An Effective Method for Detecting Potential Woodland Vernal Pools Using High-Resolution LiDAR Data and Aerial Imagery
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
Norton | Attleboro | Total | |
---|---|---|---|
CVPs | 115 | 77 | 192 |
PVPs | 369 | 352 | 721 |
Total | 484 | 429 | 913 |
Data Set | Acquisition Dates | Precipitation (% of Long-Term Normal of the Month) | Application |
---|---|---|---|
1-m LiDAR DEM | 8–12 December 2010 | 6.78 cm (69%) | deriving surface depressions |
0.3-m color orthoimagery | April 2013 | 4.93 cm (51%) | refining surface depressions |
Land use data | April 2005 | 12.95 cm (136%) | refining surface depressions |
National Hydrography Dataset (NHD) | 2005–2009 | N/A | refining surface depressions |
Certified vernal pool (CVP) database | May 1988–January 2014 | N/A | validating results |
Potential vernal pool (PVP) database | April 2000 | 15.21 cm (157%) | validating results |
2.2. 1-m LiDAR DEM
2.3. 0.3-m USGS Color Orthoimagery (2013)
2.4. Land Use Data (2005)
Class | Area (km2) | Percentage |
---|---|---|
Developed | 52.2 | 35.3% |
Forest | 59.7 | 40.4% |
Grassland | 4.0 | 2.7% |
Water | 5.5 | 3.7% |
Wetlands | 26.5 | 17.9% |
2.5. National Hydrography Dataset (NHD)
3. Methods
3.1. Stochastic Depression Analysis
3.2. Eliminate Depressions Occurring in Permanent Waterbodies and Developed Land
3.3. Refine Depressions Using the Normalized Difference Water Index (NDWI)
4. Results
4.1. Validation/Classification with the NHESP, CVP, and PVP Databases
Class ID | Class Description | Count | Percentage | Cumulative Percentage |
---|---|---|---|---|
1 | Present CVPs/PVPs located inside depressions | 415 | 45.5% | 45.5% |
2 | Present CVPs/PVPs within buffer distance (15 m/5 m) of depressions | 64 | 7.0% | 52.5% |
3 | Present CVPs/PVPs not related to any depressions | 212 | 23.2% | 75.7% |
4 | Absent vernal pools | 222 | 24.3% | 100.0% |
4.2. Depression Detection Result Analysis
4.3. Accuracy Assessment (Commission and Omission Errors)
Class ID | Class Description | Count | Percentage | Cumulative Percentage |
---|---|---|---|---|
1 | Depressions that contain CVPs | 29 | 1.2% | 1.2% |
2 | Depressions that contain PVPs | 268 | 11.3% | 12.5% |
3 | Depressions that contain both CVPs and PVPs | 48 | 2.0% | 14.6% |
4 | Depressions within 15m buffer distance of CVPs | 13 | 0.6% | 15.1% |
5 | Depressions within 5m buffer distance of PVPs | 38 | 1.6% | 16.7% |
6 | Depression considered as certain vernal pool but not related to a CVP/PVP | 1832 | 77.3% | 94.0% |
7 | Depressions considered as uncertain vernal pools and not related to a CVP/PVP | 70 | 3.0% | 97.0% |
8 | Depressions whose boundaries are bigger than vernal pools | 13 | 0.6% | 97.5% |
9 | Depressions not considered as vernal pools | 59 | 2.5% | 100.0% |
Index | Median | Minimum | Maximum | Sum |
---|---|---|---|---|
Area (m2) | 337 | 50 | 126,428 | 3,832,255 |
Perimeter (m) | 102 | 28 | 4493 | 435,427 |
Volume (m3) | 151 | 12 | 34,692 | 1,421,789 |
Depth (m) | 0.42 | 0.10 | 1.75 | N/A |
ELEV AVG (m) | 31.07 | 9.23 | 54.00 | N/A |
NDVI AVG | 0.07 | −0.62 | 0.26 | N/A |
NDWI AVG | −0.05 | −0.15 | 0.70 | N/A |
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zedler, P. Vernal pools and the concept of “isolated wetlands”. Wetlands 2003, 23, 597–607. [Google Scholar] [CrossRef]
- Tiner, R. Geographically isolated wetlands of the United States. Wetlands 2003, 23, 494–516. [Google Scholar] [CrossRef]
- Calhoun, A.J.; DeMaynadier, P.G. Science and Conservation of Vernal Pools in Northeastern North America: Ecology and Conservation of Seasonal Wetlands in Northeastern North America; CRC Press: Boston, MA, USA, 2007. [Google Scholar]
- Lathrop, R.G.; Montesano, P.; Tesauro, J.; Zarate, B. Statewide mapping and assessment of vernal pools: A New Jersey case study. J.Environ. Manag. 2005, 76, 230–238. [Google Scholar] [CrossRef]
- Grant, E.H.C. Correlates of vernal pool occurrence in the massachusetts, USA landscape. Wetlands 2005, 25, 480–487. [Google Scholar] [CrossRef]
- Meter, R.; Bailey, L.; Grant, E.C. Methods for estimating the amount of vernal pool habitat in the northeastern United States. Wetlands 2008, 28, 585–593. [Google Scholar] [CrossRef]
- Karraker, N.E.; Gibbs, J.P.; Vonesh, J.R. Impacts of road deicing salt on the demography of vernal pool-breeding amphibians. Ecol. Appl. 2008, 18, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Calhoun, A.K.; Walls, T.; Stockwell, S.; McCollough, M. Evaluating vernal pools as a basis for conservation strategies: A maine case study. Wetlands 2003, 23, 70–81. [Google Scholar] [CrossRef]
- Burne, M.; Griffin, C. Protecting vernal pools: A model from Massachusetts, USA. Wetlands Ecol. Manag. 2005, 13, 367–375. [Google Scholar] [CrossRef]
- Burne, M.R. Massachusetts Aerial Photo Survey of Potential Vernal Pools. Available online: http://www.mass.gov/eea/docs/dfg/nhesp/vernal-pools/ma-aerial-survey-pvp.pdf (accessed on 27 August 2014).
- Oscarson, D.; Calhoun, A.K. Developing vernal pool conservation plans at the local level using citizen-scientists. Wetlands 2007, 27, 80–95. [Google Scholar] [CrossRef]
- Preisser, E.L.; Kefer, J.Y.; Lawrence, J.D.; Clark, T.W. Vernal pool conservation in connecticut: An assessment and recommendations. Environ. Manag. 2000, 26, 503–513. [Google Scholar] [CrossRef]
- Guidelines for the Certification of Vernal Pool Habitat. Available online: http://www.mass.gov/eea/docs/dfg/nhesp/vernal-pools/vpcert.pdf (accessed on 27 August 2014).
- Carpenter, L.; Stone, J.; Griffin, C. Accuracy of aerial photography for locating seasonal (vernal) pools in massachusetts. Wetlands 2011, 31, 573–581. [Google Scholar] [CrossRef]
- Brooks, R.T.; Stone, J.; Lyons, P. An inventory of seasonal forest ponds on the quabbin reservoir watershed, Massachusetts. Northeast. Nat. 1998, 5, 219–230. [Google Scholar] [CrossRef]
- Stone, J.S. Vernal Pools in Massachusetts: Aerial Photographic Identification, Biological and Physiographic Characteristics, and State Certification Criteria; University of Massachusetts: Amherst, MA, USA, 1992. [Google Scholar]
- Cutler, J.E. Accuracy Assessment of High Resolution Multispectral Satellite Imagery for Remote Sensing Identification of Wetlands and Classification of Vernal Pools in Eastern Sacramento County, California. Available online: http://www.vernalpools.org/documents/Cutler%20etal%202006_Accuracy_Assessment_RemoteSensing_VernalPools.pdf (accessed on 27 August 2014).
- Cormier, T.A. Statistical and Cartographic Modeling of Vernal Pool Locations: Incorporating the Spatial Component into Ecological Modeling; University of New Hampshire: Durham, NH, USA, 2007. [Google Scholar]
- Burne, M.; Lathrop, R., Jr.; Calhoun, A.; DeMaynadier, P. Remote and field identification of vernal pools. In Science and Conservation of Vernal Pools in Northeastern North America; CRC Press: Boston, MA, USA, 2008. [Google Scholar]
- Maxa, M.; Bolstad, P. Mapping northern wetlands with high resolution satellite images and LiDAR. Wetlands 2009, 29, 248–260. [Google Scholar] [CrossRef]
- Lang, M.W.; McCarty, G.W. LiDAR intensity for improved detection of inundation below the forest canopy. Wetlands 2009, 29, 1166–1178. [Google Scholar] [CrossRef]
- Hogg, A.; Holland, J. An evaluation of DEMs derived from LiDAR and photogrammetry for wetland mapping. Forest. Chron. 2008, 84, 840–849. [Google Scholar] [CrossRef]
- Leonard, P.B.; Baldwin, R.F.; Homyack, J.A.; Wigley, T.B. Remote detection of small wetlands in the atlantic coastal plain of north America: Local relief models, ground validation, and high-throughput computing. Forest Ecol. Manag. 2012, 284, 107–115. [Google Scholar] [CrossRef]
- Lichvar, R.W.; Finnegan, D.C.; Newman, S.; Ochs, W. Delineating and Evaluating Vegetation Conditions of Vernal Pools Using Spaceborne and Airborne Remote Sensing Techniques, Beale Air Force Base, CA. Available online: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA451765 (accessed on 27 August 2014).
- Lindsay, J.B.; Creed, I.F. Distinguishing actual and artifact depressions in digital elevation data. Comput. Geosci. 2006, 32, 1192–1204. [Google Scholar] [CrossRef]
- Simley, J.D.; Carswell, W.J., Jr. The National Map—Hydrography. Available online: http://pubs.usgs.gov/fs/2002/0060/report.pdf (accessed on 27 August 2014).
- McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Energy and Environmental Affairs. Available online: http://www.mass.gov/eea/agencies/dcr/water-res-protection/water-data-tracking/ (accessed on 27 August 2014).
- Massachusetts Office of Geographic Information. MassGIS Datalayers. Available online: http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/layerlist.html (accessed on 27 August 2014).
- Massachusetts Office of Geographic Information. Massgis Data-Land Use (2005). Available online: http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/lus2005.html (accessed on 27 August 2014).
- U.S. Geological Survey. Get NHD Data. Available online: http://nhd.usgs.gov/data.html (accessed on 27 August 2014).
- Federal Emergency Management Agency. Terrain, Naragansett, Massachusetts. Federal Emergency Management Agency: Washington, DC, USA, 2011. Available online: http://wsgw.mass.gov/data/gispub/LIDAR/2010_FEMA_Narragansett/metadata/Narragansett2010_metadata.zip (accessed on 27 August 2014). [Google Scholar]
- Li, S.; MacMillan, R.A.; Lobb, D.A.; McConkey, B.G.; Moulin, A.; Fraser, W.R. LIDAR DEM error analyses and topographic depression identification in a hummocky landscape in the Prairie region of Canada. Geomorphology 2011, 129, 263–275. [Google Scholar] [CrossRef]
- Sonka, M.; Hlavac, V.; Boyle, R. Image Processing, Analysis, and Machine Vision; Cengage Learning: Stamford, CT, USA, 2014. [Google Scholar]
- Liu, H.; Wang, L. Mapping detention basins and deriving their spatial attributes from airborne LIDAR data for hydrological applications. Hydrol. Process. 2008, 22, 2358–2369. [Google Scholar] [CrossRef]
- Liu, H.; Wang, L.; Sherman, D.; Gao, Y.; Wu, Q. An object-based conceptual framework and computational method for representing and analyzing coastal morphological changes. Int. J. Geogr. Inf. Sci. 2010, 24, 1015–1041. [Google Scholar] [CrossRef]
- Lane, C.R.; D’Amico, E.; Autrey, B. Isolated wetlands of the southeastern united states: Abundance and expected condition. Wetlands 2012, 32, 753–767. [Google Scholar] [CrossRef]
- McLaughlin, D.L.; Kaplan, D.A.; Cohen, M.J. A significant nexus: Geographically isolated wetlands influence landscape hydrology. Water Resour. Res. 2014, 50, 7153–7166. [Google Scholar]
- Wilcox, B.P.; Dean, D.D.; Jacob, J.S.; Sipocz, A. Evidence of surface connectivity for texas gulf coast depressional wetlands. Wetlands 2011, 31, 451–458. [Google Scholar] [CrossRef]
- Reif, M.; Frohn, R.C.; Lane, C.R.; Autrey, B. Mapping isolated wetlands in a karst landscape: GIS and remote sensing methods. GISci. Remote Sens. 2009, 46, 187–211. [Google Scholar] [CrossRef]
- Lindsay, J.B. The terrain analysis system: A tool for hydro-geomorphic applications. Hydrol. Process. 2005, 19, 1123–1130. [Google Scholar] [CrossRef]
- Lindsay, J.B.; Seibert, J. Measuring the significance of a divide to local drainage patterns. Int. J. Geogr. Inf. Sci. 2013, 27, 1453–1468. [Google Scholar] [CrossRef]
- Lindsay, J. Whitebox Geospatial Analysis Tools. Available online: http://www.uoguelph.ca/~hydrogeo/Whitebox/index.html (accessed on 27 August 2014).
- Wang, L.; Liu, H. An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. Int. J. Geogr. Inf. Sci. 2006, 20, 193–213. [Google Scholar] [CrossRef]
- Liu, H.; Wang, L.; Sherman, D.J.; Wu, Q.; Su, H. Algorithmic foundation and software tools for extracting shoreline features from remote sensing imagery and LIDAR data. J. Geogr. Inf. Syst. 2011, 3, 99–119. [Google Scholar]
- Townshend, J.R.; Justice, C. Analysis of the dynamics of African vegetation using the normalized difference vegetation index. Int. J. Remote Sens. 1986, 7, 1435–1445. [Google Scholar] [CrossRef]
- McFeeters, S.K. Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sens. 2013, 5, 3544–3561. [Google Scholar] [CrossRef]
- Cowardin, L.M.; Carter, V.; Golet, F.C.; LaRoe, E.T. Classification of Wetlands and Deepwater Habitats of the United States. Available online: http://www.fgdc.gov/standards/projects/FGDC-standards-projects/wetlands/nvcs-2013 (accessed on 2 February 2013).
- Gibbs, J.P.; Reed, J.M. Population and genetic linkages of vernal pool-associated amphibians. In Science and Conservation of Vernal Pools in Northeastern North America; CRC Press: Boston, MA, USA, 2008. [Google Scholar]
- Burne, M.R.; Griffin, C.R. Habitat associations of pool-breeding amphibians in eastern Massachusetts, USA. Wetlands Ecol. Manag. 2005, 13, 247–259. [Google Scholar] [CrossRef]
- Ritchie, M.E. Populations in A Landscape Context: Sources, Sinks, and Metapopulations. Available online: http://link.springer.com/chapter/10.1007/978-1-4612-1918-7_6 (accessed online: 27 August 2014).
- Cutko, A.; Rawinski, T.; Calhoun, A.; DeMaynadier, P. Flora of northeastern vernal pools. In Science and Conservation of Vernal Pools in Northeastern North America; CRC Press: Boston, MA, USA, 2007. [Google Scholar]
- Brooks, R.T.; Hayashi, M. Depth-area-volume and hydroperiod relationships of ephemeral (vernal) forest pools in southern New England. Wetlands 2002, 22, 247–255. [Google Scholar] [CrossRef]
- Brooks, R.T. A review of basin morphology and pool hydrology of isolated ponded wetlands: Implications for seasonal forest pools of the northeastern United States. Wetlands Ecol. Manag. 2005, 13, 335–348. [Google Scholar] [CrossRef]
- Barlocher, F.; Mackay, R.; Wiggins, G. Detritus processing in a temporary vernal pool in southern Ontario. Arch. Hydrobiol. 1977, 81, 269–295. [Google Scholar]
- Benoit, J.M.; Cato, D.A.; Denison, K.C.; Moreira, A.E. Seasonal mercury dynamics in a New England vernal pool. Wetlands 2013, 33, 887–894. [Google Scholar] [CrossRef]
- Mahaney, W.; Klemens, M.; Calhoun, A.; DeMaynadier, P. Vernal pool conservation policy: The federal, state, and local context. In Science and Conservation of Vernal Pools in Northeastern North America; CRC Press: Boston, MA, USA, 2007. [Google Scholar]
- Windmiller, B.; Calhoun, A.J. 12 Conserving Vernal Pool Wildlife in Urbanizing Landscapes. Available online: http://libra.msra.cn/Publication/5561762/12-conserving-vernal-pool-wildlife-in-urbanizing-landscapes (accessed on 27 August 2014).
- Calhoun, A.J.; Miller, N.A.; Klemens, M.W. Conserving pool-breeding amphibians in human-dominated landscapes through local implementation of best development practices. Wetlands Ecol. Manag. 2005, 13, 291–304. [Google Scholar] [CrossRef]
- McKinney, R.A.; Charpentier, M.A. Extent, properties, and landscape setting of geographically isolated wetlands in urban southern New England watersheds. Wetlands Ecol. Manag. 2009, 17, 331–344. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetlands Ecol. Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Lang, M.; McDonough, O.; McCarty, G.; Oesterling, R.; Wilen, B. Enhanced detection of wetland-stream connectivity using LIDAR. Wetlands 2012, 32, 461–473. [Google Scholar] [CrossRef]
© 2009 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Lane, C.; Liu, H. An Effective Method for Detecting Potential Woodland Vernal Pools Using High-Resolution LiDAR Data and Aerial Imagery. Remote Sens. 2014, 6, 11444-11467. https://doi.org/10.3390/rs61111444
Wu Q, Lane C, Liu H. An Effective Method for Detecting Potential Woodland Vernal Pools Using High-Resolution LiDAR Data and Aerial Imagery. Remote Sensing. 2014; 6(11):11444-11467. https://doi.org/10.3390/rs61111444
Chicago/Turabian StyleWu, Qiusheng, Charles Lane, and Hongxing Liu. 2014. "An Effective Method for Detecting Potential Woodland Vernal Pools Using High-Resolution LiDAR Data and Aerial Imagery" Remote Sensing 6, no. 11: 11444-11467. https://doi.org/10.3390/rs61111444
APA StyleWu, Q., Lane, C., & Liu, H. (2014). An Effective Method for Detecting Potential Woodland Vernal Pools Using High-Resolution LiDAR Data and Aerial Imagery. Remote Sensing, 6(11), 11444-11467. https://doi.org/10.3390/rs61111444