Applying Spectral Unmixing to Determine Surface Water Parameters in a Mining Environment
Abstract
:1. Introduction
- -
- Representative, image-derived end members were extracted for diverse water types: mine waters are rather complex and are characterized by high variability; therefore, the spectral properties of fundamental image end members can provide valuable information on the water constituent types in the study area.
- -
- Image reflectance data for the derived end members as well as for the sampled waters were compared with the literature to discover whether their spectral and physical-chemical properties correspond and whether the spectral properties can be explained on a physical basis.
- -
- Linear Spectral Unmixing (LSU) was employed and semi-quantitative maps for the selected parameters were created and validated using the ground truth data (hydrochemical data).
- -
- A test was then performed to discover whether the same approach can be employed successfully using the HyMap image data resampled to World View 2 spectra resolution.
1.1. Test Site
1.2. Hyperspectral Image Data
1.3. Ground Truth Data
1.4. Spectral Mapping Methods
2. Results and Discussion
2.1. Linking the Chemical and Optical Properties of the Sampled Waters
2.2. Reflectance Properties of the Derived Image End Members
Variable | End Member n. (Add Figure 5a) | R2 :Hymap/WV2 | Sig.: Hymap/WV2 |
---|---|---|---|
Fe dissolved | EM 7 | 0.74/0.60 | 0.006/0.009 |
DOC | EM 11 | 0.42/<0.40 | 0.116/- |
Undissolved particles | EM 10 | 0.57/0.49 | 0.031/0.044 |
2.3. Spectral Resolution Issues: Hyperspectral (HyMap) vs. Multispectral (WorldView2)
2.4. Semi-Quantitative Maps
3. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Roessler, S.; Wolf, P.; Schneider, T.; Zimmermann, S.; Melzer, A. Water constituent retrieval and littoral bottom mapping using hyperspectral apex imagery and submersed artificial surfaces. EARSeL eProc. 2013, 1, 44–57. [Google Scholar]
- Stroembeck, N. Water quality and optical properties of Swedish lakes and coastal waters in relation to remote sensing. In Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology; Karlstads University: Karlstad, Sweden, 2001; Volume 633, p. 27. [Google Scholar]
- Ambarwulan, W.; Salama, M.S.; Mannaerts, C.M.; Verhoef, W. Estimating specific inherent optical properties of tropical coastal waters using bio-optical model inversion and in situ measurements: Case of the Berau estuary, East Kalimantan, Indonesia. Hydrobiologia 2011, 658, 197–211. [Google Scholar] [CrossRef]
- Koponen, S.; Pulliainen, J.; Kallio, K.; Vepsalainen, J.; Hallikainen, M. Use of MODIS data for monitoring turbidity in Finnish lakes. In Proceedings of the 2001 IEEE International Geoscience and Remote Sensing Symposium, Sydney, Australia, 9–13 July 2001; pp. 2184–2186.
- Koponen, S.; Pulliainen, J.; Servomaa, H.; Zhang, Y.; Hallikainen, M.; Kallio, K.; Vepsalainen, J.; Pyhalahti, T.; Hannonen, T. Analysis on the feasibility of multi-source remote sensing observations for chl-a monitoring in Finnish lakes. Sci. Total Environ. 2001, 268, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Koponen, S.; Attila, J.; Pulliainen, J.; Kallio, K.; Pyhalahti, T.; Lindfors, A.; Rasmus, K.; Hallikainen, M. A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland. Cont. Shelf Res. 2007, 27, 228–244. [Google Scholar] [CrossRef]
- Pulliainen, J.; Kallio, K.; Eloheimo, K.; Koponen, S.; Servomaa, H.; Hannonen, T.; Tauriainen, S.; Hallikainen, M. A semi-operative approach to lake water quality retrieval from remote sensing data. Sci. Total Environ. 2001, 268, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Thiemann, S.; Kaufmann, H. Lake water quality monitoring using hyperspectral airborne data—A semiempirical multisensor and multitemporal approach for the Mecklenburg Lake District, Germany. Remote Sens. Environ. 2002, 81, 228–237. [Google Scholar] [CrossRef]
- Doxaran, D.; Castaing, P.; Lavender, S.J. Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data. Int. J. Remote Sens. 2006, 27, 2303–2321. [Google Scholar] [CrossRef]
- Harrington, J.A.; Schiebe, F.R.; Nix, J.F. Remote sensing of Lake Chicot, Arkansas: Monitoring suspended sediments, turbidity, and Secchi depth with Landsat MSS Data. Remote Sens. Environ. 1992, 39, 1–27. [Google Scholar] [CrossRef]
- Santini, F.; Alberotanza, L.; Cavalli, R.M.; Pignatti, S. A two-step optimization procedure for assessing water constituent concentrations by hyperspectral remote sensing techniques: An application to the highly turbid Venice lagoon waters. Remote Sens. Environ. 2010, 114, 887–898. [Google Scholar] [CrossRef]
- Huang, C.; Chen, X.; Li, Y.; Yang, H.; Sun, D.; Li, J.; Le, C.; Zhou, L.; Zhang, M.; Xu, L. Specific inherent optical properties of highly turbid productive water for retrieval of water quality after optical classification. Environ. Earth Sci. 2014. [Google Scholar] [CrossRef]
- Matthews, M.W.; Bernard, S. Characterizing the absorption properties for remote sensing of three small optically-diverse South African reservoirs. Remote Sens. 2013, 5, 4370–4404. [Google Scholar] [CrossRef]
- Frauendorf, J. Entwicklung und Anwendung von Fernerkundungsmethoden zur Ableitung von Wasserqualitätsparametern Verschiedener Restseen des Braunkohlentagebaus in Mitteldeutschland. PhD Thesis, Martin Luther University Halle Wittenberg, Halle, Germany, 2002. [Google Scholar]
- Glaesser, C.; Groth, D.; Frauendorf, J. Monitoring of hydrochemical parameters of lignite mining lakes in Central Germany using airborne hyperspectral casi-scanner data. Int. J. Coal Geol. 2011, 86, 40–53. [Google Scholar] [CrossRef]
- Harma, P.; Vepsalainen, J.; Hannonen, T.; Pyhalahti, T.; Kamari, J.; Kallio, K.; Eloheimo, K.; Koponen, S. Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland. Sci. Total Environ. 2001, 268, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Kallio, K.; Kutser, T.; Hannonen, T.; Koponen, S.; Pulliainen, J.; Vepsalainen, J.; Pyhalahti, T. Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons. Sci. Total Environ. 2001, 268, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.P.; Carder, K.L.; Steward, R.G.; Peacock, T.G.; Davis, C.O.; Patch, J.S. An empirical algorithm for light absorption by ocean water based on color. J. Geophys. Res. 1998, 103, 27967–27978. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Brezonik, P.L.; Bauer, M.E. Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: The Mississippi River and its tributaries in Minnesota. Remote Sens. Environ. 2013, 130, 254–265. [Google Scholar] [CrossRef]
- Albert, A.; Mobley, C.D. An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters. Opt. Express 2003, 11, 2873–2890. [Google Scholar] [CrossRef] [PubMed]
- Doxaran, D.; Cherukuru, N.; Lavender, S.J. Apparent and inherent optical properties of turbid estuarine waters: Measurements, empirical quantification relationships, and modeling. Appl. Opt. 2006, 45, 2310–2324. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.P.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral remote sensing for shallow waters. I. A semianalytical model. Appl. Opt. 1998, 37, 6329–6338. [Google Scholar] [CrossRef] [PubMed]
- Gege, P. The water color simulator WASI: An integrating software tool for analysis and simulation of optical in situ spectra. Comput. Geosci. 2004, 30, 523–532. [Google Scholar] [CrossRef]
- DigitalGlobe. The Benefits of the 8 Spectral Bands of Worldview-2. Available online: http://worldview2.digitalglobe.com/docs/WorldView-2_8-Band_Applications_Whitepaper.pdf (accessed on 1 March 2009).
- Rojík, P. New stratigraphic subdivision of the tertiary in the Sokolov Basin in Northwestern Bohemia. J. Czech Geol. Soc. 2004, 49, 173–186. [Google Scholar]
- Kopackova, V.; Chevrel, S.; Bourguignon, A.; Rojik, P. Application of high altitude and ground-based spectroradiometry to mapping hazardous low-pH material derived from the Sokolov open-pit mine. J. Maps 2012, 8, 220–230. [Google Scholar] [CrossRef]
- Kopackova, V. Using multiple spectral feature analysis for quantitative pH mapping in a mining environment. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 28–42. [Google Scholar] [CrossRef]
- Lhotakova, Z.; Brodsky, L.; Kupkova, L.; Kopackova, V.; Potuckova, M.; Misurec, J.; Klement, A.; Kovarova, M.; Albrechtova, J. Detection of multiple stresses in Scots pine growing at post-mining sites using visible to near-infrared spectroscopy. Environ. Sci. Process Impacts 2013, 15, 2004–2015. [Google Scholar] [CrossRef] [PubMed]
- Guanter, L.; Richter, R.; Kaufmann, H. On the application of the MODTRAN4 atmospheric radiative transfer code to optical remote sensing. Int. J. Remote Sens. 2009, 30, 1407–1424. [Google Scholar] [CrossRef]
- Kopackova, V.; Misurec, J.; Lhotakova, Z.; Oulehle, F.; Albrechtova, J. Using multi-date high spectral resolution data to assess the physiological status of macroscopically undamaged foliage on a regional scale. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 169–186. [Google Scholar] [CrossRef]
- Boardman, J.W.; Kruse, F.A. Automated spectral analysis: A geological example using AVIRIS data, North Grapevine Mountains, Nevada. In Proceedings of the 1994 Thematic Conference on Geologic Remote Sensing—Exploration, Environment, and Engineering, San Antonio, TX, USA, 9–19 May 1994; pp. 407–418.
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef]
- Boardman, J.W. Analysis, understanding and visualization of hyperspectral data as convex sets in n-space. Proc. SPIE 1995, 2480, 14–22. [Google Scholar]
- Adams, J.B.; Smith, M.O.; Gillespie, A.R. Imaging spectroscopy: Interpretation based on spectral mixture analysis. In Remote Geochemical Analysis: Elemental and Mineralogical Composition; Pieters, C.M., Englert, P., Eds.; Cambridge University Press: New York, NY, USA, 1993; pp. 145–166. [Google Scholar]
- Rainey, M.; Tyler, A.N.; Gilvear, D.J.; Bryant, R.; McDonald, P. Mapping estuarine intertidal sediment size fractions through airborne remote sensing. Remote Sens. Environ. 2003, 86, 480–490. [Google Scholar] [CrossRef]
- Settle, J.J.; Drake, N.A. Linear mixing and the estimation of ground cover proportions. Int. J. Remote Sens. 1993, 14, 1159–1177. [Google Scholar] [CrossRef]
- Tyler, A.N.; Svab, E.; Preston, T.; Presing, M.; Kovacs, W.A. Remote sensing of the water quality of shallow lakes: A mixture modelling approach to quantifying phytoplankton in water characterized by high-suspended sediment. Int. J. Remote Sens. 2006, 27, 1521–1537. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, S.; Zhou, Y.; Yan, F.; Zhou, W.; Zhu, L. Using unmixing method to retrieve the concentration of Chl-a in Lake Tai. In Proceedings of the 2006 IEEE International Geoscience and Remote Sensing Symposium, Denver, CO, USA, 31 July–4 August 2006; pp. 3427–3429.
- Stein, D.; Stewart, S.; Gilbert, G.; Schoonmaker, J. Band selection for viewing underwater objects using hyperspectral sensors. Proc. SPIE 1999. [Google Scholar] [CrossRef]
- Thiemann, S.; Berger, M.; Kaufmann, H. Feasibility study for lake water quality assessment using MIDORI AVNIR data. In Proceedings of the 1998 International Geoscience and Remote Sensing Symposium, Seattle, WA, USA, 6–10 July 1998; pp. 936–938.
- Alcantara, E.; Barbosa, C.; Stech, J.; Novo, E.; Shimabukuro, Y. Improving the spectral unmixing algorithm to map water turbidity distributions. Environ. Model. Softw. 2009, 24, 1051–1061. [Google Scholar] [CrossRef]
- Asner, P.; Lobell, B. A biogeophysical approach for automated SWIR unmixing of soils and vegetation. Remote Sens. Environ. 2000, 74, 99–112. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Zimba, P.V.; Everitt, J.H. Remote sensing techniques to assess water quality. Photogramm. Eng. Remote Sens. 2003, 69, 695–704. [Google Scholar] [CrossRef]
- Dekker, A.G.; Peters, S.W.M. The use of the Thematic Mapper for the analysis of eutrophic Lakes: A case-study in The Netherlands. Int. J. Remote Sens. 1993, 14, 799–821. [Google Scholar] [CrossRef]
- Koponen, S.; Pulliainen, J.; Kallio, K.; Hallikainen, M. Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sens. Environ. 2002, 79, 51–59. [Google Scholar] [CrossRef]
- Matsuoka, A.; Bricaud, A.; Benner, R.; Para, J.; Sempere, R.; Prieur, L.; Belanger, S.; Babin, M. Tracing the transport of colored dissolved organic matter in water masses of the Southern Beaufort Sea: Relationship with hydrographic characteristics. Biogeosciences 2012, 9, 925–940. [Google Scholar] [CrossRef]
- Fichot, C.G.; Benner, R. A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters. Geophys. Res. Lett. 2011, 38, L03610. [Google Scholar]
- Mannino, A.; Russ, M.E.; Hooker, S.B. Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the U.S. Middle Atlantic Bight. J. Geophys. Res. 2008, 113, C07051. [Google Scholar]
- Tehrani, N.C.; D’Sa, E.J.; Osburn, C.L.; Bianchi, T.S.; Schaeffer, B.A. Chromophoric dissolved organic matter and dissolved organic carbon from sea-viewing wide field-of-view sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS) and MERIS Sensors: Case study for the Northern Gulf of Mexico. Remote Sens. 2013, 5, 1439–1464. [Google Scholar] [CrossRef]
- Zhu, W.; Yu, Q.; Tian, Y.Q.; Becker, B.L.; Zheng, T.; Carrick, H.J. An assessment of remote sensing algorithms for colored dissolved organic matter in complex freshwater environments. Remote Sens. Environ. 2014, 140, 766–778. [Google Scholar] [CrossRef]
- Kallio, K. Absorption properties of dissolved organic matter in Finnish lakes. Proc. Estonian Acad. Sci. Biol. Ecol. 1999, 48, 75–83. [Google Scholar]
- Tranvik, L.J. Bacterioplankton growth on fractions of dissolved organic carbon of different molecular weights from humic and clear waters. Appl. Environ. Microbiol. 1990, 56, 1672–1677. [Google Scholar] [PubMed]
- Zhang, Y.; Qin, B.; Zhu, G.; Zhang, L.; Yang, L. Chromophoric dissolved organic matter (CDOM) absorption characteristics in relation to fluorescence in Lake Taihu, China, a large shallow subtropical lake. Hydrobiologia 2007, 581, 43–52. [Google Scholar] [CrossRef]
- Spencer, R.G.M.; Hernes, P.J.; Ruf, R.; Baker, A.; Dyda, R.Y.; Stubbins, A.; Six, J. Temporal controls on dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo. J. Geophys. Res. 2010, 115, G03013. [Google Scholar]
- Bracchini, L.; Dattilo, A.M.; Hull, V.; Loiselle, S.A.; Martini, S.; Rossi, C.; Santinelli, C.; Seritti, A. The bio-optical properties of CDOM as descriptor of lake stratification. J. Photochem. Photobiol. B 2006, 85, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Spencer, R.G.M.; Butler, K.D.; Aiken, G.R. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA. J. Geophys. Res. 2012, 117, G03001. [Google Scholar]
- Brezonik, P.L.; Olmanson, L.G.; Finlay, J.C.; Bauer, M.E. Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Remote Sens. Environ. 2014, in press. [Google Scholar]
- Arenz, R.F.; Lewis, W.M.; Saunders, J.F. Determination of chlorophyll and dissolved organic carbon from reflectance data for Colorado reservoirs. Int. J. Remote Sens. 1996, 17, 1547–1566. [Google Scholar] [CrossRef]
- Witte, W.G.; Whitlock, C.H.; Harriss, R.C.; Usry, J.W.; Poole, L.R.; Houghton, W.M.; Morris, W.D.; Gurganus, E.A. Influence of dissolved organic materials on turbid water optical properties and remote-sensing reflectance. J. Geophys. Res. 1982, 87, 441–446. [Google Scholar] [CrossRef]
- Schalles, J.; Schiebe, F.; Starksand, P.; Troeger, W. Estimation of algal and suspended sediment loads (singly and combined) using hyperspectral sensors and integrated mesocosm experiments. In Proceedings of the 1997 International Conference on Remote Sensing for Marine and Coastal Environments, Orlando, FL, USA, 17–19 March 1997; pp. 111–120.
- Schiebe, F.R.; Harrington, J.A.; Ritchie, J.C. Remote sensing of suspended sediments: The Lake Chicot, Arkansas project. Int. J. Remote Sens. 1992, 13, 1487–1509. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Schiebe, F.R.; Cooper, C.M.; Harrington, J.A. Landsat-MSS studies of chlorophyll in sediment dominated lakes. In Proceedings of the 1992 International Geoscience and Remote Sensing Symposium, Houston, TX, USA, 26–29 May 1992; pp. 1514–1517.
- Hirtle, H.; Rencz, A. The relation between spectral reflectance and dissolved organic carbon in lake water: Kejimkujik National Park, Nova Scotia, Canada. Int. J. Remote Sens. 2003, 24, 953–967. [Google Scholar] [CrossRef]
- Koehler, S.J.; Kothawala, D.; Futter, M.N.; Liungman, O.; Tranvik, L. In-lake processes offset increased terrestrial inputs of dissolved organic carbon and color to lakes. PLoS One 2013, 8, e70598. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.F.; Gardner, G.B. High-resolution measurements of chromophoric dissolved organic matter in the Mississippi and Atchafalaya River plume regions. Mar. Chem. 2004, 89, 103–125. [Google Scholar] [CrossRef]
- Shapiro, J. Effects of yellow organic acids on iron and other metals in water. J. Am. Water Works Assoc. 1964, 56, 1062–1082. [Google Scholar]
- Gledhill, M.; McCormack, P.; Ussher, S.; Achterberg, P.; Mantoura, R.F.C.; Worsfold, P.J. Production of siderophore type chelates by mixed bacterioplankton populations in nutrient enriched seawater incubations. Mar. Chem. 2004, 88, 75–83. [Google Scholar] [CrossRef]
- Xiao, Y.; Sara-Aho, T.; Hartikainen, H.; Vaehaetalo, A.V. Contribution of ferric iron to light absorption by chromophoric dissolved organic matter. Limnol. Oceanogr. 2013, 58, 653–662. [Google Scholar] [CrossRef]
- Van der Meer, F.; Jia, X. Collinearity and orthogonality of endmembers in linear spectral unmixing. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 491–503. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopačková, V.; Hladíková, L. Applying Spectral Unmixing to Determine Surface Water Parameters in a Mining Environment. Remote Sens. 2014, 6, 11204-11224. https://doi.org/10.3390/rs61111204
Kopačková V, Hladíková L. Applying Spectral Unmixing to Determine Surface Water Parameters in a Mining Environment. Remote Sensing. 2014; 6(11):11204-11224. https://doi.org/10.3390/rs61111204
Chicago/Turabian StyleKopačková, Veronika, and Lenka Hladíková. 2014. "Applying Spectral Unmixing to Determine Surface Water Parameters in a Mining Environment" Remote Sensing 6, no. 11: 11204-11224. https://doi.org/10.3390/rs61111204
APA StyleKopačková, V., & Hladíková, L. (2014). Applying Spectral Unmixing to Determine Surface Water Parameters in a Mining Environment. Remote Sensing, 6(11), 11204-11224. https://doi.org/10.3390/rs61111204