium availability and microbial utilization of organic carbon: A four-year study. J. Clean. Prod. 2024, 469, 143211. [Google Scholar] [CrossRef]
- Wang, S.; Gao, P.; Zhang, Q.; Shi, Y.; Guo, X.; Lv, Q.; Wu, W.; Zhang, X.; Li, M.; Meng, Q. Application of biochar and organic fertilizer to saline-alkali soil in the Yellow River Delta: Effects on soil water, salinity, nutrients, and maize yield. Soil Use Manag. 2022, 38, 1679–1692. [Google Scholar] [CrossRef]
- Chakraborty, U.; Pradhan, B. Oxidative stress in five wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense system, water stress responsive metabolites and H2O2 accumulation. Braz. J. Plant Physiol. 2012, 24, 117–130. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Z.; Zhao, Y.; Leng, P.; Hu, Z. Transcriptomic profiling reveals the contribution of Nitric Oxide to maintaining photosynthesis and antioxidant ability in Hylotelephium erythrostictum leaves under salt stress. Plant Stress 2024, 12, 100471. [Google Scholar] [CrossRef]
- Wei, M.Y.; Liu, J.Y.; Li, H.; Hu, W.J.; Shen, Z.J.; Qiao, F.; Zhu, C.Q.; Chen, J.; Liu, X.; Zheng, H.L. Proteomic analysis reveals the protective role of exogenous hydrogen sulfide against salt stress in rice seedlings. Nitric Oxide-Biol. Chem. 2021, 111, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Termaat, A. Whole-Plant Responses to Salinity. Funct. Plant Biol. 1986, 13, 143–160. [Google Scholar] [CrossRef]
- Chi, W.; Nan, Q.; Liu, Y.; Dong, D.; Qin, Y.; Li, S.; Wu, W. Stress resistance enhancing with biochar application and promotion on crop growth. Biochar 2024, 6, 43. [Google Scholar] [CrossRef]
- El-Shaboury, H.A.; Baddour, A.G.; Mark, C. Effects of Various Organic Fertilizer Sources and External Applications of Potassium Fulvate and Potassium Citrate on the Yield and Quality of Two Barley Varieties Grown under Salt Affected Soil. J. Soil Sci. Agric. Eng. 2024, 15, 117–123. [Google Scholar] [CrossRef]
Macronutrients | Micronutrients | Formula of FeEDTA Solution | |||
---|---|---|---|---|---|
Salts | Concentration /(g·L−1) | Salts | Concentration /(mg·L−1) | Category | Concentration in the FeEDTA solution /(g·L−1) |
Ca(NO3)2·4H2O | 1.18 | H3BO3 | 2.86 | FeSO4·7H2O | 5.56 |
KNO3 | 0.51 | MnCl2·4H2O | 1.81 | C10H14N2Na2O8·2H2O | 7.46 |
MgSO4·7H2O | 0.49 | ZnSO4·7H2O | 0.22 | ||
KH2PO4 | 0.14 | CuSO4·5H2O | 0.08 | ||
H2MoO4·H2O/Na2MoO4·2H2O | 0.02/0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, H.; Wu, W.; Liu, Y.; Wu, W.; Gao, P. Effects of Biochar Extract and Mineral Potassium Fulvic Acid on Salt Tolerance of Shanghai Bok Choy. Sustainability 2024, 16, 11298. https://doi.org/10.3390/su162411298
Chai H, Wu W, Liu Y, Wu W, Gao P. Effects of Biochar Extract and Mineral Potassium Fulvic Acid on Salt Tolerance of Shanghai Bok Choy. Sustainability. 2024; 16(24):11298. https://doi.org/10.3390/su162411298
Chicago/Turabian StyleChai, Hongxing, Wenhong Wu, Yujiao Liu, Wei Wu, and Peiling Gao. 2024. "Effects of Biochar Extract and Mineral Potassium Fulvic Acid on Salt Tolerance of Shanghai Bok Choy" Sustainability 16, no. 24: 11298. https://doi.org/10.3390/su162411298
APA StyleChai, H., Wu, W., Liu, Y., Wu, W., & Gao, P. (2024). Effects of Biochar Extract and Mineral Potassium Fulvic Acid on Salt Tolerance of Shanghai Bok Choy. Sustainability, 16(24), 11298. https://doi.org/10.3390/su162411298