Mitigating Traumatic Brain Injury: A Narrative Review of Supplementation and Dietary Protocols
Abstract
:1. Introduction
2. Methods
3. A Brief Overview of Injury Mechanisms in TBI
Nutrient/ Biological Compound | Mechanisms of Action and Beneficial Effects on Brain Health | References | Study Type, Population, and TBI Severity | Strength of Evidence 1 |
---|---|---|---|---|
Omega-3 fatty acids (DHA and EPA) | Decrease neuroinflammation. Attenuate NFL levels. Help preserve/increase brain and hippocampal volumes. Improve cerebrovascular responsiveness and cognitive function. Reduce the risk of AD. | Pottala, et al. [48] | CS, 1111 postmenopausal women (mean age 78.5 ± 3.6) from the Women’s Health Initiative Memory Study | 3 |
Oliver, et al. [49] | RCT, 81 US college football players | |||
Howe, et al. [50] | RCT, 38 hypertensive adults (mean age 63.7 ± 2) | |||
Patan, et al. [51] | RCT, 310 healthy adults (aged 25–49) | |||
Sala-Vila, et al. [52] | Prospective observational study, 1490 older adults (mean age 73 ± 5.7) from the Framingham Offspring Study | |||
Creatine monohydrate | Helps maintain ATP levels in response to high energy demands post TBI. Supports cognitive health. Improves symptoms of psychiatric disorders. Preventative supplementation may reduce neural damage following brain injury. | Sakellaris, et al. [53] | Prospective, randomised, open-labelled pilot study, 39 children (aged 1–18) with moderate to severe TBI (GCS at admission between 3 and 9) | 2 |
Cook, et al. [54] | Blinded, repeated measure, placebo cross-over trial, 10 healthy rugby players (mean age 20 ± 0.5) | |||
Borchio, et al. [55] | RCT, 20 healthy semi-professional mountain bikers (mean age 29.5 ± 9.3) | |||
BCAAs | Function as a nitrogen donor in glutamate and GABA production. Supplementation improves markers of cognition, decreases concussive symptoms, and ameliorates sleep disturbances. | Aquilani, et al. [56] | RCT, 40 patients (aged 14–64) with severe TBI and 20 age-matched controls | 2 |
Aquilani, et al. [57] | RCT, 41 patients (49.5 ± 21) with a posttraumatic vegetative or minimally conscious state | |||
Elliott, et al. [58] | Prospective RCT, 26 veterans (mean age 49.2 ± 9.5) with chronic mild TBI (24.5 ± 8.1 years post injury) | |||
Corwin, et al. [59] | RCT, 38 adolescents and young adults (aged 11–34) experiencing mild TBI within the 72 h preceding enrolment | |||
Riboflavin | Helps address the energy deficit and oxidative stress following TBI. | Kent, et al. [60] | RCT, 52 young adults (mean age 20 ± 0.5) experiencing a sport-related concussion within the 24 h preceding enrolment | 3 |
Choline | Helps preserve the integrity of the BBB as well as cellular membranes. Attenuates brain oedema. Acts as a precursor to acetylcholine. Improves spatial and recognition memory performance. Strong safety profile. | Levin [61] | RCT, 14 young adults (mean age 22.5) with mild TBI | 3 |
Aniruddha, et al. [62] | RCT, 44 adults (mean age 36.5 ± 16.2) with mild TBI | |||
Zafonte, et al. [63] | RCT, 1213 adults (aged 18–70) with TBI of all severities (mild: 66.5%, moderate/severe: 33.5%) | |||
Magnesium | Modulates excitotoxicity. Promotes functional and cognitive recovery. Improves behavioural deficits. Helps regulate intracellular calcium concentrations | Temkin, et al. [64] | RCT, 499 subjects (aged 14 and older) with moderate to severe TBI (GCS: 3–12) | 3 |
Standiford, et al. [65] | RCT, 17 adolescents (aged 12–18) with mild TBI (GCS > 13) | |||
Blueberry anthocyanins | Decrease neuroinflammation. Reduce oxidative stress. Improve cognitive function and memory performance. Regulate concentrations of BDNF and 4-HNE in brain tissue. | Krikorian, et al. [66] | Placebo-controlled trial, 16 older adults (mean age 78.2 ± 5.8) with memory decline | 3 |
Whyte, et al. [67] | Double-blind, cross-over trial, 21 healthy children (aged 7–10) | |||
Boespflug, et al. [68] | RCT, 16 older adults (aged 68–92) with mild cognitive impairment | |||
Whyte, et al. [69] | RCT, 112 older adults (aged 65–80) | |||
Miller, et al. [70] | RCT, 37 older adults (aged 60–75) | |||
Barfoot, et al. [71] | RCT, 54 healthy children (aged 7–10) | |||
Krikorian, et al. [72] | RCT, 27 overweight adults (aged 50–65) with subjective cognitive decline | |||
Boswellia serrata | Reduces neuroinflammation via genetic and metabolic mechanisms. Downregulates the production of inflammatory cytokines. Improves global cognition. | Moein, et al. [73] | Double-blind randomised cross-over trial, 38 subjects (aged 15–65) with diffuse axonal injury (GCS ≤ 12) | 2 |
Baram, et al. [74] | RCT, 80 adults (aged 40–80), with focal ischemic signs persisting for >24 h | |||
Meshkat, et al. [75] | RCT, 100 adults (mean age 36 ± 14) with TBI of all severities (mild: 17.15%, moderate: 47.45%, severe: 35.4%) | |||
Enzogenol | Supports cognitive function. Reduces mental fatigue and sleep disturbances. | Theadom, et al. [76] | RCT, 60 adults (aged 21–64) with mild TBI | 2 |
Walter, et al. [77] | RCT, 42 young adults (aged 18–24) with a history of sports-related concussion (six months to three years post-injury | |||
NAC | Decreases neuroinflammation. Improves neuropsychological and cognitive outcomes. | Hoffer, et al. [78] | RCT, 81 US active-duty service members (aged 18–43) with blast exposure mild TBI | 3 |
Melatonin | Supports sleep quality (uncertain effect on daytime sleepiness). | Kemp, et al. [79] | Double-blind crossover pilot study, 7 men (aged 17–55) with post-TBI sleep disturbances (28.6% mild, 42.9% moderate, 28.6% severe) | 2 |
Grima, et al. [80] | Double-blind placebo-controlled crossover study, 33 adults (mean age 37 ± 11) with post-TBI sleep disturbances (6% mild, 9% moderate, 85% severe) |
4. Supplementation and Potential Dietary Protocols for the Prevention and Treatment of TBI
4.1. Positively Asymmetric Nutritive Compounds Derived or Available from Food
4.1.1. Creatine Monohydrate
4.1.2. Omega-3 Fatty Acids: DHA and EPA
4.1.3. BCAAs
4.1.4. Riboflavin and Other B Vitamins
4.1.5. Choline
4.1.6. Magnesium
4.1.7. Blueberry Anthocyanins
4.2. Non-Nutritive Compounds with Clinical Evidence in Humans in the Context of TBI
4.2.1. Boswellia Serrata
4.2.2. Enzogenol
4.2.3. NAC
4.2.4. Melatonin
4.3. Additional Nutrients and Compounds with Lacking or Insufficient Evidence
5. Other Considerations—Caffeine and Sleep
5.1. Caffeine
5.2. Sleep
6. Future Directions—Synthesis, Context, and a “Left of Bang” Approach
6.1. Premorbid Assessment of Nutrient and Metabolic Health Status
6.2. Blood Glucose Regulation
6.3. Thermoregulation
6.4. Integration and Synthesis
7. Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dougall, D.; Poole, N.; Agrawal, N. Pharmacotherapy for chronic cognitive impairment in traumatic brain injury. Cochrane Database Syst. Rev. 2015, 12, CD009221. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Surveillance Report of Traumatic Brain Injury-related Emergency Department Visits, Hospitalizations, and Deaths-United States 2014; U.S. Department of Health and Human Services: Washington, DC, USA, 2019. Available online: http://www.cdc.gov/TraumaticBrainInjury (accessed on 1 June 2024).
- Traumatic Brain Injury Center of Excellence. Annual Report; TBICoE: Washington, DC, USA, 2023; Available online: https://health.mil/Military-Health-Topics/Centers-of-Excellence/Traumatic-Brain-Injury-Center-of-Excellence/Research?type=Reports (accessed on 1 June 2024).
- Whiteneck, G.G.; Cuthbert, J.P.; Corrigan, J.D.; Bogner, J.A. Prevalence of Self-Reported Lifetime History of Traumatic Brain Injury and Associated Disability: A Statewide Population-Based Survey. J. Head Trauma Rehabil. 2016, 31, E55–E62. [Google Scholar] [CrossRef] [PubMed]
- Langlois, J.A.; Rutland-Brown, W.; Wald, M.M. The Epidemiology and Impact of Traumatic Brain Injury: A Brief Overview. J. Head Trauma Rehabil. 2006, 21, 375–378. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Health Care Services; Board on Health Sciences Policy; Committee on Accelerating Progress in Traumatic Brain Injury Research and Care. The Scope and Burden of Traumatic Brain Injury. In Traumatic Brain Injury: A Roadmap for Accelerating Progress; Matney, C., Bowman, K., Berwick, D., Eds.; National Academies Press (US): Washington, DC, USA, 2022. [Google Scholar]
- Faul, M.; Coronado, V. Chapter 1—Epidemiology of traumatic brain injury. In Handbook of Clinical Neurology; Grafman, J., Salazar, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 127, pp. 3–13. [Google Scholar]
- Evans, R.W. Neurology and Trauma; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Ramlackhansingh, A.F.; Brooks, D.J.; Greenwood, R.J.; Bose, S.K.; Turkheimer, F.E.; Kinnunen, K.M.; Gentleman, S.; Heckemann, R.A.; Gunanayagam, K.; Gelosa, G.; et al. Inflammation after trauma: Microglial activation and traumatic brain injury. Ann. Neurol. 2011, 70, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Alves, W.; Macciocchi, S.N.; Barth, J.T. Postconcussive symptoms after uncomplicated mild head injury. J. Head Trauma Rehabil. 1993, 8, 48–59. [Google Scholar] [CrossRef]
- McAllister, T.W.; Sparling, M.B.; Flashman, L.A.; Guerin, S.J.; Mamourian, A.C.; Saykin, A.J. Differential working memory load effects after mild traumatic brain injury. Neuroimage 2001, 14, 1004–1012. [Google Scholar] [CrossRef] [PubMed]
- Zaloshnja, E.; Miller, T.; Langlois, J.A.; Selassie, A.W. Prevalence of long-term disability from traumatic brain injury in the civilian population of the United States, 2005. J. Head Trauma Rehabil. 2008, 23, 394–400. [Google Scholar] [CrossRef]
- Wilson, L.; Stewart, W.; Dams-O’Connor, K.; Diaz-Arrastia, R.; Horton, L.; Menon, D.K.; Polinder, S. The chronic and evolving neurological consequences of traumatic brain injury. Lancet Neurol. 2017, 16, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Heim, L.R.; Bader, M.; Edut, S.; Rachmany, L.; Baratz-Goldstein, R.; Lin, R.; Elpaz, A.; Qubty, D.; Bikovski, L.; Rubovitch, V.; et al. The Invisibility of Mild Traumatic Brain Injury: Impaired Cognitive Performance as a Silent Symptom. J. Neurotrauma 2017, 34, 2518–2528. [Google Scholar] [CrossRef]
- National Center for Injury Prevention and Control. Report to Congress on Mild Traumatic Brain Injury in the United States: Steps to Prevent a Serious Public Health Problem; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2003.
- Silverberg, N.D.; Iverson, G.L.; Cogan, A.; Dams, O.C.K.; Delmonico, R.; Graf, M.J.P.; Iaccarino, M.A.; Kajankova, M.; Kamins, J.; McCulloch, K.L.; et al. The American Congress of Rehabilitation Medicine Diagnostic Criteria for Mild Traumatic Brain Injury. Arch. Phys. Med. Rehabil. 2023, 104, 1343–1355. [Google Scholar] [CrossRef]
- Hallock, H.; Mantwill, M.; Vajkoczy, P.; Wolfarth, B.; Reinsberger, C.; Lampit, A.; Finke, C. Sport-related concussion: A cognitive perspective. Neurol. Clin. Pract. 2023, 13, e200123. [Google Scholar] [CrossRef] [PubMed]
- Curtiss, G.; Salazar, A.M.; Spencer, J.A.N.; Vanderploeg, R.D. Patterns of verbal learning and memory in traumatic brain injury. J. Int. Neuropsychol. Soc. 2001, 7, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Skidmore, E.R. Training to optimize learning after traumatic brain injury. Curr. Phys. Med. Rehabil. Rep. 2015, 3, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Permenter, C.M.; Fernández-de Thomas, R.J.; Sherman, A. Postconcussive Syndrome; StatPearls: Petersburg, FL, USA, 2018. [Google Scholar]
- Harmon, K.G.; Drezner, J.A.; Gammons, M.; Guskiewicz, K.M.; Halstead, M.; Herring, S.A.; Kutcher, J.S.; Pana, A.; Putukian, M.; Roberts, W.O. American Medical Society for Sports Medicine position statement: Concussion in sport. Br. J. Sports Med. 2013, 47, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Arrastia, R.; Kochanek, P.M. Pharmacotherapy for Traumatic Brain Injury: The Next Generation of Clinical Trials. Neurotherapeutics 2023, 20, 1428–1432. [Google Scholar] [CrossRef] [PubMed]
- Lucke-Wold, B.P.; Logsdon, A.F.; Nguyen, L.; Eltanahay, A.; Turner, R.C.; Bonasso, P.; Knotts, C.; Moeck, A.; Maroon, J.C.; Bailes, J.E.; et al. Supplements, nutrition, and alternative therapies for the treatment of traumatic brain injury. Nutr. Neurosci. 2018, 21, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, C.; Dickerson Mayes, K.; Jarvis III, R.C.; Carr, C.; Mannix, R. Nutritional supplement and dietary interventions as a prophylaxis or treatment of sub-concussive repetitive head impact and mild traumatic brain injury: A systematic review. J. Neurotrauma 2023, 40, 1557–1566. [Google Scholar] [CrossRef]
- Ryan, T.; Nagle, S.; Daly, E.; Pearce, A.J.; Ryan, L. A Potential Role Exists for Nutritional Interventions in the Chronic Phase of Mild Traumatic Brain Injury, Concussion and Sports-Related Concussion: A Systematic Review. Nutrients 2023, 15, 3726. [Google Scholar] [CrossRef]
- Ziebell, J.M.; Morganti-Kossmann, M.C. Involvement of pro-and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 2010, 7, 22–30. [Google Scholar] [CrossRef]
- Ladak, A.A.; Enam, S.A.; Ibrahim, M.T. A review of the molecular mechanisms of traumatic brain injury. World Neurosurg. 2019, 131, 126–132. [Google Scholar] [CrossRef]
- Lozano, D.; Gonzales-Portillo, G.S.; Acosta, S.; de la Pena, I.; Tajiri, N.; Kaneko, Y.; Borlongan, C.V. Neuroinflammatory responses to traumatic brain injury: Etiology, clinical consequences, and therapeutic opportunities. Neuropsychiatr. Dis. Treat. 2015, 11, 97–106. [Google Scholar] [PubMed]
- Wang, K.; Cui, D.; Gao, L. Traumatic brain injury: A review of characteristics, molecular basis and management. Front. Biosci Landmark 2016, 21, 890–899. [Google Scholar]
- Beutner, G.; Alavian, K.N.; Jonas, E.A.; Porter, G.A. The mitochondrial permeability transition pore and ATP synthase. Pharmacol. Mitochondria 2017, 240, 21–46. [Google Scholar]
- Mattson, M.P. Chapter 11—Excitotoxicity. In Stress: Physiology, Biochemistry, and Pathology; Fink, G., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 125–134. [Google Scholar]
- Maeda, T.; Lee, S.M.; Hovda, D.A. Restoration of cerebral vasoreactivity by an L-type calcium channel blocker following fluid percussion brain injury. J. Neurotrauma 2005, 22, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Jullienne, A.; Obenaus, A.; Ichkova, A.; Savona-Baron, C.; Pearce, W.J.; Badaut, J. Chronic cerebrovascular dysfunction after traumatic brain injury. J. Neurosci. Res. 2016, 94, 609–622. [Google Scholar] [CrossRef]
- Wei, E.P.; Dietrich, W.D.; Povlishock, J.T.; Navari, R.M.; Kontos, H.A. Functional, morphological, and metabolic abnormalities of the cerebral microcirculation after concussive brain injury in cats. Circ. Res. 1980, 46, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Giza, C.C.; Hovda, D.A. The new neurometabolic cascade of concussion. Neurosurgery 2014, 75, S24. [Google Scholar] [CrossRef]
- Davis, C.K.; Vemuganti, R. DNA damage and repair following traumatic brain injury. Neurobiol. Dis. 2021, 147, 105143. [Google Scholar] [CrossRef] [PubMed]
- Kupina, N.C.; Detloff, M.R.; Bobrowski, W.F.; Snyder, B.J.; Hall, E.D. Cytoskeletal protein degradation and neurodegeneration evolves differently in males and females following experimental head injury. Exp. Neurol. 2003, 180, 55–73. [Google Scholar] [CrossRef]
- Galea, I. The blood–brain barrier in systemic infection and inflammation. Cell. Mol. Immunol. 2021, 18, 2489–2501. [Google Scholar] [CrossRef]
- Bouras, M.; Asehnoune, K.; Roquilly, A. Immune modulation after traumatic brain injury. Front. Med. 2022, 9, 995044. [Google Scholar] [CrossRef] [PubMed]
- Bellander, B.-M.; Singhrao, S.K.; Ohlsson, M.; Mattsson, P.; Svensson, M. Complement activation in the human brain after traumatic head injury. J. Neurotrauma 2001, 18, 1295–1311. [Google Scholar] [CrossRef] [PubMed]
- Kreutzberg, G.W. Microglia: A sensor for pathological events in the CNS. Trends Neurosci. 1996, 19, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-Y.; Tan, M.-S.; Yu, J.-T.; Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med. 2015, 3, 136. [Google Scholar] [PubMed]
- Xu, H.-M. Th1 cytokine-based immunotherapy for cancer. Hepatobiliary Pancreat. Dis. Int. 2014, 13, 482–494. [Google Scholar] [CrossRef] [PubMed]
- Gama Sosa, M.A.; De Gasperi, R.; Pryor, D.; Perez Garcia, G.S.; Perez, G.M.; Abutarboush, R.; Kawoos, U.; Hogg, S.; Ache, B.; Janssen, W.G.; et al. Low-level blast exposure induces chronic vascular remodeling, perivascular astrocytic degeneration and vascular-associated neuroinflammation. Acta Neuropathol. Commun. 2021, 9, 167. [Google Scholar] [CrossRef] [PubMed]
- Kabu, S.; Jaffer, H.; Petro, M.; Dudzinski, D.; Stewart, D.; Courtney, A.; Courtney, M.; Labhasetwar, V. Blast-associated shock waves result in increased brain vascular leakage and elevated ROS levels in a rat model of traumatic brain injury. PloS ONE 2015, 10, e0127971. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A.; Tan, C.; Plattner, F.; Logsdon, A.F.; Pozo, K.; Yousuf, M.A.; Singh, T.; Turner, R.C.; Lucke-Wold, B.P.; Huber, J.D.; et al. Exposure to mild blast forces induces neuropathological effects, neurophysiological deficits and biochemical changes. Mol. Brain 2018, 11, 64. [Google Scholar] [CrossRef] [PubMed]
- Kawoos, U.; McCarron, R.M.; Chavko, M. Protective effect of N-acetylcysteine amide on blast-induced increase in intracranial pressure in rats. Front. Neurol. 2017, 8, 259849. [Google Scholar] [CrossRef]
- Pottala, J.V.; Yaffe, K.; Robinson, J.G.; Espeland, M.A.; Wallace, R.; Harris, W.S. Higher RBC EPA+ DHA corresponds with larger total brain and hippocampal volumes: WHIMS-MRI study. Neurology 2014, 82, 435–442. [Google Scholar] [CrossRef]
- Oliver, J.M.; Jones, M.T.; Kirk, K.M.; Gable, D.A.; Repshas, J.T.; Johnson, T.A.; Andreasson, U.; Norgren, N.; Blennow, K.; Zetterberg, H. Effect of docosahexaenoic acid on a biomarker of head trauma in American football. Med. Sci. Sports Exerc. 2016, 48, 974–982. [Google Scholar] [CrossRef]
- Howe, P.R.; Evans, H.M.; Kuszewski, J.C.; Wong, R.H. Effects of long chain omega-3 polyunsaturated fatty acids on brain function in mildly hypertensive older adults. Nutrients 2018, 10, 1413. [Google Scholar] [CrossRef]
- Patan, M.J.; Kennedy, D.O.; Husberg, C.; Hustvedt, S.O.; Calder, P.C.; Khan, J.; Forster, J.; Jackson, P.A. Supplementation with oil rich in eicosapentaenoic acid, but not in docosahexaenoic acid, improves global cognitive function in healthy, young adults: Results from randomized controlled trials. Am. J. Clin. Nutr. 2021, 114, 914–924. [Google Scholar] [CrossRef] [PubMed]
- Sala-Vila, A.; Satizabal, C.L.; Tintle, N.; Melo van Lent, D.; Vasan, R.S.; Beiser, A.S.; Seshadri, S.; Harris, W.S. Red blood cell DHA is inversely associated with risk of incident alzheimer’s disease and all-cause dementia: Framingham offspring study. Nutrients 2022, 14, 2408. [Google Scholar] [CrossRef] [PubMed]
- Sakellaris, G.; Kotsiou, M.; Tamiolaki, M.; Kalostos, G.; Tsapaki, E.; Spanaki, M.; Spilioti, M.; Charissis, G.; Evangeliou, A. Prevention of complications related to traumatic brain injury in children and adolescents with creatine administration: An open label randomized pilot study. J. Trauma Acute Care Surg. 2006, 61, 322–329. [Google Scholar] [CrossRef]
- Cook, C.J.; Crewther, B.T.; Kilduff, L.P.; Drawer, S.; Gaviglio, C.M. Skill execution and sleep deprivation: Effects of acute caffeine or creatine supplementation-a randomized placebo-controlled trial. J. Int. Soc. Sports Nutr. 2011, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Borchio, L.; Machek, S.B.; Machado, M. Supplemental creatine monohydrate loading improves cognitive function in experienced mountain bikers. J. Sports Med. Phys. Fit. 2020, 60, 1168–1170. [Google Scholar] [CrossRef]
- Aquilani, R.; Iadarola, P.; Contardi, A.; Boselli, M.; Verri, M.; Pastoris, O.; Boschi, F.; Arcidiaco, P.; Viglio, S. Branched-chain amino acids enhance the cognitive recovery of patients with severe traumatic brain injury. Arch. Phys. Med. Rehabil. 2005, 86, 1729–1735. [Google Scholar] [CrossRef]
- Aquilani, R.; Boselli, M.; Boschi, F.; Viglio, S.; Iadarola, P.; Dossena, M.; Pastoris, O.; Verri, M. Branched-chain amino acids may improve recovery from a vegetative or minimally conscious state in patients with traumatic brain injury: A pilot study. Arch. Phys. Med. Rehabil. 2008, 89, 1642–1647. [Google Scholar] [CrossRef]
- Elliott, J.E.; Keil, A.T.; Mithani, S.; Gill, J.M.; O’Neil, M.E.; Cohen, A.S.; Lim, M.M. Dietary Supplementation With Branched Chain Amino Acids to Improve Sleep in Veterans With Traumatic Brain Injury: A Randomized Double-Blind Placebo-Controlled Pilot and Feasibility Trial. Front. Syst. Neurosci. 2022, 16, 854874. [Google Scholar] [CrossRef]
- Corwin, D.J.; Myers, S.R.; Arbogast, K.B.; Lim, M.M.; Elliott, J.E.; Metzger, K.B.; LeRoux, P.; Elkind, J.; Metheny, H.; Berg, J. Head Injury Treatment with HEalthy and Advanced Dietary Supplements (HIT HEADS): A pilot randomized controlled trial of the tolerability, safety, and efficacy of branched chain amino acids (BCAAs) in the treatment of concussion in adolescents and young adults. J. Neurotrauma 2024, 41, 1299–1309. [Google Scholar] [PubMed]
- Kent, J.B.; Diduch, B.K.; Statuta, S.M.; Pugh, K.; MacKnight, J.M. The impact of riboflavin on the duration of sport-related concussion: A randomized placebo-controlled trial. J. Concussion 2023, 7, 20597002231153707. [Google Scholar] [CrossRef]
- Levin, H.S. Treatment of postconcussional symptoms with CDP-choline. J. Neurol. Sci. 1991, 103, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Aniruddha, T.; Pillai, S.; Devi, B.I.; Sampath, S.; Chandramouli, B. Role of citicoline in the management of mild head injury. Indian J. Neurotrauma 2009, 6, 49–52. [Google Scholar]
- Zafonte, R.D.; Bagiella, E.; Ansel, B.M.; Novack, T.A.; Friedewald, W.T.; Hesdorffer, D.C.; Timmons, S.D.; Jallo, J.; Eisenberg, H.; Hart, T. Effect of citicoline on functional and cognitive status among patients with traumatic brain injury: Citicoline Brain Injury Treatment Trial (COBRIT). JAMA 2012, 308, 1993–2000. [Google Scholar] [CrossRef] [PubMed]
- Temkin, N.R.; Anderson, G.D.; Winn, H.R.; Ellenbogen, R.G.; Britz, G.W.; Schuster, J.; Lucas, T.; Newell, D.W.; Mansfield, P.N.; Machamer, J.E. Magnesium sulfate for neuroprotection after traumatic brain injury: A randomised controlled trial. Lancet Neurol. 2007, 6, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Standiford, L.; O’Daniel, M.; Hysell, M.; Trigger, C. A randomized cohort study of the efficacy of PO magnesium in the treatment of acute concussions in adolescents. Am. J. Emerg. Med. 2021, 44, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Krikorian, R.; Shidler, M.D.; Nash, T.A.; Kalt, W.; Vinqvist-Tymchuk, M.R.; Shukitt-Hale, B.; Joseph, J.A. Blueberry supplementation improves memory in older adults. J. Agric. Food Chem. 2010, 58, 3996–4000. [Google Scholar] [CrossRef] [PubMed]
- Whyte, A.R.; Schafer, G.; Williams, C.M. Cognitive effects following acute wild blueberry supplementation in 7-to 10-year-old children. Eur. J. Nutr. 2016, 55, 2151–2162. [Google Scholar] [CrossRef]
- Boespflug, E.L.; Eliassen, J.C.; Dudley, J.A.; Shidler, M.D.; Kalt, W.; Summer, S.S.; Stein, A.L.; Stover, A.N.; Krikorian, R. Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutr. Neurosci. 2018, 21, 297–305. [Google Scholar] [CrossRef]
- Whyte, A.R.; Cheng, N.; Fromentin, E.; Williams, C.M. A Randomized, Double-Blinded, Placebo-Controlled Study to Compare the Safety and Efficacy of Low Dose Enhanced Wild Blueberry Powder and Wild Blueberry Extract (ThinkBlue™) in Maintenance of Episodic and Working Memory in Older Adults. Nutrients 2018, 10, 660. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.G.; Hamilton, D.A.; Joseph, J.A.; Shukitt-Hale, B. Dietary blueberry improves cognition among older adults in a randomized, double-blind, placebo-controlled trial. Eur. J. Nutr. 2018, 57, 1169–1180. [Google Scholar] [CrossRef] [PubMed]
- Barfoot, K.L.; May, G.; Lamport, D.J.; Ricketts, J.; Riddell, P.M.; Williams, C.M. The effects of acute wild blueberry supplementation on the cognition of 7–10-year-old schoolchildren. Eur. J. Nutr. 2019, 58, 2911–2920. [Google Scholar] [CrossRef] [PubMed]
- Krikorian, R.; Skelton, M.R.; Summer, S.S.; Shidler, M.D.; Sullivan, P.G. Blueberry supplementation in midlife for dementia risk reduction. Nutrients 2022, 14, 1619. [Google Scholar] [CrossRef] [PubMed]
- Moein, P.; Abbasi Fard, S.; Asnaashari, A.; Baratian, H.; Barekatain, M.; Tavakoli, N.; Moein, H. The effect of Boswellia Serrata on neurorecovery following diffuse axonal injury. Brain Inj. 2013, 27, 1454–1460. [Google Scholar] [CrossRef] [PubMed]
- Baram, S.M.; Karima, S.; Shateri, S.; Tafakhori, A.; Fotouhi, A.; Lima, B.S.; Rajaei, S.; Mahdavi, M.; Tehrani, H.S.; Aghamollaii, V.; et al. Functional improvement and immune-inflammatory cytokines profile of ischaemic stroke patients after treatment with boswellic acids: A randomized, double-blind, placebo-controlled, pilot trial. Inflammopharmacology 2019, 27, 1101–1112. [Google Scholar] [CrossRef] [PubMed]
- Meshkat, S.; Mahmoodi Baram, S.; Rajaei, S.; Mohammadian, F.; Kouhestani, E.; Amirzargar, N.; Tafakhori, A.; Shafiee, S.; Meshkat, M.; Balenci, L. Boswellia serrata extract shows cognitive benefits in a double-blind, randomized, placebo-controlled pilot clinical trial in individuals who suffered traumatic brain injury. Brain Inj. 2022, 36, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Theadom, A.; Mahon, S.; Barker-Collo, S.; McPherson, K.; Rush, E.; Vandal, A.; Feigin, V. Enzogenol for cognitive functioning in traumatic brain injury: A pilot placebo-controlled RCT. Eur. J. Neurol. 2013, 20, 1135–1144. [Google Scholar] [CrossRef]
- Walter, A.; Finelli, K.; Bai, X.; Arnett, P.; Bream, T.; Seidenberg, P.; Lynch, S.; Johnson, B.; Slobounov, S. Effect of enzogenol® supplementation on cognitive, executive, and vestibular/balance functioning in chronic phase of concussion. Dev. Neuropsychol. 2017, 42, 93–103. [Google Scholar] [CrossRef]
- Hoffer, M.E.; Balaban, C.; Slade, M.D.; Tsao, J.W.; Hoffer, B. Amelioration of acute sequelae of blast induced mild traumatic brain injury by N-acetyl cysteine: A double-blind, placebo controlled study. PloS ONE 2013, 8, e54163. [Google Scholar] [CrossRef]
- Kemp, S.; Biswas, R.; Neumann, V.; Coughlan, A. The value of melatonin for sleep disorders occurring post-head injury: A pilot RCT. Brain Inj. 2004, 18, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Grima, N.A.; Rajaratnam, S.M.W.; Mansfield, D.; Sletten, T.L.; Spitz, G.; Ponsford, J.L. Efficacy of melatonin for sleep disturbance following traumatic brain injury: A randomised controlled trial. BMC Med. 2018, 16, 8. [Google Scholar] [CrossRef]
- OCEBM Levels of Evidence Working Group. The Oxford Levels of Evidence; Oxford Centre for Evidence-Based Medicine: Oxford, UK, 2011; Available online: https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence (accessed on 1 June 2024).
- Ainsley, D.; Philip, J.; Arikan, G.; Opitz, B.; Sterr, A. Potential for use of creatine supplementation following mild traumatic brain injury. Concussion 2017, 2, CNC34. [Google Scholar] [CrossRef] [PubMed]
- Rae, C.; Bröer, S. Creatine as a booster for human brain function. How might it work? Neurochem. Int. 2015, 89, 249–259. [Google Scholar] [CrossRef] [PubMed]
- George, E.O.; Roys, S.; Sours, C.; Rosenberg, J.; Zhuo, J.; Shanmuganathan, K.; Gullapalli, R.P. Longitudinal and prognostic evaluation of mild traumatic brain injury: A 1H-magnetic resonance spectroscopy study. J. Neurotrauma 2014, 31, 1018–1028. [Google Scholar] [CrossRef] [PubMed]
- Rae, C.; Digney, A.L.; McEwan, S.R.; Bates, T.C. Oral creatine monohydrate supplementation improves brain performance: A double–blind, placebo–controlled, cross–over trial. Proc. R. Soc. London. Ser. B Biol. Sci. 2003, 270, 2147–2150. [Google Scholar] [CrossRef]
- Sullivan, P.G.; Geiger, J.D.; Mattson, M.P.; Scheff, S.W. Dietary supplement creatine protects against traumatic brain injury. Ann. Neurol. 2000, 48, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Scheff, S.W.; Dhillon, H.S. Creatine-enhanced diet alters levels of lactate and free fatty acids after experimental brain injury. Neurochem. Res. 2004, 29, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Lyoo, I.K.; Kong, S.W.; Sung, S.M.; Hirashima, F.; Parow, A.; Hennen, J.; Cohen, B.M.; Renshaw, P.F. Multinuclear magnetic resonance spectroscopy of high-energy phosphate metabolites in human brain following oral supplementation of creatine-monohydrate. Psychiatry Res. 2003, 123, 87–100. [Google Scholar] [CrossRef]
- Lukaszuk, J.M.; Robertson, R.J.; Arch, J.E.; Moyna, N.M. Effect of a defined lacto-ovo-vegetarian diet and oral creatine monohydrate supplementation on plasma creatine concentration. J. Strength Cond. Res. 2005, 19, 735–740. [Google Scholar]
- Béard, E.; Braissant, O. Synthesis and transport of creatine in the CNS: Importance for cerebral functions. J. Neurochem. 2010, 115, 297–313. [Google Scholar] [CrossRef]
- Riesberg, L.A.; Weed, S.A.; McDonald, T.L.; Eckerson, J.M.; Drescher, K.M. Beyond muscles: The untapped potential of creatine. Int. Immunopharmacol. 2016, 37, 31–42. [Google Scholar] [CrossRef]
- Kaviani, M.; Shaw, K.; Chilibeck, P.D. Benefits of creatine supplementation for vegetarians compared to omnivorous athletes: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 3041. [Google Scholar] [CrossRef]
- Burke, D.G.; Chilibeck, P.D.; Parise, G.; Candow, D.G.; Mahoney, D.; Tarnopolsky, M. Effect of creatine and weight training on muscle creatine and performance in vegetarians. Med. Sci. Sports Exerc. 2003, 35, 1946–1955. [Google Scholar] [CrossRef]
- Turner, C.E.; Byblow, W.D.; Gant, N. Creatine supplementation enhances corticomotor excitability and cognitive performance during oxygen deprivation. J. Neurosci. 2015, 35, 1773–1780. [Google Scholar] [CrossRef]
- Gordji-Nejad, A.; Matusch, A.; Kleedörfer, S.; Jayeshkumar Patel, H.; Drzezga, A.; Elmenhorst, D.; Binkofski, F.; Bauer, A. Single dose creatine improves cognitive performance and induces changes in cerebral high energy phosphates during sleep deprivation. Sci. Rep. 2024, 14, 4937. [Google Scholar] [CrossRef]
- Poole, V.N.; Abbas, K.; Shenk, T.E.; Breedlove, E.L.; Breedlove, K.M.; Robinson, M.E.; Leverenz, L.J.; Nauman, E.A.; Talavage, T.M.; Dydak, U. MR spectroscopic evidence of brain injury in the non-diagnosed collision sport athlete. Dev. Neuropsychol. 2014, 39, 459–473. [Google Scholar] [CrossRef]
- Schedel, J.-M.; Tanaka, H.; Kiyonaga, A.; Shindo, M.; Schutz, Y. Acute creatine ingestion in human: Consequences on serum creatine and creatinine concentrations. Life Sci. 1999, 65, 2463–2470. [Google Scholar] [CrossRef]
- Bender, A.; Klopstock, T. Creatine for neuroprotection in neurodegenerative disease: End of story? Amino Acids 2016, 48, 1929–1940. [Google Scholar] [CrossRef] [PubMed]
- Dechent, P.; Pouwels, P.; Wilken, B.; Hanefeld, F.; Frahm, J. Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 1999, 277, R698–R704. [Google Scholar] [CrossRef] [PubMed]
- Satizabal, C.L.; Himali, J.J.; Beiser, A.S.; Ramachandran, V.; Melo van Lent, D.; Himali, D.; Aparicio, H.J.; Maillard, P.; DeCarli, C.S.; Harris, W.S. Association of red blood cell omega-3 fatty acids with MRI markers and cognitive function in midlife: The framingham heart study. Neurology 2022, 99, e2572–e2582. [Google Scholar] [CrossRef] [PubMed]
- Klevebro, S.; Juul, S.E.; Wood, T.R. A More Comprehensive Approach to the Neuroprotective Potential of Long-Chain Polyunsaturated Fatty Acids in Preterm Infants Is Needed—Should We Consider Maternal Diet and the n-6:n-3 Fatty Acid Ratio? Front. Pediatr. 2020, 7, 533. [Google Scholar] [CrossRef] [PubMed]
- Endres, S.; Ghorbani, R.; Kelley, V.E.; Georgilis, K.; Lonnemann, G.; Van Der Meer, J.W.; Cannon, J.G.; Rogers, T.S.; Klempner, M.S.; Weber, P.C. The effect of dietary supplementation with n—3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N. Engl. J. Med. 1989, 320, 265–271. [Google Scholar] [CrossRef]
- Gorjão, R.; Azevedo-Martins, A.K.; Rodrigues, H.G.; Abdulkader, F.; Arcisio-Miranda, M.; Procopio, J.; Curi, R. Comparative effects of DHA and EPA on cell function. Pharmacol. Ther. 2009, 122, 56–64. [Google Scholar] [CrossRef]
- Mahadik, S.P.; Pillai, A.; Joshi, S.; Foster, A. Prevention of oxidative stress-mediated neuropathology and improved clinical outcome by adjunctive use of a combination of antioxidants and omega-3 fatty acids in schizophrenia. Int. Rev. Psychiatry 2006, 18, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Palacios-Pelaez, R.; Lukiw, W.J.; Bazan, N.G. Omega-3 essential fatty acids modulate initiation and progression of neurodegenerative disease. Mol. Neurobiol. 2010, 41, 367–374. [Google Scholar] [CrossRef] [PubMed]
- McNamara, R.K.; Almeida, D.M. Omega-3 Polyunsaturated Fatty Acid Deficiency and Progressive Neuropathology in Psychiatric Disorders: A Review of Translational Evidence and Candidate Mechanisms. Harv. Rev. Psychiatry 2019, 27, 94–107. [Google Scholar] [CrossRef] [PubMed]
- Harris, T.C.; De Rooij, R.; Kuhl, E. The shrinking brain: Cerebral atrophy following traumatic brain injury. Ann. Biomed. Eng. 2019, 47, 1941–1959. [Google Scholar] [CrossRef] [PubMed]
- Derbyshire, E. Brain health across the lifespan: A systematic review on the role of omega-3 fatty acid supplements. Nutrients 2018, 10, 1094. [Google Scholar] [CrossRef]
- Karantali, E.; Kazis, D.; McKenna, J.; Chatzikonstantinou, S.; Petridis, F.; Mavroudis, I. Neurofilament light chain in patients with a concussion or head impacts: A systematic review and meta-analysis. Eur. J. Trauma Emerg. Surg. 2022, 48, 1555–1567. [Google Scholar] [CrossRef]
- Joseph, J.R.; Swallow, J.S.; Willsey, K.; Lapointe, A.P.; Khalatbari, S.; Korley, F.K.; Oppenlander, M.E.; Park, P.; Szerlip, N.J.; Broglio, S.P. Elevated markers of brain injury as a result of clinically asymptomatic high-acceleration head impacts in high-school football athletes. J. Neurosurg. 2018, 130, 1642–1648. [Google Scholar] [CrossRef]
- Querzola, G.; Lovati, C.; Mariani, C.; Pantoni, L. A semi-quantitative sport-specific assessment of recurrent traumatic brain injury: The TraQ questionnaire and its application in American football. Neurol. Sci. 2019, 40, 1909–1915. [Google Scholar] [CrossRef]
- Gardner, R.C.; Burke, J.F.; Nettiksimmons, J.; Kaup, A.; Barnes, D.E.; Yaffe, K. Dementia Risk After Traumatic Brain Injury vs. Nonbrain Trauma: The Role of Age and Severity. JAMA Neurol. 2014, 71, 1490–1497. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Cejudo, J.; Wisniewski, T.; Marmar, C.; Zetterberg, H.; Blennow, K.; de Leon, M.J.; Fossati, S. Traumatic Brain Injury and Alzheimer’s Disease: The Cerebrovascular Link. EBioMedicine 2018, 28, 21–30. [Google Scholar] [CrossRef]
- Nestel, P.; Shige, H.; Pomeroy, S.; Cehun, M.; Abbey, M.; Raederstorff, D. The n-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid increase systemic arterial compliance in humans. Am. J. Clin. Nutr. 2002, 76, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Ervin, R.B. Dietary Intake of Fats and Fatty Acids for the United States Population: 1999–2000; Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta, GA, USA, 2004. [Google Scholar]
- Arterburn, L.M.; Hall, E.B.; Oken, H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am. J. Clin. Nutr. 2006, 83, 1467S–1476S. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies. Scientific Opinion on the Tolerable Upper Intake Level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA J. 2012, 10, 2815. [Google Scholar] [CrossRef]
- Yudkoff, M.; Daikhin, Y.; Nissim, I.; Horyn, O.; Luhovyy, B.; Lazarow, A.; Nissim, I. Brain amino acid requirements and toxicity: The example of leucine. J. Nutr. 2005, 135, 1531S–1538S. [Google Scholar] [CrossRef]
- Pillsbury, L.; Oria, M.; Erdman, J. Nutrition and Traumatic Brain Injury: Improving Acute and Subacute Health Outcomes in Military Personnel; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Roberts, K.M.; Fitzpatrick, P.F. Mechanisms of tryptophan and tyrosine hydroxylase. IUBMB Life 2013, 65, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Fernstrom, J.D. Branched-Chain Amino Acids and Brain Function. J. Nutr. 2005, 135, 1539S–1546S. [Google Scholar] [CrossRef]
- Cole, J.T.; Mitala, C.M.; Kundu, S.; Verma, A.; Elkind, J.A.; Nissim, I.; Cohen, A.S. Dietary branched chain amino acids ameliorate injury-induced cognitive impairment. Proc. Natl. Acad. Sci. USA 2010, 107, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Elkind, J.A.; Lim, M.M.; Johnson, B.N.; Palmer, C.P.; Putnam, B.J.; Kirschen, M.P.; Cohen, A.S. Efficacy, dosage, and duration of action of branched chain amino Acid therapy for traumatic brain injury. Front. Neurol. 2015, 6, 73. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.M.; Elkind, J.; Xiong, G.; Galante, R.; Zhu, J.; Zhang, L.; Lian, J.; Rodin, J.; Kuzma, N.N.; Pack, A.I. Dietary therapy mitigates persistent wake deficits caused by mild traumatic brain injury. Sci. Transl. Med. 2013, 5, 215ra173. [Google Scholar] [CrossRef] [PubMed]
- Vuille-Dit-Bille, R.N.; Ha-Huy, R.; Stover, J.F. Changes in plasma phenylalanine, isoleucine, leucine, and valine are associated with significant changes in intracranial pressure and jugular venous oxygen saturation in patients with severe traumatic brain injury. Amino Acids 2012, 43, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Jeter, C.B.; Hergenroeder, G.W.; Ward, N.H.; Moore, A.N.; Dash, P.K. Human mild traumatic brain injury decreases circulating branched-chain amino acids and their metabolite levels. J. Neurotrauma 2013, 30, 671–679. [Google Scholar] [CrossRef]
- Als-Nielsen, B.; Koretz, R.L.; Kjaergard, L.; Gluud, C. Branched-chain amino acids for hepatic encephalopathy. Cochrane Database Syst. Rev. 2003, 5, CD001939. [Google Scholar]
- Benton, D.; Bloxham, A.; Gaylor, C.; Brennan, A.; Young, H.A. Carbohydrate and sleep: An evaluation of putative mechanisms. Front. Nutr. 2022, 9, 933898. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.; McKay, A.; Wong, D.; Rajaratnam, S.M.; Spitz, G.; Williams, G.; Mansfield, D.; Ponsford, J.L. Cognitive behavior therapy to treat sleep disturbance and fatigue after traumatic brain injury: A pilot randomized controlled trial. Arch. Phys. Med. Rehabil. 2017, 98, 1508–1517.e1502. [Google Scholar] [CrossRef] [PubMed]
- Zempleni, J.; Galloway, J.R.; McCormick, D.B. Pharmacokinetics of orally and intravenously administered riboflavin in healthy humans. Am. J. Clin. Nutr. 1996, 63, 54–66. [Google Scholar] [CrossRef]
- Barbre, A.B.; Hoane, M.R. Magnesium and riboflavin combination therapy following cortical contusion injury in the rat. Brain Res. Bull. 2006, 69, 639–646. [Google Scholar] [CrossRef]
- Saedisomeolia, A.; Ashoori, M. Riboflavin in human health: A review of current evidences. Adv. Food Nutr. Res. 2018, 83, 57–81. [Google Scholar] [PubMed]
- Schoenen, J.; Jacquy, J.; Lenaerts, M. Effectiveness of high-dose riboflavin in migraine prophylaxis A randomized controlled trial. Neurology 1998, 50, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Endres, M.; Ahmadi, M.; Kruman, I.; Biniszkiewicz, D.; Meisel, A.; Gertz, K. Folate deficiency increases postischemic brain injury. Stroke 2005, 36, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Gilfix, B.M. Vitamin B12 and homocysteine. Can. Med. Assoc. J. 2005, 173, 1360. [Google Scholar] [CrossRef] [PubMed]
- Tchantchou, F. Homocysteine metabolism and various consequences of folate deficiency. J. Alzheimer’s Dis. 2006, 9, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Albayram, O.; Herbert, M.K.; Kondo, A.; Tsai, C.-Y.; Baxley, S.; Lian, X.; Hansen, M.; Zhou, X.Z.; Lu, K.P. Function and regulation of tau conformations in the development and treatment of traumatic brain injury and neurodegeneration. Cell Biosci. 2016, 6, 59. [Google Scholar] [CrossRef] [PubMed]
- De Jager, C.A.; Oulhaj, A.; Jacoby, R.; Refsum, H.; Smith, A.D. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: A randomized controlled trial. Int. J. Geriatr. Psychiatry 2012, 27, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Jernerén, F.; Cederholm, T.; Refsum, H.; Smith, A.D.; Turner, C.; Palmblad, J.; Eriksdotter, M.; Hjorth, E.; Faxen-Irving, G.; Wahlund, L.-O. Homocysteine status modifies the treatment effect of Omega-3 fatty acids on cognition in a randomized clinical trial in mild to moderate Alzheimer’s disease: The OmegAD study. J. Alzheimer’s Dis. 2019, 69, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Laganà, A.S. The Link between Homocysteine and Omega-3 Polyunsaturated Fatty Acid: Critical Appraisal and Future Directions. Biomolecules 2020, 10, 219. [Google Scholar] [CrossRef]
- Wu, F.; Xu, K.; Liu, L.; Zhang, K.; Xia, L.; Zhang, M.; Teng, C.; Tong, H.; He, Y.; Xue, Y. Vitamin B12 enhances nerve repair and improves functional recovery after traumatic brain injury by inhibiting ER stress-induced neuron injury. Front. Pharmacol. 2019, 10, 406. [Google Scholar] [CrossRef]
- Roussel, B.D.; Kruppa, A.J.; Miranda, E.; Crowther, D.C.; Lomas, D.A.; Marciniak, S.J. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol. 2013, 12, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lu, D.; Wang, M.; Liu, G.; Feng, Y.; Ren, Y.; Sun, X.; Chen, Z.; Wang, Z. Endoplasmic reticulum stress and the unfolded protein response: Emerging regulators in progression of traumatic brain injury. Cell Death Dis. 2024, 15, 156. [Google Scholar] [CrossRef] [PubMed]
- Secades, J. Role of citicoline in the management of traumatic brain injury. Pharmaceuticals 2021, 14, 410. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Liu, X.; Liu, C.; Ang, A.F.A.; Massaro, J.; Devine, S.A.; Auerbach, S.H.; Blusztajn, J.K.; Au, R.; Jacques, P.F. Is dietary choline intake related to dementia and Alzheimer’s disease risks? Results from the Framingham Heart Study. Am. J. Clin. Nutr. 2022, 116, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Velazquez, R.; Ferreira, E.; Winslow, W.; Dave, N.; Piras, I.S.; Naymik, M.; Huentelman, M.J.; Tran, A.; Caccamo, A.; Oddo, S. Maternal choline supplementation ameliorates Alzheimer’s disease pathology by reducing brain homocysteine levels across multiple generations. Mol. Psychiatry 2020, 25, 2620–2629. [Google Scholar] [CrossRef] [PubMed]
- Velazquez, R.; Ferreira, E.; Knowles, S.; Fux, C.; Rodin, A.; Winslow, W.; Oddo, S. Lifelong choline supplementation ameliorates Alzheimer’s disease pathology and associated cognitive deficits by attenuating microglia activation. Aging Cell 2019, 18, e13037. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health, Office of Dietary Supplements. Choline Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/Choline-HealthProfessional/ (accessed on 1 June 2024).
- Moriyama, M.; Tsukumo, T.; Nakagawa, Y. Effects of CDP-choline on head injury. Gendai No Rinsho 1967, 1, 114–120. [Google Scholar]
- Horrocks, L.A.; Dorman, R.V.; Dabrowiecki, Z.; Goracci, G.; Porcellati, G. CDPcholine and CDPethanolamine prevent the release of free fatty acids during brain ischemia. Prog. Lipid Res. 1981, 20, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Le Poncin-Lafitte, M.; Duterte, D.; Lageron, A.; Rapin, J. CDP choline and experimental cerebrovascular disorder. Agressol. Rev. Int. Physio-Biol. Pharmacol. Appl. Aux Eff. L’agression 1986, 27, 413–416. [Google Scholar]
- Başkaya, M.K.; Doğan, A.; Rao, A.M.; Dempsey, R.J. Neuroprotective effects of citicoline on brain edema and blood—Brain barrier breakdown after traumatic brain injury. J. Neurosurg. 2000, 92, 448–452. [Google Scholar] [CrossRef]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 2008, 22, 659–661. [Google Scholar] [CrossRef] [PubMed]
- Dixon, C.E.; Ma, X.; Marion, D.W. Effects of CDP-choline treatment on neurobehavioral deficits after TBI and on hippocampal and neocortical acetlycholine release. J. Neurotrauma 1997, 14, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Gu, Y.; Zhao, Y.; Li, Z.; Sun, M. Citicoline protects brain against closed head injury in rats through suppressing oxidative stress and calpain over-activation. Neurochem. Res. 2014, 39, 1206–1218. [Google Scholar] [CrossRef] [PubMed]
- Meshkini, A.; Meshkini, M.; Sadeghi-Bazargani, H. Citicoline for traumatic brain injury: A systematic review & meta-analysis. J. Inj. Violence Res. 2017, 9, 41. [Google Scholar] [PubMed]
- Secades, J. Citicoline for the treatment of head injury: A systematic review and meta-analysis of controlled clinical trials. J. Trauma Treat. 2014, 4, 2–4. [Google Scholar] [CrossRef]
- Poole, V.N.; Breedlove, E.L.; Shenk, T.E.; Abbas, K.; Robinson, M.E.; Leverenz, L.J.; Nauman, E.A.; Dydak, U.; Talavage, T.M. Sub-concussive hit characteristics predict deviant brain metabolism in football athletes. Dev. Neuropsychol. 2015, 40, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Arenth, P.M.; Russell, K.C.; Ricker, J.H.; Zafonte, R.D. CDP-Choline as a Biological Supplement During Neurorecovery: A Focused Review. PMR 2011, 3, S123–S131. [Google Scholar] [CrossRef]
- Marques, B.C.A.A.; Klein, M.R.S.T.; da Cunha, M.R.; de Souza Mattos, S.; de Paula Nogueira, L.; de Paula, T.; Corrêa, F.M.; Oigman, W.; Neves, M.F. Effects of oral magnesium supplementation on vascular function: A systematic review and meta-analysis of randomized controlled trials. High Blood Press. Cardiovasc. Prev. 2020, 27, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.H.; Hong, S.; Pedersen, P.L. Chemical mechanism of ATP synthase: Magnesium plays a pivotal role in formation of the transition state where ATP is synthesized from ADP and inorganic phosphate. J. Biol. Chem. 1999, 274, 28853–28856. [Google Scholar] [CrossRef]
- Pasternak, K.; Kocot, J.; Horecka, A. Biochemistry of magnesium. J. Elem. 2010, 15, 601–616. [Google Scholar] [CrossRef]
- Hoane, M.R. The Role of Magnesium Therapy in Learning and Memory; University of Adelaide Press: Adelaide, Australia, 2018. [Google Scholar]
- Rosanoff, A.; Weaver, C.M.; Rude, R.K. Suboptimal magnesium status in the United States: Are the health consequences underestimated? Nutr. Rev. 2012, 70, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Ates-Alagoz, Z.; Adejare, A. NMDA Receptor Antagonists for Treatment of Depression. Pharmaceuticals 2013, 6, 480–499. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel, C.; Vink, R. The role of magnesium in traumatic brain injury. Clin. Calcium 2004, 14, 9–14. [Google Scholar] [PubMed]
- Vink, R.; O’Connor, C.A.; Nimmo, A.J.; Heath, D.L. Magnesium attenuates persistent functional deficits following diffuse traumatic brain injury in rats. Neurosci. Lett. 2003, 336, 41–44. [Google Scholar] [CrossRef]
- Arango, M.F.; Bainbridge, D. Magnesium for acute traumatic brain injury. Cochrane Database Syst. Rev. 2008, 4, CD005400. [Google Scholar] [CrossRef] [PubMed]
- Hillered, L.; Vespa, P.M.; Hovda, D.A. Translational neurochemical research in acute human brain injury: The current status and potential future for cerebral microdialysis. J. Neurotrauma 2005, 22, 3–41. [Google Scholar] [CrossRef]
- McIntosh, T.K.; Faden, A.I.; Yamakami, I.; Vink, R. Magnesium deficiency exacerbates and pretreatment improves outcome following traumatic brain injury in rats: 31P magnetic resonance spectroscopy and behavioral studies. J. Neurotrauma 1988, 5, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Hoane, M.R. Treatment with magnesium improves reference memory but not working memory while reducing GFAP expression following traumatic brain injury. Restor. Neurol. Neurosci. 2005, 23, 67–77. [Google Scholar]
- Ahishali, M.K.B. The role of magnesium in edema and blood brain barrier disruption. In Magnesium in the Central Nervous System; University of Adelaide Press: Adelaide, Australia, 2011; p. 135. [Google Scholar]
- Hoane, M.R. Assessment of cognitive function following magnesium therapy in the traumatically injured brain. Magnes. Res. 2007, 20, 229–236. [Google Scholar]
- Slutsky, I.; Abumaria, N.; Wu, L.-J.; Huang, C.; Zhang, L.; Li, B.; Zhao, X.; Govindarajan, A.; Zhao, M.-G.; Zhuo, M.; et al. Enhancement of Learning and Memory by Elevating Brain Magnesium. Neuron 2010, 65, 165–177. [Google Scholar] [CrossRef]
- Leung, A.Y.; Foster, S. Encyclopedia of Common Natural Ingredients Used in Food, Drugs, and Cosmetics; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Rajabian, A.; Farzanehfar, M.; Hosseini, H.; Arab, F.L.; Nikkhah, A. Boswellic acids as promising agents for the management of brain diseases. Life Sci. 2023, 312, 121196. [Google Scholar] [CrossRef]
- Wei, C.; Fan, J.; Sun, X.; Yao, J.; Guo, Y.; Zhou, B.; Shang, Y. Acetyl-11-keto-β-boswellic acid ameliorates cognitive deficits and reduces amyloid-β levels in APPswe/PS1dE9 mice through antioxidant and anti-inflammatory pathways. Free. Radic. Biol. Med. 2020, 150, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Sayed, A.S.; El Sayed, N.S.E.D. Co-administration of 3-acetyl-11-keto-beta-boswellic acid potentiates the protective effect of celecoxib in lipopolysaccharide-induced cognitive impairment in mice: Possible implication of anti-inflammatory and antiglutamatergic pathways. J. Mol. Neurosci. 2016, 59, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Sayed, A.S.; Gomaa, I.E.O.; Bader, M.; El Sayed, N.S.E.D. Role of 3-acetyl-11-keto-beta-boswellic acid in counteracting LPS-induced neuroinflammation via modulation of miRNA-155. Mol. Neurobiol. 2018, 55, 5798–5808. [Google Scholar] [CrossRef]
- Kundu, S.; Singh, S. Molecular _targeting of Nrf2 and NFkB Signaling by 3-Acetyl-11-Keto-β-Boswellic Acid and Piperine Against Fluid Percussion Rat Model of Traumatic Brain Injury; Research Square: Durham, NC, USA, 2021. [Google Scholar]
- Sheykhiyeh Golzardi, M.; Rezaenejad, R.; Kachouei, E.; Siahposht-Khachaki, A. P33: The Effect of Boswellia Serrata Extract and AKBA (Acetyl-11-keto-β-Boswellic Acid) on the Neurological Scores, Brain Edema and Brain-Blood Barrier after Severe Traumatic Brain Injury in Male Rats: The Role of IL-1β and IL-10. Neurosci. J. Shefaye Khatam 2018, 6, 64. [Google Scholar]
- Moussaieff, A.; Shein, N.a.A.; Tsenter, J.; Grigoriadis, S.; Simeonidou, C.; Alexandrovich, A.G.; Trembovler, V.; Ben-Neriah, Y.; Schmitz, M.L.; Fiebich, B.L. Incensole acetate: A novel neuroprotective agent isolated from Boswellia carterii. J. Cereb. Blood Flow Metab. 2008, 28, 1341–1352. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB signaling in inflammation. Signal Transduct. _target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.-C.; Chang, J.-H.; Jin, J. Regulation of nuclear factor-κB in autoimmunity. Trends Immunol. 2013, 34, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.S.; Ghosh, S. NF-κB in immunobiology. Cell Res. 2011, 21, 223–244. [Google Scholar] [CrossRef]
- Adams, J.H.; Doyle, D.; Ford, I.; Gennarelli, T.; Graham, D.; McLellan, D. Diffuse axonal injury in head injury: Definition, diagnosis and grading. Histopathology 1989, 15, 49–59. [Google Scholar] [CrossRef]
- Ramaswamy, S.; Rodriguez, A.; Driscoll, D.; Rao, V. Nutraceuticals for traumatic brain injury: Should you recommend their use? Curr. Psychiatry 2017, 16, 34–45. [Google Scholar]
- Barwick, F.; Arnett, P.; Slobounov, S. EEG correlates of fatigue during administration of a neuropsychological test battery. Clin. Neurophysiol. 2012, 123, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.E.; McEvoy, L.K.; Gevins, A. Neurophysiological indices of strategy development and skill acquisition. Cogn. Brain Res. 1999, 7, 389–404. [Google Scholar] [CrossRef] [PubMed]
- Tenório, M.C.d.S.; Graciliano, N.G.; Moura, F.A.; Oliveira, A.C.M.d.; Goulart, M.O.F. N-Acetylcysteine (NAC): Impacts on Human Health. Antioxidants 2021, 10, 967. [Google Scholar] [CrossRef] [PubMed]
- Kawoos, U.; Abutarboush, R.; Zarriello, S.; Qadri, A.; Ahlers, S.T.; McCarron, R.M.; Chavko, M. N-acetylcysteine amide ameliorates blast-induced changes in blood-brain barrier integrity in rats. Front. Neurol. 2019, 10, 650. [Google Scholar] [CrossRef] [PubMed]
- Pandya, J.D.; Readnower, R.D.; Patel, S.P.; Yonutas, H.M.; Pauly, J.R.; Goldstein, G.A.; Rabchevsky, A.G.; Sullivan, P.G. N-acetylcysteine amide confers neuroprotection, improves bioenergetics and behavioral outcome following TBI. Exp. Neurol. 2014, 257, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, H.-d.; Zhou, X.-m.; Fang, J.; Zhu, L.; Ding, K. N-acetylcysteine amide provides neuroprotection via Nrf2-ARE pathway in a mouse model of traumatic brain injury. Drug Des. Dev. Ther. 2018, 12, 4117–4127. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.S.; Empey, P.E.; Kochanek, P.M.; Bell, M.J. N-acetylcysteine and probenecid adjuvant therapy for traumatic brain injury. Neurotherapeutics 2023, 20, 1529–1537. [Google Scholar] [CrossRef] [PubMed]
- Blum, B.; Kaushal, S.; Khan, S.; Kim, J.H.; Alvarez Villalba, C.L. Melatonin in Traumatic Brain Injury and Cognition. Cureus 2021, 13, e17776. [Google Scholar] [CrossRef]
- Barlow, K.M.; Esser, M.J.; Veidt, M.; Boyd, R. Melatonin as a Treatment after Traumatic Brain Injury: A Systematic Review and Meta-Analysis of the Pre-Clinical and Clinical Literature. J. Neurotrauma 2019, 36, 523–537. [Google Scholar] [CrossRef]
- Erland, L.A.E.; Saxena, P.K. Melatonin Natural Health Products and Supplements: Presence of Serotonin and Significant Variability of Melatonin Content. J. Clin. Sleep Med. 2017, 13, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Cohen, P.A.; Avula, B.; Wang, Y.-H.; Katragunta, K.; Khan, I. Quantity of Melatonin and CBD in Melatonin Gummies Sold in the US. JAMA 2023, 329, 1401–1402. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Hiebert, J.B.; Hartwell, J.; Thimmesch, A.R.; Pierce, J.D. Systematic Review of Traumatic Brain Injury and the Impact of Antioxidant Therapy on Clinical Outcomes. Worldviews Evid-Based Nurs. 2016, 13, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Chiu, L.S.; Anderton, R.S.; Knuckey, N.W.; Meloni, B.P. Peptide pharmacological approaches to treating traumatic brain injury: A case for arginine-rich peptides. Mol. Neurobiol. 2017, 54, 7838–7857. [Google Scholar] [CrossRef] [PubMed]
- Plosker, G.L.; Gauthier, S. Cerebrolysin: A review of its use in dementia. Drugs Aging 2009, 26, 893–915. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-C.; Wei, S.-T.; Tsaia, S.-C.; Chen, X.-X.; Cho, D.-Y. Cerebrolysin enhances cognitive recovery of mild traumatic brain injury patients: Double-blind, placebo-controlled, randomized study. Br. J. Neurosurg. 2013, 27, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Muresanu, D.F.; Florian, S.; Hömberg, V.; Matula, C.; von Steinbüchel, N.; Vos, P.E.; von Wild, K.; Birle, C.; Muresanu, I.; Slavoaca, D.; et al. Efficacy and safety of cerebrolysin in neurorecovery after moderate-severe traumatic brain injury: Results from the CAPTAIN II trial. Neurol. Sci. 2020, 41, 1171–1181. [Google Scholar] [CrossRef] [PubMed]
- Dolotov, O.V.; Karpenko, E.A.; Inozemtseva, L.S.; Seredenina, T.S.; Levitskaya, N.G.; Rozyczka, J.; Dubynina, E.V.; Novosadova, E.V.; Andreeva, L.A.; Alfeeva, L.Y. Semax, an analog of ACTH (4–10) with cognitive effects, regulates BDNF and trkB expression in the rat hippocampus. Brain Res. 2006, 1117, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Medvedeva, E.V.; Dmitrieva, V.G.; Limborska, S.A.; Myasoedov, N.F.; Dergunova, L.V. Semax, an analog of ACTH (4–7), regulates expression of immune response genes during ischemic brain injury in rats. Mol. Genet. Genom. 2017, 292, 635–653. [Google Scholar] [CrossRef]
- Gouliaev, A.H.; Senning, A. Piracetam and other structurally related nootropics. Brain Res. Rev. 1994, 19, 180–222. [Google Scholar] [CrossRef]
- De Vreese, L.P.; Neri, M.; Boiardi, R.; Ferrari, P.; Belloi, L.; Salvioli, G. Memory training and drug therapy act differently on memory and metamemory functioning: Evidence from a pilot study. Arch. Gerontol. Geriatr. 1996, 22 (Suppl. S1), 9–22. [Google Scholar] [CrossRef]
- Malykh, A.G.; Sadaie, M.R. Piracetam and piracetam-like drugs: From basic science to novel clinical applications to CNS disorders. Drugs 2010, 70, 287–312. [Google Scholar] [CrossRef] [PubMed]
- Pugsley, T.A.; Shih, Y.H.; Coughenour, L.; Stewart, S.F. Some neurochemical properties of pramiracetam (CI-879), a new cognition-enhancing agent. Drug Dev. Res. 1983, 3, 407–420. [Google Scholar] [CrossRef]
- Butler, D.E.; Nordin, I.C.; L’Italien, Y.J.; Zweisler, L.; Poschel, P.H.; Marriott, J.G. Amnesia-reversal activity of a series of N-[(disubstituted-amino) alkyl]-2-oxo-1-pyrrolidineacetamides, including pramiracetam. J. Med. Chem. 1984, 27, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Claus, J.; Ludwig, C.; Mohr, E.; Giuffra, M.; Blin, J.; Chase, T. Nootropic drugs in Alzheimer’s disease: Symptomatic treatment with pramiracetam. Neurology 1991, 41, 570. [Google Scholar] [CrossRef] [PubMed]
- McLean, A.; Cardenas, D.D.; Burgess, D.; Gamzu, E. Placebo-controlled study of pramiracetam in young males with memory and cognitive problems resulting from head injury and anoxia. Brain Inj. 1991, 5, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Ramirez-Tortosa, M. Curcumin and health. Molecules 2016, 21, 264. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Li, Z.; Yao, Y.; Fang, L.; Yu, M.; Wang, Z. Curcumin in the treatment of inflammation and oxidative stress responses in traumatic brain injury: A systematic review and meta-analysis. Front. Neurol. 2024, 15, 1380353. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Li, Q.; Guo, Y.; Wu, X.; Han, M.; Zhang, L.; Wang, P. Construction of Curcumin-Loaded Hydrogels for Treatment of Traumatic Brain Injury. ACS Appl. Polym. Mater. 2023, 5, 5783–5793. [Google Scholar] [CrossRef]
- Joseph, A.; Wood, T.; Chen, C.-C.; Corry, K.; Snyder, J.M.; Juul, S.E.; Parikh, P.; Nance, E. Curcumin-loaded polymeric nanoparticles for neuroprotection in neonatal rats with hypoxic-ischemic encephalopathy. Nano Res. 2018, 11, 5670–5688. [Google Scholar] [CrossRef]
- Small, G.W.; Siddarth, P.; Li, Z.; Miller, K.J.; Ercoli, L.; Emerson, N.D.; Martinez, J.; Wong, K.-P.; Liu, J.; Merrill, D.A. Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: A double-blind, placebo-controlled 18-month trial. Am. J. Geriatr. Psychiatry 2018, 26, 266–277. [Google Scholar] [CrossRef]
- Rainey-Smith, S.R.; Brown, B.M.; Sohrabi, H.R.; Shah, T.; Goozee, K.G.; Gupta, V.B.; Martins, R.N. Curcumin and cognition: A randomised, placebo-controlled, double-blind study of community-dwelling older adults. Br. J. Nutr. 2016, 115, 2106–2113. [Google Scholar] [CrossRef]
- Cox, K.H.; Pipingas, A.; Scholey, A.B. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J. Psychopharmacol. 2015, 29, 642–651. [Google Scholar] [CrossRef]
- Hallberg, S.J.; McKenzie, A.L.; Williams, P.T.; Bhanpuri, N.H.; Peters, A.L.; Campbell, W.W.; Hazbun, T.L.; Volk, B.M.; McCarter, J.P.; Phinney, S.D. Effectiveness and safety of a novel care model for the management of type 2 diabetes at 1 year: An open-label, non-randomized, controlled study. Diabetes Ther. 2018, 9, 583–612. [Google Scholar] [CrossRef] [PubMed]
- White, H.; Venkatesh, B. Clinical review: Ketones and brain injury. Crit. Care 2011, 15, 219. [Google Scholar] [CrossRef] [PubMed]
- Daines, S.A. The therapeutic potential and limitations of ketones in traumatic brain injury. Front. Neurol. 2021, 12, 723148. [Google Scholar] [CrossRef] [PubMed]
- Glenn, T.C.; Martin, N.A.; McArthur, D.L.; Hovda, D.A.; Vespa, P.; Johnson, M.L.; Horning, M.A.; Brooks, G.A. Endogenous Nutritive Support after Traumatic Brain Injury: Peripheral Lactate Production for Glucose Supply via Gluconeogenesis. J. Neurotrauma 2015, 32, 811–819. [Google Scholar] [CrossRef]
- Brooks, G.A. The tortuous path of lactate shuttle discovery: From cinders and boards to the lab and ICU. J. Sport Health Sci. 2020, 9, 446–460. [Google Scholar] [CrossRef]
- Glenn, T.C.; Martin, N.A.; Horning, M.A.; McArthur, D.L.; Hovda, D.A.; Vespa, P.; Brooks, G.A. Lactate: Brain fuel in human traumatic brain injury: A comparison with normal healthy control subjects. J. Neurotrauma 2015, 32, 820–832. [Google Scholar] [CrossRef]
- Wickwire, E.M.; Shaya, F.T.; Scharf, S.M. Health economics of insomnia treatments: The return on investment for a good night’s sleep. Sleep Med. Rev. 2016, 30, 72–82. [Google Scholar] [CrossRef]
- Perthen, J.E.; Lansing, A.E.; Liau, J.; Liu, T.T.; Buxton, R.B. Caffeine-induced uncoupling of cerebral blood flow and oxygen metabolism: A calibrated BOLD fMRI study. Neuroimage 2008, 40, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Eade, J.M. Effects of Caffeine on Measures of Clinical Outcome and Recovery Following Mild Traumatic Brain Injury in Adolescents; University of South Carolina: Columbia, SC, USA, 2023. [Google Scholar]
- Zhu, Y.; Hu, C.-X.; Liu, X.; Zhu, R.-X.; Wang, B.-Q. Moderate coffee or tea consumption decreased the risk of cognitive disorders: An updated dose–response meta-analysis. Nutr. Rev. 2023, 82, 738–748. [Google Scholar] [CrossRef]
- Nila, I.S.; Villagra Moran, V.M.; Khan, Z.A.; Hong, Y. Effect of Daily Coffee Consumption on the Risk of Alzheimer’s Disease: A Systematic Review and Meta-Analysis. J. Lifestyle Med. 2023, 13, 83–89. [Google Scholar] [CrossRef]
- Hong, C.T.; Chan, L.; Bai, C.H. The Effect of Caffeine on the Risk and Progression of Parkinson’s Disease: A Meta-Analysis. Nutrients 2020, 12, 1860. [Google Scholar] [CrossRef]
- Barshikar, S.; Bell, K.R. Sleep Disturbance After TBI. Curr. Neurol. Neurosci. Rep. 2017, 17, 87. [Google Scholar] [CrossRef] [PubMed]
- Piantino, J.A.; Iliff, J.J.; Lim, M.M. The bidirectional link between sleep disturbances and traumatic brain injury symptoms: A role for glymphatic dysfunction? Biol. Psychiatry 2022, 91, 478–487. [Google Scholar] [CrossRef]
- Wickwire, E.M.; Williams, S.G.; Roth, T.; Capaldi, V.F.; Jaffe, M.; Moline, M.; Motamedi, G.K.; Morgan, G.W.; Mysliwiec, V.; Germain, A. Sleep, sleep disorders, and mild traumatic brain injury. What we know and what we need to know: Findings from a national working group. Neurotherapeutics 2016, 13, 403–417. [Google Scholar] [CrossRef]
- Chaput, G.; Giguère, J.-F.; Chauny, J.-M.; Denis, R.; Lavigne, G. Relationship among subjective sleep complaints, headaches, and mood alterations following a mild traumatic brain injury. Sleep Med. 2009, 10, 713–716. [Google Scholar] [CrossRef] [PubMed]
- Plog, B.; Dashnaw, M.; Hitomi, E.; Peng, W.; Liao, Y.; Lou, N.; Deane, R.; Nedergaard, M. Biomarkers of Traumatic Injury Are Transported from Brain to Blood via the Glymphatic System. J. Neurosci. 2015, 35, 518. [Google Scholar] [CrossRef]
- Li, L.; Chopp, M.; Ding, G.; Davoodi-Bojd, E.; Zhang, L.; Li, Q.; Zhang, Y.; Xiong, Y.; Jiang, Q. MRI detection of impairment of glymphatic function in rat after mild traumatic brain injury. Brain Res. 2020, 1747, 147062. [Google Scholar] [CrossRef]
- Ren, Z.; Iliff, J.J.; Yang, L.; Yang, J.; Chen, X.; Chen, M.J.; Giese, R.N.; Wang, B.; Shi, X.; Nedergaard, M. ‘Hit & Run’ Model of Closed-Skull Traumatic Brain Injury (TBI) Reveals Complex Patterns of Post-Traumatic AQP4 Dysregulation. J. Cereb. Blood Flow Metab. 2013, 33, 834–845. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.; Wright, D.K.; Yamakawa, G.R.; Shultz, S.R.; Mychasiuk, R. Repetitive Mild Traumatic Brain Injury Alters Glymphatic Clearance Rates in Limbic Structures of Adolescent Female Rats. Sci. Rep. 2020, 10, 6254. [Google Scholar] [CrossRef] [PubMed]
- Iliff, J.; Chen, M.; Plog, B.; Zeppenfeld, D.; Soltero, M.; Yang, L.; Singh, I.; Deane, R.; Nedergaard, M. Impairment of Glymphatic Pathway Function Promotes Tau Pathology after Traumatic Brain Injury. J. Neurosci. 2014, 34, 16180. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Yang, Z.; Li, Z.; Li, M.; Sun, H.; Zhuang, Z.; Yang, W.; Hu, Z.; Chen, X.; Lin, D.; et al. Increased glymphatic system activity in patients with mild traumatic brain injury. Front. Neurol. 2023, 14, 1148878. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-L.; Kuo, Y.-S.; Tseng, Y.-C.; Chen, D.Y.-T.; Chiu, W.-T.; Chen, C.-J. Susceptibility-weighted MRI in mild traumatic brain injury. Neurology 2015, 84, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Ouellet, M.-C.; Morin, C.M. Efficacy of cognitive-behavioral therapy for insomnia associated with traumatic brain injury: A single-case experimental design. Arch. Phys. Med. Rehabil. 2007, 88, 1581–1592. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.C.; Manber, R.; Segal, Z.; Xia, Y.; Shapiro, S.; Wyatt, J.K. A randomized controlled trial of mindfulness meditation for chronic insomnia. Sleep 2014, 37, 1553–1563. [Google Scholar] [CrossRef] [PubMed]
- Zollman, F.S.; Larson, E.B.; Wasek-Throm, L.K.; Cyborski, C.M.; Bode, R.K. Acupuncture for treatment of insomnia in patients with traumatic brain injury: A pilot intervention study. J. Head Trauma Rehabil. 2012, 27, 135–142. [Google Scholar] [CrossRef]
- Ford, M.E.; Groet, E.; Daams, J.G.; Geurtsen, G.J.; Van Bennekom, C.A.M.; Van Someren, E.J.W. Non-pharmacological treatment for insomnia following acquired brain injury: A systematic review. Sleep Med. Rev. 2020, 50, 101255. [Google Scholar] [CrossRef]
- Killgore, W.; Shane, B.; Vanuk, J.; Franco, J.; Castellanos, A.; Millan, M.; Grandner, M.; Bajaj, S. 1143 short wavelength light therapy facilitates recovery from mild traumatic brain injury. J. Sleep Sleep Disord. Res. 2017, 40, A426–A427. [Google Scholar] [CrossRef]
- Shan, R.S.L.P.; Ashworth, N.L. Comparison of lorazepam and zopiclone for insomnia in patients with stroke and brain injury: A randomized, crossover, double-blinded trial. Am. J. Phys. Med. Rehabil. 2004, 83, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Osier, N.; McGreevy, E.; Pham, L.; Puccio, A.; Ren, D.; Conley, Y.P.; Alexander, S.; Dixon, C.E. Melatonin as a therapy for traumatic brain injury: A review of published evidence. Int. J. Mol. Sci. 2018, 19, 1539. [Google Scholar] [CrossRef] [PubMed]
- Lequerica, A.; Jasey, N.; Tremont, J.N.P.; Chiaravalloti, N.D. Pilot study on the effect of ramelteon on sleep disturbance after traumatic brain injury: Preliminary evidence from a clinical trial. Arch. Phys. Med. Rehabil. 2015, 96, 1802–1809. [Google Scholar] [CrossRef] [PubMed]
- Minkel, J.; Krystal, A.D. Optimizing the Pharmacologic Treatment of Insomnia: Current Status and Future Horizons. Sleep Med. Clin. 2013, 8, 333–350. [Google Scholar] [CrossRef]
- Driver, S.; Stork, R. Pharmacological management of sleep after traumatic brain injury. NeuroRehabilitation 2018, 43, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Doughty, K.N.; Blazek, J.; Leonard, D.; Barlow, C.E.; DeFina, L.F.; Omree, S.; Farrell, S.W.; Shuval, K. Omega-3 index, cardiorespiratory fitness, and cognitive function in mid-age and older adults. Prev. Med. Rep. 2023, 35, 102364. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; He, R.; Zhang, Y.; Li, B.; Li, F.; Fu, Y.; Rong, S. Relationship between Whole-Blood Magnesium and Cognitive Performance among Chinese Adults. Nutrients 2023, 15, 2706. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghazali, K.; Eltayeb, S.; Musleh, A.; Al-Abdi, T.; Ganji, V.; Shi, Z. Serum magnesium and cognitive function among Qatari adults. Front. Aging Neurosci. 2020, 12, 101. [Google Scholar] [CrossRef]
- Smith, A.D.; Refsum, H. Homocysteine–from disease biomarker to disease prevention. J. Intern. Med. 2021, 290, 826–854. [Google Scholar] [CrossRef]
- van Soest, A.P.M.; van de Rest, O.; Witkamp, R.F.; Cederholm, T.; de Groot, L.C.P.G.M. DHA status influences effects of B-vitamin supplementation on cognitive ageing: A post-hoc analysis of the B-proof trial. Eur. J. Nutr. 2022, 61, 3731–3739. [Google Scholar] [CrossRef]
- Fairbairn, P.; Dyall, S.C.; Tsofliou, F. The effects of multi-nutrient formulas containing a combination of n-3 PUFA and B vitamins on cognition in the older adult: A systematic review and meta-analysis. Br. J. Nutr. 2023, 129, 428–441. [Google Scholar] [CrossRef] [PubMed]
- Maltais, M.; de Souto Barreto, P.; Bowman, G.; Smith, A.; Cantet, C.; Andrieu, S.; Rolland, Y.; Group, M.D.S. Omega-3 supplementation for the prevention of cognitive decline in older adults: Does it depend on homocysteine levels? J. Nutr. Health Aging 2022, 26, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Jeong, S.W.; Kim, M.Y.; Park, J.B.; Kim, M.S. The effect of vitamin D supplementation in patients with acute traumatic brain injury. World Neurosurg. 2019, 126, e1421–e1426. [Google Scholar] [CrossRef] [PubMed]
- Maroon, J.C.; Mathyssek, C.M.; Bost, J.W.; Amos, A.; Winkelman, R.; Yates, A.P.; Duca, M.A.; Norwig, J.A. Vitamin D profile in national football league players. Am. J. Sports Med. 2015, 43, 1241–1245. [Google Scholar] [CrossRef] [PubMed]
- Thacher, T.D.; Clarke, B.L. Vitamin D insufficiency. In Proceedings of the Mayo Clinic Proceedings, Rochester, MN, USA, 1 January 2011; pp. 50–60. [Google Scholar]
- Steffes, G.D.; Megura, A.E.; Adams, J.; Claytor, R.P.; Ward, R.M.; Horn, T.S.; Potteiger, J.A. Prevalence of metabolic syndrome risk factors in high school and NCAA division I football players. J. Strength Cond. Res. 2013, 27, 1749–1757. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, X.; Wang, L.; Guo, Y.; Xie, M. Prevalence of Metabolic Syndrome and Its Components among Chinese Professional Athletes of Strength Sports with Different Body Weight Categories. PLoS ONE 2013, 8, e79758. [Google Scholar] [CrossRef] [PubMed]
- Murata, H.; Oshima, S.; Torii, S.; Taguchi, M.; Higuchi, M. Characteristics of body composition and cardiometabolic risk of Japanese male heavyweight Judo athletes. J. Physiol Anthr. 2016, 35, 10. [Google Scholar] [CrossRef] [PubMed]
- Buell, J.L.; Calland, D.; Hanks, F.; Johnston, B.; Pester, B.; Sweeney, R.; Thorne, R. Presence of metabolic syndrome in football linemen. J. Athl. Train. 2008, 43, 608–616. [Google Scholar] [CrossRef] [PubMed]
- Jagannatha, A.T.; Sriganesh, K.; Devi, B.I.; Rao, G.S.U. An equiosmolar study on early intracranial physiology and long term outcome in severe traumatic brain injury comparing mannitol and hypertonic saline. J. Clin. Neurosci. 2016, 27, 68–73. [Google Scholar] [CrossRef]
- Junior, J.R.; Welling, L.C.; Schafranski, M.; Yeng, L.T.; do Prado, R.R.; Koterba, E.; de Andrade, A.F.; Teixeira, M.J.; Figueiredo, E.G. Prognostic model for patients with traumatic brain injuries and abnormal computed tomography scans. J. Clin. Neurosci. 2017, 42, 122–128. [Google Scholar] [CrossRef]
- Zygun, D.A.; Steiner, L.A.; Johnston, A.J.; Hutchinson, P.J.; Al-Rawi, P.G.; Chatfield, D.; Kirkpatrick, P.J.; Menon, D.K.; Gupta, A.K. Hyperglycemia and brain tissue pH after traumatic brain injury. Neurosurgery 2004, 55, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Godoy, D.A.; Di Napoli, M.; Rabinstein, A.A. Treating hyperglycemia in neurocritical patients: Benefits and perils. Neurocritical Care 2010, 13, 425–438. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, J.; Pan, J.; Qiu, Z.; Xu, T. Therapeutic effect of intensive glycemic control therapy in patients with traumatic brain injury: A systematic review and meta-analysis of randomized controlled trials. Medicine 2018, 97, e11671. [Google Scholar] [CrossRef] [PubMed]
- Fanchiang, S.-P.; Tan, A.; Tobita, M.; Friedman, T.; Jordan, B. Inpatient rehabilitation, blood glucose, and the outcome of TBI. Arch. Phys. Med. Rehabil. 2024, 105, e188. [Google Scholar] [CrossRef]
- Quintana-Pajaro, L.; Padilla-Zambrano, H.S.; Ramos-Villegas, Y.; Lopez-Cepeda, D.; Andrade-Lopez, A.; Hoz, S.; Moscote-Salazar, L.R.; Joaquim, A.F.; Florez Perdomo, W.A.; Janjua, T. Cerebral traumatic injury and glucose metabolism: A scoping review. Egypt. J. Neurosurg. 2023, 38, 62. [Google Scholar] [CrossRef]
- Dietrich, W.D.; Bramlett, H.M. Hyperthermia and central nervous system injury. Prog. Brain Res. 2007, 162, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Kawakita, K.; Shishido, H.; Kuroda, Y. Review of Temperature Management in Traumatic Brain Injuries. J. Clin. Med. 2024, 13, 2144. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, A.; Atkins, C.M.; Alonso, O.F.; Bramlett, H.M.; Dietrich, W.D. Mild hyperthermia worsens the neuropathological damage associated with mild traumatic brain injury in rats. J. Neurotrauma 2012, 29, 313–321. [Google Scholar] [CrossRef]
- Chen, H.; Wu, F.; Yang, P.; Shao, J.; Chen, Q.; Zheng, R. A meta-analysis of the effects of therapeutic hypothermia in adult patients with traumatic brain injury. Crit. Care 2019, 23, 396. [Google Scholar] [CrossRef]
- Lavinio, A.; Coles, J.P.; Robba, C.; Aries, M.; Bouzat, P.; Chean, D.; Frisvold, S.; Galarza, L.; Helbok, R.; Hermanides, J.; et al. _targeted temperature control following traumatic brain injury: ESICM/NACCS best practice consensus recommendations. Crit. Care 2024, 28, 170. [Google Scholar] [CrossRef]
- Pegoli, M.; Zurlo, Z.; Bilotta, F. Temperature management in acute brain injury: A systematic review of clinical evidence. Clin. Neurol. Neurosurg. 2020, 197, 106165. [Google Scholar] [CrossRef] [PubMed]
- Al-Husseini, A.; Fazel Bakhsheshi, M.; Gard, A.; Tegner, Y.; Marklund, N. Shorter Recovery Time in Concussed Elite Ice Hockey Players by Early Head-and-Neck Cooling: A Clinical Trial. J. Neurotrauma 2023, 40, 1075–1085. [Google Scholar] [CrossRef]
- Atkins, C.M.; Bramlett, H.M.; Dietrich, W.D. Is temperature an important variable in recovery after mild traumatic brain injury? F1000Res 2017, 6, 2031. [Google Scholar] [CrossRef] [PubMed]
- Englert, R.M.; Belding, J.N.; Thomsen, C.J. Self-Reported Symptoms in U.S. Marines Following Blast- and Impact-Related Concussion. Mil. Med. 2023, 188, e2118–e2125. [Google Scholar] [CrossRef]
- Choo, H.C.; Nosaka, K.; Peiffer, J.J.; Ihsan, M.; Abbiss, C.R. Ergogenic effects of precooling with cold water immersion and ice ingestion: A meta-analysis. Eur. J. Sport Sci. 2018, 18, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Cumming, T.; Brodtmann, A. Dementia and stroke: The present and future epidemic. Int. J. Stroke 2010, 5, 453–454. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Han, T.; Yang, H.; Lyu, L.; Li, W.; Wu, W. Known and potential health benefits and mechanisms of blueberry anthocyanins: A review. Food Biosci. 2023, 55, 103050. [Google Scholar] [CrossRef]
- Kirkland, A.E.; Sarlo, G.L.; Holton, K.F. The role of magnesium in neurological disorders. Nutrients 2018, 10, 730. [Google Scholar] [CrossRef]
- Mirshafiei, M.; Yazdi, A.; Beheshti, S. Neuroprotective and anti-neuroinflammatory activity of frankincense in bile duct ligaion-induced hepatic encephalopathy. Iran. J. Basic Med. Sci. 2023, 26, 966. [Google Scholar]
- Williams, R.J.; Spencer, J.P. Flavonoids, cognition, and dementia: Actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free. Radic. Biol. Med. 2012, 52, 35–45. [Google Scholar] [CrossRef]
- Andres, R.H.; Ducray, A.D.; Schlattner, U.; Wallimann, T.; Widmer, H.R. Functions and effects of creatine in the central nervous system. Brain Res. Bull. 2008, 76, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Bracken, M.B. Why animal studies are often poor predictors of human reactions to exposure. J. R. Soc. Med. 2009, 102, 120–122. [Google Scholar] [CrossRef] [PubMed]
- Shanks, N.; Greek, R.; Greek, J. Are animal models predictive for humans? Philos. Ethics Humanit. Med. 2009, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Mandal, J.; Acharya, S.; Parija, S.C. Ethics in human research. Trop Parasitol 2011, 1, 2–3. [Google Scholar] [CrossRef] [PubMed]
- Muthuswamy, V. Ethical issues in clinical research. Perspect Clin. Res. 2013, 4, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Giannouli, V. Mild Traumatic Brain Injury: Is Something Missing When Comparing Cognitive Rest and Graduated Return to Usual Activities Versus Usual Care? Acad. Emerg. Med. 2017, 24, 647–648. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, J.T.; Coates, P.M.; Smith, M.J. Dietary Supplements: Regulatory Challenges and Research Resources. Nutrients 2018, 10, 41. [Google Scholar] [CrossRef] [PubMed]
- Charen, E.; Harbord, N. Toxicity of Herbs, Vitamins, and Supplements. Adv. Chronic Kidney Dis. 2020, 27, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Hudson, A.; Lopez, E.; Almalki, A.J.; Roe, A.L.; Calderón, A.I. A review of the toxicity of compounds found in herbal dietary supplements. Planta Medica 2018, 84, 613–626. [Google Scholar] [CrossRef]
- Binns, C.W.; Lee, M.K.; Lee, A.H. Problems and prospects: Public health regulation of dietary supplements. Annu. Rev. Public Health 2018, 39, 403–420. [Google Scholar] [CrossRef]
- Brown, A.C. An overview of herb and dietary supplement efficacy, safety and government regulations in the United States with suggested improvements. Part 1 of 5 series. Food Chem. Toxicol. 2017, 107, 449–471. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.G.; Vidovic, B.; Saraiva, N.; do Céu Costa, M.; Del Favero, G.; Marko, D.; Oliveira, N.G.; Fernandes, A.S. Contaminants: A dark side of food supplements? Free. Radic. Res. 2019, 53, 1113–1135. [Google Scholar] [CrossRef] [PubMed]
- Veatch-Blohm, M.E.; Chicas, I.; Margolis, K.; Vanderminden, R.; Gochie, M.; Lila, K. Screening for consistency and contamination within and between bottles of 29 herbal supplements. PLoS ONE 2021, 16, e0260463. [Google Scholar] [CrossRef] [PubMed]
- Jagim, A.R.; Harty, P.S.; Erickson, J.L.; Tinsley, G.M.; Garner, D.; Galpin, A.J. Prevalence of adulteration in dietary supplements and recommendations for safe supplement practices in sport. Front. Sports Act. Living 2023, 5, 1239121. [Google Scholar] [CrossRef] [PubMed]
- Geller, A.I.; Shehab, N.; Weidle, N.J.; Lovegrove, M.C.; Wolpert, B.J.; Timbo, B.B.; Mozersky, R.P.; Budnitz, D.S. Emergency department visits for adverse events related to dietary supplements. N. Engl. J. Med. 2015, 373, 1531–1540. [Google Scholar] [CrossRef] [PubMed]
- Fassier, P.; Egnell, M.; Pouchieu, C.; Vasson, M.-P.; Cohen, P.; Galan, P.; Kesse-Guyot, E.; Latino-Martel, P.; Hercberg, S.; Deschasaux, M. Quantitative assessment of dietary supplement intake in 77,000 French adults: Impact on nutritional intake inadequacy and excessive intake. Eur. J. Nutr. 2019, 58, 2679–2692. [Google Scholar] [CrossRef] [PubMed]
- Walpurgis, K.; Thomas, A.; Geyer, H.; Mareck, U.; Thevis, M. Dietary supplement and food contaminations and their implications for doping controls. Foods 2020, 9, 1012. [Google Scholar] [CrossRef] [PubMed]
- Mathews, N.M. Prohibited contaminants in dietary supplements. Sports Health 2018, 10, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.R.; Gerald, J.K.; Preedy, V.R. Nutrients, Dietary Supplements, and Nutriceuticals: Cost Analysis Versus Clinical Benefits; Springer Science & Business Media: Berlin, Germany, 2010. [Google Scholar]
- Wall, R.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Fatty acids from fish: The anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev. 2010, 68, 280–289. [Google Scholar] [CrossRef]
- Nielsen, F.H. Importance of plant sources of magnesium for human health. Crop Pasture Sci. 2015, 66, 1259–1264. [Google Scholar] [CrossRef]
- Zeisel, S.H. Choline: Needed for normal development of memory. J. Am. Coll. Nutr. 2000, 19, 528S–531S. [Google Scholar] [CrossRef] [PubMed]
- Bell, L. The Acute Effects of Anthocyanin-Rich Wild Blueberries on Cognition and Postprandial Glucose Response in Healthy Young Adults; University of Reading: Berkshire, UK, 2018. [Google Scholar]
- Driver, S.; Juengst, S.; Reynolds, M.; McShan, E.; Kew, C.L.; Vega, M.; Bell, K.; Dubiel, R. Healthy lifestyle after traumatic brain injury: A brief narrative. Brain Inj. 2019, 33, 1299–1307. [Google Scholar] [CrossRef] [PubMed]
Nutrient/ Biological Compound | Recommended Intake and Supplementation Strategy | Adverse Effects | Food Sources and Corresponding Amounts Per 100 g |
---|---|---|---|
Nutritive compounds derived or available from food | |||
Omega-3 fatty acids (DHA and EPA) | 2–4 g/day of combined DHA and EPA (of which 2 g from DHA) | None | Salmon (2.15 g/100 g cooked) Herring (2 g/100 g cooked) Sardines (1.4/100 g canned) Mackerel (1.2/100 g cooked) Trout (1 g/100 g cooked) |
Creatine monohydrate | 4 × 5 g/day (20 g/day total) | Potential mild GI distress with doses > 10 g | Beef (600 mg/100 g cooked) Chicken (520 mg/100 g cooked) Herring (1.1 g/100 g cooked) Salmon (600 mg/100 g cooked) Tuna (535 mg/100 g cooked) Cod (400 mg/100 g cooked) |
BCAAs | Up to 54 g/day | Potential mild GI distress with supplemental daily doses > 45 g | Meat and poultry (3.6 g/100 g) Dairy products (2.37 g/100 g) Cereals and pasta (1.17 g/100 g) |
Riboflavin | 400 mg/day | None | Beef liver (3.4 mg/100 g) Fortified cereals (4 mg/100 g) |
Choline (as CDP-choline/Citicoline) | 1–2 g/day | None | Beef liver (419 mg/100 g) Hard boiled eggs (294 mg/2 eggs) Roasted soybeans (125 mg/100 g) Chicken breast (85 mg/100 g) |
Magnesium (any bioavailable form) | 400 mg/day | None | Pumpkin seeds (184 mg/100 g roasted) Chia seeds (131 mg/100 g) Almonds (94 mg/100 g roasted) Spinach (78 mg/100 g boiled) |
Blueberry anthocyanins | 250–400 mg/day | None | Low-bush wild blueberries (487 mg/100 g) |
Non-nutritive compounds | |||
Boswellia serrata | 3 × 400 mg/day | None | N/A |
Enzogenol | 1 g/day | None | N/A |
NAC | 4 g/day for 4 days (2 × 2 g), then 3 g/day (2 × 1.5 g). | None | N/A |
Melatonin | 2 mg at night | None | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conti, F.; McCue, J.J.; DiTuro, P.; Galpin, A.J.; Wood, T.R. Mitigating Traumatic Brain Injury: A Narrative Review of Supplementation and Dietary Protocols. Nutrients 2024, 16, 2430. https://doi.org/10.3390/nu16152430
Conti F, McCue JJ, DiTuro P, Galpin AJ, Wood TR. Mitigating Traumatic Brain Injury: A Narrative Review of Supplementation and Dietary Protocols. Nutrients. 2024; 16(15):2430. https://doi.org/10.3390/nu16152430
Chicago/Turabian StyleConti, Federica, Jackson J. McCue, Paul DiTuro, Andrew J. Galpin, and Thomas R. Wood. 2024. "Mitigating Traumatic Brain Injury: A Narrative Review of Supplementation and Dietary Protocols" Nutrients 16, no. 15: 2430. https://doi.org/10.3390/nu16152430
APA StyleConti, F., McCue, J. J., DiTuro, P., Galpin, A. J., & Wood, T. R. (2024). Mitigating Traumatic Brain Injury: A Narrative Review of Supplementation and Dietary Protocols. Nutrients, 16(15), 2430. https://doi.org/10.3390/nu16152430