Cardiovascular Biomarkers in Association with Dietary Intake in a Longitudinal Study of Youth with Type 1 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measures
2.1.1. CVD Biomarkers
2.1.2. Diet Assessment
2.1.3. Clinical and Demographic Data
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Margeirsdottir, H.D.; Larsen, J.R.; Brunborg, C.; Overby, N.C.; Dahl-Jorgensen, K.; Norwegian Study Group for Childhood, D. High prevalence of cardiovascular risk factors in children and adolescents with type 1 diabetes: A population-based study. Diabetologia 2008, 51, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Rawshani, A.; Sattar, N.; Franzén, S.; Rawshani, A.; Hattersley, A.T.; Svensson, A.M.; Eliasson, B.; Gudbjörnsdottir, S. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: A nationwide, register-based cohort study. Lancet 2018, 392, 477–486. [Google Scholar] [CrossRef]
- de Ferranti, S.D.; de Boer, I.H.; Fonseca, V.; Fox, C.S.; Golden, S.H.; Lavie, C.J.; Magge, S.N.; Marx, N.; McGuire, D.K.; Orchard, T.J.; et al. Type 1 diabetes mellitus and cardiovascular disease: A scientific statement from the American Heart Association and American Diabetes Association. Circulation 2014, 130, 1110–1130. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, E.; Dicembrini, I.; Lauria, A.; Pozzilli, P. Is glucose control important for prevention of cardiovascular disease in diabetes? Diabetes Care 2013, 36 (Suppl. 2), S259–S263. [Google Scholar] [CrossRef]
- Nicklas, T.A.; O’Neil, C.E.; Fulgoni, V.L., 3rd. Diet quality is inversely related to cardiovascular risk factors in adults. J. Nutr. 2012, 142, 2112–2118. [Google Scholar] [CrossRef] [PubMed]
- Kuczmarski, M.F.; Mason, M.A.; Allegro, D.; Zonderman, A.B.; Evans, M.K. Diet quality is inversely associated with C-reactive protein levels in urban, low-income African-American and white adults. J. Acad. Nutr. Diet. 2013, 113, 1620–1631. [Google Scholar] [CrossRef] [PubMed]
- Newby, P.K.; Maras, J.; Bakun, P.; Muller, D.; Ferrucci, L.; Tucker, K.L. Intake of whole grains, refined grains, and cereal fiber measured with 7-d diet records and associations with risk factors for chronic disease. Am. J. Clin. Nutr. 2007, 86, 1745–1753. [Google Scholar] [CrossRef] [PubMed]
- McKeown, N.M.; Meigs, J.B.; Liu, S.; Wilson, P.W.; Jacques, P.F. Whole-grain intake is favorably associated with metabolic risk factors for type 2 diabetes and cardiovascular disease in the Framingham Offspring Study. Am. J. Clin. Nutr. 2002, 76, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Masters, R.C.; Liese, A.D.; Haffner, S.M.; Wagenknecht, L.E.; Hanley, A.J. Whole and refined grain intakes are related to inflammatory protein concentrations in human plasma. J. Nutr. 2010, 140, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Damsgaard, C.T.; Biltoft-Jensen, A.; Tetens, I.; Michaelsen, K.F.; Lind, M.V.; Astrup, A.; Landberg, R. Whole-Grain Intake, Reflected by Dietary Records and Biomarkers, Is Inversely Associated with Circulating Insulin and Other Cardiometabolic Markers in 8- to 11-Year-Old Children. J. Nutr. 2017, 147, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Mellendick, K.; Shanahan, L.; Wideman, L.; Calkins, S.; Keane, S.; Lovelady, C. Diets Rich in Fruits and Vegetables Are Associated with Lower Cardiovascular Disease Risk in Adolescents. Nutrients 2018, 10, 136. [Google Scholar] [CrossRef] [PubMed]
- Djousse, L.; Arnett, D.K.; Coon, H.; Province, M.A.; Moore, L.L.; Ellison, R.C. Fruit and vegetable consumption and LDL cholesterol: The National Heart, Lung, and Blood Institute Family Heart Study. Am. J. Clin. Nutr. 2004, 79, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Holt, E.M.; Steffen, L.M.; Moran, A.; Basu, S.; Steinberger, J.; Ross, J.A.; Hong, C.P.; Sinaiko, A.R. Fruit and vegetable consumption and its relation to markers of inflammation and oxidative stress in adolescents. J. Am. Diet. Assoc. 2009, 109, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Bazzano, L.A.; Thompson, A.M.; Tees, M.T.; Nguyen, C.H.; Winham, D.M. Non-soy legume consumption lowers cholesterol levels: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 94–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salehi-Abargouei, A.; Saraf-Bank, S.; Bellissimo, N.; Azadbakht, L. Effects of non-soy legume consumption on C-reactive protein: A systematic review and meta-analysis. Nutrition 2015, 31, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Sabate, J.; Oda, K.; Ros, E. Nut consumption and blood lipid levels: A pooled analysis of 25 intervention trials. Arch. Intern. Med. 2010, 170, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Malik, V.S.; Keum, N.; Hu, F.B.; Giovannucci, E.L.; Stampfer, M.J.; Willett, W.C.; Fuchs, C.S.; Bao, Y. Associations between nut consumption and inflammatory biomarkers. Am. J. Clin. Nutr. 2016, 104, 722–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kell, K.P.; Cardel, M.I.; Bohan Brown, M.M.; Fernandez, J.R. Added sugars in the diet are positively associated with diastolic blood pressure and triglycerides in children. Am. J. Clin. Nutr. 2014, 100, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.A.; Sharma, A.; Cunningham, S.A.; Vos, M.B. Consumption of added sugars and indicators of cardiovascular disease risk among US adolescents. Circulation 2011, 123, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Te Morenga, L.; Montez, J.M. Health effects of saturated and trans-fatty acid intake in children and adolescents: Systematic review and meta-analysis. PLoS ONE 2017, 12, e0186672. [Google Scholar] [CrossRef] [PubMed]
- King, D.E.; Egan, B.M.; Geesey, M.E. Relation of dietary fat and fiber to elevation of C-reactive protein. Am. J. Cardiol. 2003, 92, 1335–1339. [Google Scholar] [CrossRef] [PubMed]
- Aburto, N.J.; Ziolkovska, A.; Hooper, L.; Elliott, P.; Cappuccio, F.P.; Meerpohl, J.J. Effect of lower sodium intake on health: Systematic review and meta-analyses. BMJ 2013, 346, f1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Pollock, N.K.; Kotak, I.; Gutin, B.; Wang, X.; Bhagatwala, J.; Parikh, S.; Harshfield, G.A.; Dong, Y. Dietary sodium, adiposity, and inflammation in healthy adolescents. Pediatrics 2014, 133, e635. [Google Scholar] [CrossRef] [PubMed]
- Pistrosch, F.; Natali, A.; Hanefeld, M. Is hyperglycemia a cardiovascular risk factor? Diabetes Care 2011, 34 (Suppl. 2), S128–S131. [Google Scholar] [CrossRef]
- Goldberg, I.J. Clinical review 124: Diabetic dyslipidemia: Causes and consequences. J. Clin. Endocrinol. Metab. 2001, 86, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Gingras, V.; Leroux, C.; Desjardins, K.; Savard, V.; Lemieux, S.; Rabasa-Lhoret, R.; Strychar, I. Association between Cardiometabolic Profile and Dietary Characteristics among Adults with Type 1 Diabetes Mellitus. J. Acad. Nutr. Diet. 2015, 115, 1965–1974. [Google Scholar] [CrossRef] [PubMed]
- Liese, A.D.; Bortsov, A.; Gunther, A.L.; Dabelea, D.; Reynolds, K.; Standiford, D.A.; Liu, L.; Williams, D.E.; Mayer-Davis, E.J.; D’Agostino, R.B., Jr.; et al. Association of DASH diet with cardiovascular risk factors in youth with diabetes mellitus: The SEARCH for Diabetes in Youth study. Circulation 2011, 123, 1410–1417. [Google Scholar] [CrossRef] [PubMed]
- Zhong, V.W.; Lamichhane, A.P.; Crandell, J.L.; Couch, S.C.; Liese, A.D.; The, N.S.; Tzeel, B.A.; Dabelea, D.; Lawrence, J.M.; Marcovina, S.M.; et al. Association of adherence to a Mediterranean diet with glycemic control and cardiovascular risk factors in youth with type I diabetes: The SEARCH Nutrition Ancillary Study. Eur. J. Clin. Nutr. 2016, 70, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Toeller, M.; Buyken, A.E.; Heitkamp, G.; de Pergola, G.; Giorgino, F.; Fuller, J.H. Fiber intake, serum cholesterol levels, and cardiovascular disease in European individuals with type 1 diabetes. EURODIAB IDDM Complications Study Group. Diabetes Care 1999, 22 (Suppl. 2), B21. [Google Scholar]
- Bernaud, F.S.; Beretta, M.V.; do Nascimento, C.; Escobar, F.; Gross, J.L.; Azevedo, M.J.; Rodrigues, T.C. Fiber intake and inflammation in type 1 diabetes. Diabetol. Metab. Syndr. 2014, 6, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toeller, M.; Buyken, A.E.; Heitkamp, G.; Scherbaum, W.A.; Krans, H.M.; Fuller, J.H. Associations of fat and cholesterol intake with serum lipid levels and cardiovascular disease: The EURODIAB IDDM Complications Study. Exp. Clin. Endocrinol. Diabetes 1999, 107, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Liese, A.D.; Crandell, J.L.; Tooze, J.A.; Kipnis, V.; Bell, R.; Couch, S.C.; Dabelea, D.; Crume, T.L.; Mayer-Davis, E.J. Sugar-sweetened beverage intake and cardiovascular risk factor profile in youth with type 1 diabetes: Application of measurement error methodology in the SEARCH Nutrition Ancillary Study. Br. J. Nutr. 2015, 114, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Nansel, T.R.; Laffel, L.M.; Haynie, D.L.; Mehta, S.N.; Lipsky, L.M.; Volkening, L.K.; Butler, D.A.; Higgins, L.A.; Liu, A. Improving dietary quality in youth with type 1 diabetes: Randomized clinical trial of a family-based behavioral intervention. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 58. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Behavioral Risk Factor Surveillance System Survey Questionnaire; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2001.
- Bender, R.; Lange, S. Multiple test procedures other than Bonferroni’s deserve wider use. BMJ 1999, 318, 600. [Google Scholar] [CrossRef] [PubMed]
- Althouse, A.D. Adjust for Multiple Comparisons? It’s Not That Simple. Ann. Thorac. Surg. 2016, 101, 1644–1645. [Google Scholar] [CrossRef] [PubMed]
- Cox, R.A.; Garcia-Palmieri, M.R. Cholesterol, Triglycerides, and Associated Lipoproteins. In Clinical Methods: The History, Physical, and Laboratory Examinations; Walker, H.K., Hall, W.D., Hurst, J.W., Eds.; Butterworth Publishers: Boston, MA, USA, 1990. [Google Scholar]
- Gooding, H.C.; de Ferranti, S.D. Cardiovascular risk assessment and cholesterol management in adolescents: Getting to the heart of the matter. Curr. Opin. Pediatr. 2010, 22, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Shah, B.S.; Freeland-Graves, J.H.; Cahill, J.M.; Lu, H.; Graves, G.R. Diet quality as measured by the healthy eating index and the association with lipid profile in low-income women in early postpartum. J. Am. Diet. Assoc. 2010, 110, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Flint, A.J.; Hu, F.B.; Glynn, R.J.; Jensen, M.K.; Franz, M.; Sampson, L.; Rimm, E.B. Whole grains and incident hypertension in men. Am. J. Clin. Nutr. 2009, 90, 493–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, D.L.; Nawaz, H.; Boukhalil, J.; Chan, W.; Ahmadi, R.; Giannamore, V.; Sarrel, P.M. Effects of oat and wheat cereals on endothelial responses. Prev. Med. 2001, 33, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Develaraja, S.; Reddy, A.; Yadav, M.; Jain, S.; Yadav, H. Whole Grains in Amelioration of Metabolic Derangements. J. Nutr. Health Food Sci. 2016, 4, 1–11. [Google Scholar] [Green Version]
- Kirwan, J.P.; Malin, S.K.; Scelsi, A.R.; Kullman, E.L.; Navaneethan, S.D.; Pagadala, M.R.; Haus, J.M.; Filion, J.; Godin, J.P.; Kochhar, S.; et al. A Whole-Grain Diet Reduces Cardiovascular Risk Factors in Overweight and Obese Adults: A Randomized Controlled Trial. J. Nutr. 2016, 146, 2244–2251. [Google Scholar] [CrossRef] [PubMed]
- Borgi, L.; Muraki, I.; Satija, A.; Willett, W.C.; Rimm, E.B.; Forman, J.P. Fruit and Vegetable Consumption and the Incidence of Hypertension in Three Prospective Cohort Studies. Hypertension 2016, 67, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.M.; Clearfield, M.; Mulligan, K. Conversion of Sugar to Fat: Is Hepatic de Novo Lipogenesis Leading to Metabolic Syndrome and Associated Chronic Diseases? J. Am. Osteopath. Assoc. 2017, 117, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Bortsov, A.V.; Liese, A.D.; Bell, R.A.; Dabelea, D.; D’Agostino, R.B., Jr.; Hamman, R.F.; Klingensmith, G.J.; Lawrence, J.M.; Maahs, D.M.; McKeown, R.; et al. Sugar-sweetened and diet beverage consumption is associated with cardiovascular risk factor profile in youth with type 1 diabetes. Acta Diabetol. 2011, 48, 275–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayek, T.; Ito, Y.; Azrolan, N.; Verdery, R.B.; Aalto-Setala, K.; Walsh, A.; Breslow, J.L. Dietary fat increases high density lipoprotein (HDL) levels both by increasing the transport rates and decreasing the fractional catabolic rates of HDL cholesterol ester and apolipoprotein (Apo) A-I. Presentation of a new animal model and mechanistic studies in human Apo A-I transgenic and control mice. J. Clin. Investig. 1993, 91, 1665–1671. [Google Scholar] [PubMed]
- Dorjgochoo, T.; Gao, Y.T.; Chow, W.H.; Shu, X.O.; Yang, G.; Cai, Q.; Rothman, N.; Cai, H.; Li, H.; Deng, X.; et al. Major metabolite of F2-isoprostane in urine may be a more sensitive biomarker of oxidative stress than isoprostane itself. Am. J. Clin. Nutr. 2012, 96, 405–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, E.; Wall, R.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. Health implications of high dietary omega-6 polyunsaturated Fatty acids. J. Nutr. Metab. 2012, 2012, 539426. [Google Scholar] [CrossRef] [PubMed]
- Ortega, R.M.; Perez-Rodrigo, C.; Lopez-Sobaler, A.M. Dietary assessment methods: Dietary records. Nutr. Hosp. 2015, 31 (Suppl. 3), 38–45. [Google Scholar]
Overall (N = 136) | Treatment (N = 66) | Control (N = 70) | p-Value | |
---|---|---|---|---|
Age, years | 12.7 ± 2.6 | 12.5 ± 2.7 | 13.0 ± 2.5 | 0.27 |
Body mass index, kg/m2 | 21.3 ± 4.2 | 21.0 ± 4.1 | 21.6 ± 4.3 | 0.37 |
Weight status 1 | ||||
Underweight | 1 (0.7) | 1 (1.5) | 0 (0) | 0.55 |
Normal weight | 91 (66.9) | 42 (63.6) | 49 (70.0) | |
Overweight | 28 (20.6) | 17 (25.8) | 11 (15.7) | |
Obese | 16 (11.8) | 6 (9.1) | 10 (14.3) | |
HbA1c, (%, (mmol/mol)) | 8.1 ± 1.0 (65 ± 11) | 8.1 ± 1.1 (65 ± 12) | 8.1 ± 1.0 (65 ± 12) | 0.95 |
Duration of diabetes, years | 6.0 ± 3.1 | 5.6 ± 2.5 | 6.4 ± 3.6 | 0.15 |
Insulin dose, Units/day | 49.8 ± 26.8 | 46.9 ± 23.9 | 52.7 ± 29.3 | 0.24 |
Tanner stage | 2.5 ± 1.4 | 2.4 ± 1.4 | 2.6 ± 1.5 | 0.38 |
Youth race/ethnicity | ||||
Non-Hispanic white | 123 (90.4) | 58 (87.9) | 65 (92.9) | 0.17 |
Non-Hispanic black | 5 (3.7) | 2 (3.0) | 3 (4.3) | |
Hispanic | 7 (5.2) | 6 (9.1) | 1 (1.4) | |
American Indian/Alaska Native | 1 (0.7) | 0 (0) | 1 (1.4) | |
TG (mg/dL) | 111.1 ± 56.9 | 101.3 ± 42.4 | 120.2 ± 66.8 | 0.05 |
TC (mg/dL) | 165.2 ± 27.9 | 162.7 ± 24.3 | 167.6 ± 30.8 | 0.32 |
HDL-C (mg/dL) | 56.6 ± 13.6 | 56.5 ± 14.0 | 56.6 ± 13.3 | 0.98 |
LDL-C (mg/dL) | 86.4 ± 24.0 | 85.7 ± 19.7 | 87.0 ± 27.5 | 0.75 |
CRP (mg/L) | 1.1 ± 1.9 | 0.9 ± 1.4 | 1.4 ± 2.3 | 0.09 |
8-iso-PGF2α (ng/mL) | 1.6 ± 1.3 | 1.7 ± 1.5 | 1.4 ± 1.1 | 0.33 |
SBP (mm Hg) | 108.7 ± 7.1 | 108.6 ± 7.8 | 108.8 ± 6.5 | 0.90 |
DBP (mm Hg) | 66.4 ± 5.5 | 66.7 ± 5.9 | 66.2 ± 5.2 | 0.60 |
Dietary Components | Overall (N = 136) | Treatment (N = 66) | Control (N = 70) | p-Value |
---|---|---|---|---|
HEI-2015 | 46.05 ± 11.70 | 45.33 ± 12.44 | 46.73 ± 11.01 | 0.49 |
Total fruits 1 | 0.44 ± 0.40 | 0.45 ± 0.38 | 0.42 ± 0.43 | 0.70 |
Whole fruits 1 | 0.32 ± 0.37 | 0.32 ± 0.32 | 0.33 ± 0.41 | 0.90 |
Total vegetables 1 | 0.49 ± 0.35 | 0.49 ± 0.38 | 0.49 ± 0.31 | 0.99 |
Dark green vegetables 1 | 0.09 ± 0.12 | 0.07 ± 0.11 | 0.10 ± 0.12 | 0.09 |
Beans 1 | 0.03 ± 0.09 | 0.04 ± 0.12 | 0.02 ± 0.05 | 0.19 |
Whole grains 1 | 0.52 ± 0.53 | 0.47 ± 0.38 | 0.57 ± 0.64 | 0.26 |
Dairy 1 | 0.68 ± 0.33 | 0.68 ± 0.34 | 0.67 ± 0.33 | 0.85 |
Protein foods 1 | 2.54 ± 1.24 | 2.53 ± 1.27 | 2.55 ± 1.21 | 0.94 |
Seafood 1 | 0.16 ± 0.40 | 0.11 ± 0.29 | 0.20 ± 0.48 | 0.07 |
Nuts and seeds 1 | 0.34 ± 0.73 | 0.33 ± 0.89 | 0.34 ± 0.54 | 0.93 |
Refined grains 1 | 3.44 ± 1.09 | 3.58 ± 1.04 | 3.30 ± 1.13 | 0.13 |
Sodium 2 | 1.69 ± 0.33 | 1.69 ± 0.31 | 1.68 ± 0.34 | 0.85 |
Added sugars, % kcal | 11.97 ± 5.16 | 11.39 ± 4.47 | 12.53 ± 5.71 | 0.20 |
Saturated fat, % kcal | 12.39 ± 2.75 | 12.37 ± 2.68 | 12.41 ± 2.83 | 0.93 |
Fatty acid 3 | 1.69 ± 0.49 | 1.72 ± 0.52 | 1.65 ± 0.46 | 0.42 |
Dietary Components | TG 2 (mg/dL) | TC (mg/dL) | HDL-C (mg/dL) | LDL-C (mg/dL) | ||||
---|---|---|---|---|---|---|---|---|
β ± SE | p | β ± SE | p | β ± SE | p | β ± SE | p | |
HEI-2015 | 0.0003 ± 0.001 | 0.77 | −0.16 ± 0.10 | 0.11 | −0.07 ± 0.05 | 0.16 | −0.12 ± 0.09 | 0.19 |
Total fruits 3 | 0.01 ± 0.03 | 0.78 | 1.31 ± 3.21 | 0.68 | 0.06 ± 1.49 | 0.97 | 1.07 ± 3.00 | 0.72 |
Whole fruits 3 | 0.01 ± 0.04 | 0.70 | 3.22 ± 3.96 | 0.42 | 0.67 ± 1.86 | 0.72 | 1.59 ± 3.68 | 0.67 |
Total vegetables 3 | 0.03 ± 0.03 | 0.28 | 2.44 ± 2.83 | 0.39 | 0.05 ± 1.36 | 0.97 | −2.74 ± 2.66 | 0.30 |
Dark green vegetables 3 | −0.02 ± 0.06 | 0.75 | −9.18 ± 6.31 | 0.15 | −2.63 ± 2.85 | 0.36 | −8.50 ± 5.89 | 0.15 |
Beans 3 | −0.14 ± 0.10 | 0.18 | −17.17 ± 10.77 | 0.11 | −2.81 ± 5.06 | 0.58 | −5.16 ± 10.22 | 0.61 |
Whole grains 3 | 0.01 ± 0.02 | 0.61 | −4.60 ± 2.05 | 0.03 | −1.98 ± 0.99 | 0.046 | −3.42 ± 1.92 | 0.08 |
Dairy 3 | 0.01 ± 0.03 | 0.79 | −1.97 ± 3.78 | 0.60 | −0.64 ± 1.81 | 0.72 | −1.61 ± 3.44 | 0.64 |
Protein foods 3 | −0.01 ± 0.01 | 0.30 | 0.05 ± 0.88 | 0.95 | 0.25 ± 0.41 | 0.55 | 0.39 ± 0.83 | 0.63 |
Seafood 3 | 0.01 ± 0.03 | 0.61 | 0.09 ± 2.66 | 0.97 | −0.90 ± 1.27 | 0.48 | 1.77 ± 2.47 | 0.47 |
Nuts and seeds 3 | 0.004 ± 0.02 | 0.84 | 0.15 ± 1.74 | 0.93 | 0.12 ± 0.85 | 0.89 | 0.06 ± 1.64 | 0.97 |
Refined grains 3 | −0.02 ± 0.01 | 0.08 | 0.54 ± 1.05 | 0.61 | 0.31 ± 0.51 | 0.54 | 1.72 ± 0.98 | 0.08 |
Sodium 4 | −0.05 ± 0.03 | 0.10 | 2.13 ± 3.33 | 0.52 | 0.21 ± 1.52 | 0.89 | 5.38 ± 3.10 | 0.08 |
Added sugars, % kcal | 0.004 ± 0.002 | 0.04 | 0.22 ± 0.21 | 0.30 | −0.10 ± 0.10 | 0.32 | 0.09 ± 0.20 | 0.64 |
Saturated fat, % kcal | −0.002 ± 0.003 | 0.61 | 0.35 ± 0.37 | 0.35 | 0.34 ± 0.17 | 0.04 | 0.19 ± 0.35 | 0.58 |
Fatty acid 5 | −0.002 ± 0.02 | 0.90 | −0.50 ± 2.10 | 0.81 | −0.74 ± 0.96 | 0.45 | −1.12 ± 1.93 | 0.56 |
Dietary Components | CRP 2 (mg/L) | 8-iso-PGF2α (ng/mL) | SBP (mmHg) | DBP (mmHg) | ||||
---|---|---|---|---|---|---|---|---|
β ± SE | p | β ± SE | p | β ± SE | p | β ± SE | p | |
HEI-2015 | 0.0002 ± 0.002 | 0.90 | 0.002 ± 0.007 | 0.77 | 0.01 ± 0.02 | 0.59 | 0.01 ± 0.02 | 0.53 |
Total fruits 3 | 0.04 ± 0.06 | 0.46 | −0.23 ± 0.22 | 0.31 | −0.25 ± 0.71 | 0.73 | 0.10 ± 0.66 | 0.88 |
Whole fruits 3 | 0.07 ± 0.08 | 0.39 | −0.17 ± 0.28 | 0.54 | −0.73 ± 0.86 | 0.40 | −0.11 ± 0.88 | 0.90 |
Total vegetables 3 | −0.02 ± 0.05 | 0.67 | 0.06 ± 0.21 | 0.77 | −0.02 ± 0.69 | 0.97 | 0.69 ± 0.63 | 0.28 |
Dark green vegetables 3 | −0.04 ± 0.12 | 0.72 | −0.42 ± 0.50 | 0.40 | −0.52 ± 1.46 | 0.72 | −1.10 ± 1.38 | 0.42 |
Beans 3 | −0.30 ± 0.21 | 0.15 | 0.85 ± 1.05 | 0.42 | −0.64 ± 2.67 | 0.81 | −0.93 ± 2.43 | 0.70 |
Whole grains 3 | 0.04 ± 0.04 | 0.26 | −0.09 ± 0.16 | 0.60 | 0.03 ± 0.47 | 0.96 | −0.98 ± 0.46 | 0.04 |
Dairy 3 | −0.004 ± 0.07 | 0.95 | −0.47 ± 0.27 | 0.08 | 0.89 ± 0.81 | 0.27 | −0.99 ± 0.73 | 0.18 |
Protein foods 3 | −0.01 ± 0.02 | 0.55 | 0.09 ± 0.07 | 0.22 | −0.11 ± 0.20 | 0.59 | 0.20 ± 0.17 | 0.23 |
Seafood 3 | 0.02 ± 0.05 | 0.65 | −0.09 ± 0.21 | 0.69 | −0.18 ± 0.63 | 0.78 | 0.78 ± 0.61 | 0.20 |
Nuts and seeds 3 | 0.02 ± 0.04 | 0.61 | 0.25 ± 0.14 | 0.08 | 0.29 ± 0.45 | 0.53 | 0.21 ± 0.43 | 0.62 |
Refined grains 3 | −0.02 ± 0.02 | 0.42 | −0.18 ± 0.08 | 0.04 | 0.05 ± 0.25 | 0.85 | 0.04 ± 0.23 | 0.86 |
Sodium 4 | 0.02 ± 0.06 | 0.79 | −0.42 ± 0.27 | 0.12 | −0.53 ± 0.78 | 0.50 | 0.19 ± 0.78 | 0.80 |
Added sugars, % kcal | −0.00003 ± 0.004 | 0.99 | 0.01 ± 0.02 | 0.58 | −0.04 ± 0.05 | 0.34 | −0.01 ± 0.04 | 0.89 |
Saturated fat, % kcal | 0.01 ± 0.007 | 0.43 | 0.02 ± 0.03 | 0.57 | 0.01 ± 0.08 | 0.87 | −0.12 ± 0.08 | 0.13 |
Fatty acid 5 | 0.02 ± 0.04 | 0.59 | 0.19 ± 0.15 | 0.20 | 0.19 ± 0.45 | 0.67 | 0.98 ± 0.42 | 0.02 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanjeevi, N.; Lipsky, L.M.; Nansel, T.R. Cardiovascular Biomarkers in Association with Dietary Intake in a Longitudinal Study of Youth with Type 1 Diabetes. Nutrients 2018, 10, 1552. https://doi.org/10.3390/nu10101552
Sanjeevi N, Lipsky LM, Nansel TR. Cardiovascular Biomarkers in Association with Dietary Intake in a Longitudinal Study of Youth with Type 1 Diabetes. Nutrients. 2018; 10(10):1552. https://doi.org/10.3390/nu10101552
Chicago/Turabian StyleSanjeevi, Namrata, Leah M. Lipsky, and Tonja R. Nansel. 2018. "Cardiovascular Biomarkers in Association with Dietary Intake in a Longitudinal Study of Youth with Type 1 Diabetes" Nutrients 10, no. 10: 1552. https://doi.org/10.3390/nu10101552
APA StyleSanjeevi, N., Lipsky, L. M., & Nansel, T. R. (2018). Cardiovascular Biomarkers in Association with Dietary Intake in a Longitudinal Study of Youth with Type 1 Diabetes. Nutrients, 10(10), 1552. https://doi.org/10.3390/nu10101552