Vitamin D and Autism Spectrum Disorder: A Literature Review
Abstract
:1. Introduction
1.1. Description of Autism Spectrum Disorder (ASD)
1.2. Vitamin D: Metabolism, Biomarker, and Optimum Level
1.3. Objective
2. Methods
- “incidence” or “prevalence” to search the literature in relation to latitude. For studies published between 1992 and 2012, we identified literature from a previous systematic review of autistic disorder and PDD prevalence worldwide [33] to have a manageable data for search. We excluded studies published before 1992 because case ascertainment was based on DSM-III and ICD-9.
- “season” or “month” AND “birth” or “conception” to search the literature in relation to Season of conception or birth.
- “migrant” or “immigrant” or “migration” or “immigration” AND “maternal” or “mother” to search the literature in relation to maternal migration and ethnicity.
- “vitamin D” or ergocalciferol or “vitamin D2” or “cholecalciferol” or “vitamin D3”or “25-hydroxyvitamin D” or “25(OH)D” or “25ohd” to search the literature in relation to maternal vitamin D status, vitamin D status in ASD patients, maternal vitamin D intervention to prevent ASD, and vitamin D intervention to treat ASD.
3. Three Major Areas of Research
3.1. Vitamin D—ASD-Related Areas Providing an Indication for Primary Prevention
3.1.1. Risk of ASD—Latitude
3.1.2. Risk of ASD—Migration and Ethnicity
3.1.3. Risk of ASD-Season of Conception and Birth
3.1.4. Risk of ASD-Vitamin D Status in Mothers
3.1.5. Vitamin D Intervention to Prevent ASD
3.2. Vitamin D-ASD-Related Areas Providing an Indication for both Primary and Secondary Prevention
Vitamin D Status in ASD Patients
3.3. Vitamin D-ASD-Related Areas Providing an Indication for Secondary Prevention
Vitamin D Intervention to Treat ASD
4. Mechanistic Pathways
5. Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- New Zealand Guidelines Group. What does ASD look like? In A resource to Help Identify Autism Spectrum Disorder; New Zealand Guidelines Group: Wellington, New Zealand, 2010. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5; American Psychiatric Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Rose, S.; Melnyk, S.; Pavliv, O.; Bai, S.; Nick, T.G.; Frye, R.E.; James, S.J. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl. Psychiatry 2012, 2, e134. [Google Scholar] [CrossRef] [PubMed]
- Ashwood, P.; Krakowiak, P.; Hertz-Picciotto, I.; Hansen, R.; Pessah, I.; Van de Water, J. Elevated plasma cytokines in Autism Spectrum Disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav. Immun. 2011, 25, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Chez, M.G.; Dowling, T.; Patel, P.B.; Khanna, P.; Kominsky, M. Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatr. Neurol. 2007, 36, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Napolioni, V.; Ober-Reynolds, B.; Szelinger, S.; Corneveaux, J.J.; Pawlowski, T.; Ober-Reynolds, S.; Kirwan, J.; Persico, A.M.; Melmed, R.D.; Craig, D.W.; et al. Plasma cytokine profiling in sibling pairs discordant for Autism Spectrum Disorder. J. Neuroinflamm. 2013, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Molloy, C.A.; Morrow, A.L.; Meinzen-Derr, J.; Schleifer, K.; Dienger, K.; Manning-Courtney, P.; Altaye, M.; Wills-Karp, M. Elevated cytokine levels in children with Autism Spectrum Disorder. J. Neuroimmunol. 2006, 172, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, D.A.; Frye, R.E. Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Front. Physiol. 2014, 5, 150. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K. Phenotypic expression of autoimmune autistic disorder (AAD): A major subset of autism. Ann. Clin. Psychiatry 2009, 21, 148–161. [Google Scholar] [PubMed]
- Ming, X.; Stein, T.P.; Brimacombe, M.; Johnson, W.G.; Lambert, G.H.; Wagner, G.C. Increased excretion of a lipid peroxidation biomarker in autism. Prostaglandins Leukot. Essent. Fatty Acids 2005, 73, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Giulivi, C.; Zhang, Y.; Omanska-Klusek, A.; Ross-Inta, C.; Wong, S.; Hertz-Picciotto, I.; Tassone, F.; Pessah, I.N. Mitochondrial dysfunction in autism. JAMA 2010, 304, 2389–2396. [Google Scholar] [CrossRef] [PubMed]
- Napoli, E.; Wong, S.; Hertz-Picciotto, I.; Giulivi, C. Deficits in bioenergetics and impaired immune response in granulocytes from children with autism. Pediatrics 2014, 133, e1405–e1410. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.; Frye, R.E.; Slattery, J.; Wynne, R.; Tippett, M.; Pavliv, O.; Melnyk, S.; James, S.J. Oxidative stress induces mitochondrial dysfunction in a subset of autism lymphoblastoid cell lines in a well-matched case control cohort. PLoS ONE 2014, 9, e85436. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, S.; Fuchs, G.J.; Schulz, E.; Lopez, M.; Kahler, S.G.; Fussell, J.J.; Bellando, J.; Pavliv, O.; Rose, S.; Seidel, L.; et al. Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism. J. Autism Dev. Disord. 2012, 42, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Ghezzo, A.; Visconti, P.; Abruzzo, P.M.; Bolotta, A.; Ferreri, C.; Gobbi, G.; Malisardi, G.; Manfredini, S.; Marini, M.; Nanetti, L.; et al. Oxidative stress and erythrocyte membrane alterations in children with autism: Correlation with clinical features. PLoS ONE 2013, 8, e66418. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, G.A.; El-Hadidi, E.S.; Hewedi, D.H.; Abdou, M.M. Oxidative stress in egyptian children with autism: Relation to autoimmunity. J. Neuroimmunol. 2010, 219, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.; Fombonne, E. Pervasive Developmental Disorders in preschool children. JAMA 2001, 285, 3093–3099. [Google Scholar] [CrossRef] [PubMed]
- Baio, J. Prevalence of Autism Spectrum Disorders—Autism and Developmental Disabilities Monitoring Network, 14 Sites, United States, 2008; Morbidity and mortality weekly report; Surveillance summaries; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2012; Volume 61, pp. 1–19. [Google Scholar]
- Ghanizadeh, A. A preliminary study on screening prevalence of pervasive developmental disorder in schoolchildren in iran. J. Autism Dev. Disord. 2008, 38, 759–763. [Google Scholar] [CrossRef] [PubMed]
- Kogan, M.D.; Blumberg, S.J.; Schieve, L.A.; Boyle, C.A.; Perrin, J.M.; Ghandour, R.M.; Singh, G.K.; Strickland, B.B.; Trevathan, E.; van Dyck, P.C. Prevalence of parent-reported diagnosis of Autism Spectrum Disorder among children in the us, 2007. Pediatrics 2009, 124, 1395–1403. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.N.; Schendel, D.E.; Parner, E.T. Explaining the increase in the prevalence of Autism Spectrum Disorders: The proportion attributable to changes in reporting practices. JAMA Pediatr. 2015, 169, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Schaaf, C.P.; Zoghbi, H.Y. Solving the autism puzzle a few pieces at a time. Neuron 2011, 70, 806–808. [Google Scholar] [CrossRef] [PubMed]
- Cannell, J.J. Autism and vitamin D. Med. Hypotheses 2008, 70, 750–759. [Google Scholar] [CrossRef] [PubMed]
- DeLuca, H.F. Overview of general physiologic features and functions of vitamin D. Am. J. Clin. Nutr. 2004, 80, 1689S–1696S. [Google Scholar] [PubMed]
- Holick, M.F.; MacLaughlin, J.A.; Clark, M.B.; Holick, S.A.; Potts, J.T.; Anderson, R.R.; Blank, I.H.; Parrish, J.A.; Elias, P. Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science 1980, 210, 203–205. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Clements, M.R.; Davies, M.; Hayes, M.E.; Hlckey, C.D.; Lumb, G.A.; Mawer, E.B.; Adams, P.H. The role of 1,25-dihydroxyvitamin D in the mechanism of acquired vitamin d deficiency. Clin. Endocrinol. (Oxf.) 1992, 37, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Zerwekh, J.E. Blood biomarkers of vitamin D status. Am. J. Clin. Nutr. 2008, 87, 1087S–1091S. [Google Scholar] [PubMed]
- Ministry of Health and Cancer Society of New Zealand. Consensus Statement on Vitamin D and Sun Exposure in New Zealand; Health, M.O., Ed.; Ministry of Health: Wellington, New Zealand, 2012.
- Holick, M.F. Vitamin D: A D-lightful health perspective. Nutr. Rev. 2008, 66, S182–S194. [Google Scholar] [CrossRef] [PubMed]
- Kočovská, E.; Fernell, E.; Billstedt, E.; Minnis, H.; Gillberg, C. Vitamin D and autism: Clinical review. Res. Dev. Disabil. 2012, 33, 1541–1550. [Google Scholar] [CrossRef] [PubMed]
- Gentile, I.; Zappulo, E.; Militerni, R.; Pascotto, A.; Borgia, G.; Bravaccio, C. Etiopathogenesis of Autism Spectrum Disorders: Fitting the pieces of the puzzle together. Med. Hypotheses 2013, 81, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Elsabbagh, M.; Divan, G.; Koh, Y.J.; Kim, Y.S.; Kauchali, S.; Marcin, C.; Montiel-Nava, C.; Patel, V.; Paula, C.S.; Wang, C.; et al. Global prevalence of autism and other Pervasive Developmental Disorders. Autism Res. 2012, 5, 160–179. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Hu, Q.; Li, T.; Jiang, L.; Du, Y.; Feng, L.; Wong, J.C.-M.; Li, C. Prevalence of Autism Spectrum Disorders among children in China: A systematic review. Shanghai Arch. Psychiatry 2013, 25, 70–80. [Google Scholar] [PubMed]
- Wilson, C.E.; Gillan, N.; Spain, D.; Robertson, D.; Roberts, G.; Murphy, C.M.; Maltezos, S.; Zinkstok, J.; Johnston, K.; Dardani, C.; et al. Comparison of ICD-10R, DSM-IV-TR and DSM-5 in an adult Autism Spectrum Disorder diagnostic clinic. J. Autism Dev. Disord. 2013, 43, 2515–2525. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ji, C.Y. Autism and mental retardation of young children in china. Biomed. Environ. Sci. 2005, 18, 334–340. [Google Scholar] [PubMed]
- Baird, G.; Charman, T.; Baron-Cohen, S.; Cox, A.; Swettenham, J.; Wheelwright, S.; Drew, A. A screening instrument for autism at 18 months of age: A 6-year follow- up study. J. Am. Acad. Child Adolesc. Psychiatry 2000, 39, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.; Fombonne, E. Pervasive Developmental Disorders in preschool children: Confirmation of high prevalence. Am. J. Psychiatry 2005, 162, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Arvidsson, T.; Danielsson, B.; Forsberg, P.; Gillberg, C.; Johansson, M.; Kjellgren, G. Autism in 3–6-year-old children in a suburb of goteborg, sweden. Autism 1997, 1, 163–173. [Google Scholar] [CrossRef]
- Kadesjö, B.; Gillberg, C.; Hagberg, B. Brief report: Autism and asperger syndrome in seven-year-old children: A total population study. J. Autism Dev. Disord. 1999, 29, 327–327. [Google Scholar] [CrossRef] [PubMed]
- Mattila, M.-L.; Kielinen, M.; Linna, S.-L.; Jussila, K.; Ebeling, H.; Bloigu, R.; Joseph, R.M.; Moilanen, I. Autism Spectrum Disorders according to DSM-IV-TR and comparison with DSM-5 draft criteria: An epidemiological study. J. Am. Acad. Child Adolesc. Psychiatry 2011, 50, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Eapen, V.; Mabrouk, A.A.; Zoubeidi, T.; Yunis, F. Prevalence of Pervasive Developmental Disorders in preschool children in the uae. J. Trop. Pediatr. 2007, 53, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Samadi, S.A.; Mahmoodizadeh, A.; McConkey, R. A national study of the prevalence of autism among five-year-old children in Iran. Autism 2012, 16, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Lejarraga, H.; Menendez, A.M.; Menzano, E.; Guerra, L.; Biancato, S.; Pianelli, P.; Del Pino, M.; Fattore, M.J.; Contreras, M.M. Screening for developmental problems at primary care level: A field programme in San Isidro, Argentina. Paediatr. Perinat. Epidemiol. 2008, 22, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, Y.; Takahashi, O.; Ishii, T. Reevaluating the incidence of Pervasive Developmental Disorders: Impact of elevated rates of detection through implementation of an integrated system of screening in Toyota, Japan. Psychiatry Clin. Neurosci. 2008, 62, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Baxter, A.J.; Brugha, T.S.; Erskine, H.E.; Scheurer, R.W.; Vos, T.; Scott, J.G. The epidemiology and global burden of Autism Spectrum Disorders. Psychol. Med. 2015, 45, 601–613. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.B.; Soles, C.M. Epidemiologic evidence supporting the role of maternal vitamin d deficiency as a risk factor for the development of infantile autism. Dermatoendocrinology 2009, 1, 223–228. [Google Scholar] [CrossRef]
- Piirainen, T.; Laitinen, K.; Isolauri, E. Impact of national fortification of fluid milks and margarines with vitamin D on dietary intake and serum 25-hydroxyvitamin D concentration in 4-year-old children. Eur. J. Clin. Nutr. 2006, 61, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Tylavsky, F.A.; Cheng, S.; Lyytikäinen, A.; Viljakainen, H.; Lamberg-Allardt, C. Strategies to improve vitamin D status in northern european children: Exploring the merits of vitamin D fortification and supplementation. J. Nutr. 2006, 136, 1130–1134. [Google Scholar] [PubMed]
- Laaksi, I.T.; Ruohola, J.P.S.; Ylikomi, T.J.; Auvinen, A.; Haataja, R.I.; Pihlajamaki, H.K.; Tuohimaa, P.J. Vitamin D fortification as public health policy: Significant improvement in vitamin D status in young finnish men. Eur. J. Clin. Nutr. 2006, 60, 1035–1038. [Google Scholar] [CrossRef] [PubMed]
- McAree, T.; Jacobs, B.; Manickavasagar, T.; Sivalokanathan, S.; Brennan, L.; Bassett, P.; Rainbow, S.; Blair, M. Vitamin D deficiency in pregnancy—Still a public health issue. Mater. Child. Nutr. 2013, 9, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Pena, H.R.; de Lima, M.C.; Brandt, K.G.; de Antunes, M.M.; da Silva, G.A. Influence of preeclampsia and gestational obesity in maternal and newborn levels of vitamin D. BMC Pregnancy Childbirth 2015, 15, 112. [Google Scholar] [CrossRef] [PubMed]
- Saraf, R.; Morton, S.M.; Camargo, C.A., Jr.; Grant, C.C. Global summary of maternal and newborn vitamin D status—A systematic review. Mater. Child. Nutr. 2015. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.; Ikeda, S. Use of sun-protective items by Japanese pedestrians: A cross-sectional observational study. Arch. Dermatol. 2011, 147, 1167–1170. [Google Scholar] [CrossRef] [PubMed]
- Brito, A.; Cori, H.; Olivares, M.; Fernanda Mujica, M.; Cediel, G.; Lopez de Romana, D. Less than adequate vitamin D status and intake in latin America and the Caribbean:A problem of unknown magnitude. Food Nutr. Bull. 2013, 34, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.P.; Zang, J.; Pei, J.J.; Xu, F.; Zhu, Y.; Liao, X.P. Low maternal vitamin D status during the second trimester of pregnancy: A cross-sectional study in Wuxi, China. PLoS ONE 2015, 10, e0117748. [Google Scholar] [CrossRef] [PubMed]
- Kelishadi, R.; Sharifi-Ghazvini, F.; Poursafa, P.; Mehrabian, F.; Farajian, S.; Yousefy, H.; Movahedian, M.; Sharifi-Ghazvini, S. Determinants of hypovitaminosis D in pregnant women and their newborns in a sunny region. Int. J. Endocrinol. 2013, 2013, 6. [Google Scholar] [CrossRef] [PubMed]
- Al Anouti, F.; Thomas, J.; Abdel-Wareth, L.; Rajah, J.; Grant, W.B.; Haq, A. Vitamin D deficiency and sun avoidance among university students at Abu Dhabi, United Arab Emirates. Dermatoendocrinology 2011, 3, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Samadi, S.A.; McKonkey, R. Autism in developing countries: Lessons from Iran. Autism Res. Treat. 2011, 2011, 145359. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.B.; Cannell, J.J. Autism prevalence in the united states with respect to solar UV-B doses: An ecological study. Dermatoendocrinology 2013, 5, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, C.; Rai, D.; Goodman, A.; Lundberg, M.; Idring, S.; Svensson, A.; Koupil, I.; Serlachius, E.; Dalman, C. Migration and Autism Spectrum Disorder: Population-based study. Br. J. Psychiatry 2012, 201, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Maimburg, R.D.; Vaeth, M. Perinatal risk factors and infantile autism. Acta Psychiatr. Scand. 2006, 114, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Keen, D.V.; Reid, F.D.; Arnone, D. Autism, ethnicity and maternal immigration. Br. J. Psychiatry 2010, 196, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Hultman, C.M.; Sparen, P.; Cnattingius, S. Perinatal risk factors for infantile autism. Epidemiology (Camb. Mass.) 2002, 13, 417–423. [Google Scholar] [CrossRef]
- Lauritsen, M.B.; Pedersen, C.B.; Mortensen, P.B. Effects of familial risk factors and place of birth on the risk of autism: A nationwide register-based study. J. Child Psychol. Psychiatry 2005, 46, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.; Helmer, M.; Duncan, G.W.; Peat, J.K.; Mellis, C.M. Perinatal and maternal risk factors for Autism Spectrum Disorders in new South Wales, Australia. Child. Care. Health Dev. 2008, 34, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Haglund, N.G.S.; Källén, K.B.M. Risk factors for autism and asperger syndrome: Perinatal factors and migration. Autism 2010. [Google Scholar] [CrossRef] [PubMed]
- Croen, L.A.; Grether, J.K.; Selvin, S. Descriptive epidemiology of autism in a California population: Who is at risk? J. Autism Dev. Disord. 2002, 32, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Becerra, T.A.; von Ehrenstein, O.S.; Heck, J.E.; Olsen, J.; Arah, O.A.; Jeste, S.S.; Rodriguez, M.; Ritz, B. Autism Spectrum Dsiorders and race, ethnicity, and nativity: A population-based study. Pediatrics 2014, 134, e63–e71. [Google Scholar] [CrossRef] [PubMed]
- van der Ven, E.; Termorshuizen, F.; Laan, W.; Breetvelt, E.J.; van Os, J.; Selten, J.P. An incidence study of diagnosed autism-spectrum disorders among immigrants to The Netherlands. Acta Psychiatr. Scand. 2013, 128, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Prevalence of Autism Spectrum Disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill. Summ. 2014, 63, 1–21.
- Croen, L.A.; Najjar, D.V.; Fireman, B.; Grether, J.K. Maternal and paternal age and risk of Autism Spectrum Disorders. Arch. Pediatr. Adolesc. Med. 2007, 161, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Tek, S.; Landa, R. Differences in autism symptoms between minority and non-minority toddlers. J. Autism Dev. Disord. 2012, 42, 1967–1973. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, S.; Liu, K.Y.; Susser, E.; Bearman, P. The disappearing seasonality of autism conceptions in California. PLoS ONE 2012, 7, e41265. [Google Scholar] [CrossRef] [PubMed]
- Zerbo, O.; Iosif, A.-M.; Delwiche, L.; Walker, C.; Hertz-Picciotto, I. Month of conception and risk of autism. Epidemiology (Camb. Mass.) 2011, 22, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Hebert, K.J.; Miller, L.L.; Joinson, C.J. Association of autistic spectrum disorder with season of birth and conception in a UK cohort. Autism Res. 2010, 3, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Atladottir, H.O.; Parner, E.T.; Schendel, D.; Dalsgaard, S.; Thomsen, P.H.; Thorsen, P. Variation in incidence of neurodevelopmental disorders with season of birth. Epidemiology (Camb. Mass.) 2007, 18, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Fernell, E.; Bejerot, S.; Westerlund, J.; Miniscalco, C.; Simila, H.; Eyles, D.; Gillberg, C.; Humble, M.B. Autism Spectrum Disorder and low vitamin D at birth: A sibling control study. Mol. Autism 2015, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Uğur, Ç.; Gürkan, C.K. Serum vitamin D and folate levels in children with Autism Spectrum Disorders. Res. Autism Spectr. Disord. 2014, 8, 1641–1647. [Google Scholar] [CrossRef]
- Maimburg, R.D.; Bech, B.H.; Væth, M.; Møller-Madsen, B.; Olsen, J. Neonatal jaundice, autism, and other disorders of psychological development. Pediatrics 2010, 126, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Meguid, N.A.; Hashish, A.F.; Anwar, M.; Sidhom, G. Reduced serum levels of 25-hydroxy and 1,25-dihydroxy vitamin D in egyptian children with autism. J. Altern. Complement. Med. (New York NY) 2010, 16, 641–645. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.C.; Newschaffer, C.J.; Lessler, J.T.; Lee, B.K.; Shah, R.; Zimmerman, A.W. Variation in season of birth in singleton and multiple births concordant for Autism Spectrum Disorders. Paediatr. Perinat. Epidemiol. 2008, 22, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Kolevzon, A.; Weiser, M.; Gross, R.; Lubin, G.; Knobler, H.Y.; Schmeidler, J.; Silverman, J.M.; Reichenberg, A. Effects of season of birth on Autism Spectrum Disorders: Fact or fiction? Am. J. Psychiatry 2006, 163, 1288–1290. [Google Scholar] [CrossRef] [PubMed]
- Yeates-Frederikx, M.H.M.; Nijman, H.; Logher, E.; Merckelbach, H.L.G.J. Birth patterns in mentally retarded autistic patients. J. Autism Dev. Disord. 2000, 30, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.C.; Fein, D.; Waterhouse, L.H. Season of birth effects in autism. J. Clin. Exp. Neuropsychol. 2000, 22, 399–407. [Google Scholar] [CrossRef]
- Landau, E.C.; Cicchetti, D.V.; Klin, A.; Volkmar, F.R. Season of birth in autism: A fiction revisited. J. Autism Dev. Disord. 1999, 29, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Barak, Y.; Ring, A.; Sulkes, J.; Gabbay, U.; Elizur, A. Season of birth and autistic disorder in israel. Am. J. Psychiatry 1995, 152, 798–800. [Google Scholar] [PubMed]
- Mouridsen, S.E.; Nielsen, S.; Rich, B.; Isager, T. Season of birth in infantile autism and other types of childhood psychoses. Child Psychiatry Hum. Dev. 1994, 25, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Bolton, P.; Pickles, A.; Harrington, R.; Macdonald, H.; Rutter, M. Season of birth: Issues, approaches and findings for autism. J. Child Psychol. Psychiatry 1992, 33, 509–530. [Google Scholar] [CrossRef] [PubMed]
- Gillberg, C. Do children with autism have march birthdays? Acta Psychiatr. Scand. 1990, 82, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Tanoue, Y.; Oda, S.; Asano, F.; Kawashima, K. Epidemiology of infantile autism in southern Ibaraki, Japan: Differences in prevalence in birth cohorts. J. Autism Dev. Disord. 1988, 18, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Konstantareas, M.M.; Hauser, P.; Lennox, C.; Homatidis, S. Season of birth in infantile autism. Child Psychiatry Hum. Dev. 1986, 17, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Kanan, R.M.; Al Saleh, Y.M.; Fakhoury, H.M.; Adham, M.; Aljaser, S.; Tamimi, W. Year-round vitamin D deficiency among saudi female out-patients. Public Health Nutr. 2013, 16, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, A.J.; Holt, B.J.; Serralha, M.; Holt, P.G.; Kusel, M.M.; Hart, P.H. Maternal serum vitamin D levels during pregnancy and offspring neurocognitive development. Pediatrics 2012, 129, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Shelton, J.F.; Geraghty, E.M.; Tancredi, D.J.; Delwiche, L.D.; Schmidt, R.J.; Ritz, B.; Hansen, R.L.; Hertz-Picciotto, I. Neurodevelopmental disorders and prenatal residential proximity to agricultural pesticides: The charge study. Environ. Health Perspect. 2014, 122, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.K.; Magnusson, C.; Gardner, R.M.; Blomstrom, A.; Newschaffer, C.J.; Burstyn, I.; Karlsson, H.; Dalman, C. Maternal hospitalization with infection during pregnancy and risk of Autism Spectrum Disorders. Brain Behav. Immun. 2015, 44, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Lyall, K.; Schmidt, R.J.; Hertz-Picciotto, I. Maternal lifestyle and environmental risk factors for Autism Spectrum Disorders. Int. J. Epidemiol. 2014, 43, 443–464. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.-J.; Shou, X.-J.; Li, J.; Jia, M.-X.; Zhang, J.-S.; Guo, Y.; Wei, Q.-Y.; Zhang, X.-T.; Han, S.-P.; Zhang, R.; et al. Mothers of autistic children: Lower plasma levels of oxytocin and arg-vasopressin and a higher level of testosterone. PLoS ONE 2013, 8, e74849. [Google Scholar] [CrossRef] [PubMed]
- Fernell, E.; Barnevik-Olsson, M.; Bågenholm, G.; Gillberg, C.; Gustafsson, S.; Sääf, M. Serum levels of 25-hydroxyvitamin D in mothers of swedish and of somali origin who have children with and without autism. Acta Paediatr. 2010, 99, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, A.O.; Holt, B.; Serralha, M.; Holt, P.; Hart, P.; Kusel, M.H. Maternal vitamin D levels and the autism phenotype among offspring. J. Autism Dev. Disord. 2013, 43, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
- Wakayo, T.; Belachew, T.; Vatanparast, H.; Whiting, S.J. Vitamin D deficiency and its predictors in a country with thirteen months of sunshine: The case of school children in central Ethiopia. PLoS ONE 2015, 10, e0120963. [Google Scholar] [CrossRef] [PubMed]
- Rabenberg, M.; Scheidt-Nave, C.; Busch, M.A.; Rieckmann, N.; Hintzpeter, B.; Mensink, G.B.M. Vitamin D status among adults in germany—Results from the German health interview and examination survey for adults (DEGS1). BMC Public Health 2015, 15, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Morales, E.; Guxens, M.; Llop, S.; Rodríguez-Bernal, C.L.; Tardón, A.; Riaño, I.; Ibarluzea, J.; Lertxundi, N.; Espada, M.; Rodriguez, A.; et al. Circulating 25-hydroxyvitamin D3 in pregnancy and infant neuropsychological development. Pediatrics 2012, 130, e913–e920. [Google Scholar] [CrossRef] [PubMed]
- Gale, C.R.; Robinson, S.M.; Harvey, N.C.; Javaid, M.K.; Jiang, B.; Martyn, C.N.; Godfrey, K.M.; Cooper, C.; The Princess Anne Hospital Study Group. Maternal vitamin D status during pregnancy and child outcomes. Eur. J. Clin. Nutr. 2008, 62, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Groves, N.J.; McGrath, J.J.; Burne, T.H.J. Vitamin D as a neurosteroid affecting the developing and adult brain. Annu. Rev. Nutr. 2014, 34, 117–141. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, G.; Henley, K.; Green, J. Autism: Will vitamin D supplementation during pregnancy and early childhood reduce the recurrence rate of autism in newborn siblings? Med. Hypotheses 2016, 88, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Shan, L.; Wang, B.; Feng, J.Y.; Xu, Z.D.; Jia, F.Y. Serum levels of 25-hydroxyvitamin D in children with Autism Spectrum Disorders. Zhongguo Dang Dai Er Ke Za Zhi 2015, 17, 68–71. [Google Scholar] [PubMed]
- Kocovska, E.; Andorsdottir, G.; Weihe, P.; Halling, J.; Fernell, E.; Stora, T.; Biskupsto, R.; Gillberg, I.C.; Shea, R.; Billstedt, E.; et al. Vitamin D in the general population of young adults with autism in the faroe islands. J. Autism Dev. Disord. 2014, 44, 2996–3005. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, G.A.; Al-Ayadhi, L.Y. Reduced serum concentrations of 25-hydroxy vitamin D in children with autism: Relation to autoimmunity. J. Neuroinflamm. 2012, 9, 201. [Google Scholar] [CrossRef] [PubMed]
- Tostes, M.H.F.D.S.; Polonini, H.C.; Gattaz, W.F.; Raposo, N.R.B.; Baptista, E.B. Low serum levels of 25-hydroxyvitamin D (25-OHD) in children with autism. Trends Psychiatry Psychother. 2012, 34, 161–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saad, K.; Abdel-Rahman, A.A.; Elserogy, Y.M.; Al-Atram, A.A.; Cannell, J.J.; Bjorklund, G.; Abdel-Reheim, M.K.; Othman, H.A.; El-Houfey, A.A.; Abd El-Aziz, N.H.; et al. Vitamin D status in Autism Spectrum Disorders and the efficacy of vitamin D supplementation in autistic children. Nutr. Neurosci. 2015. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.L.; Luo, C.M.; Wang, L.; Shen, L.; Wei, F.; Tong, R.J.; Liu, Y. Serum 25-hydroxyvitamin D levels in Chinese children with Autism Spectrum Disorders. Neuroreport 2014, 25, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Molloy, C.A.; Kalkwarf, H.J.; Manning-Courtney, P.; Mills, J.L.; Hediger, M.L. Plasma 25(OH)D concentration in children with Autism Spectrum Disorder. Dev. Med. Child Neurol. 2010, 52, 969–971. [Google Scholar] [CrossRef] [PubMed]
- Neumeyer, A.M.; Gates, A.; Ferrone, C.; Lee, H.; Misra, M. Bone density in peripubertal boys with Autism Spectrum Disorders. J. Autism Dev. Disord. 2013, 43, 1623–1629. [Google Scholar] [CrossRef] [PubMed]
- Hashemzadeh, M.; Moharreri, F.; Soltanifar, A. Comparative study of vitamin D levels in children with Autism Spectrum Disorder and normal children: A case-control study. J. Fundam. Ment. Health 2015, 17, 197–201. [Google Scholar]
- Adams, J.B.; Audhya, T.; McDonough-Means, S.; Rubin, R.A.; Quig, D.; Geis, E.; Gehn, E.; Loresto, M.; Mitchell, J.; Atwood, S.; et al. Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr. Metab. (Lond.) 2011, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Shan, L.; Du, L.; Wang, B.; Li, H.; Wang, W.; Wang, T.; Dong, H.; Yue, X.; Xu, Z.; et al. Clinical improvement following vitamin D3 supplementation in Autism Spectrum Disorder. Nutr. Neurosci. 2016. [Google Scholar] [CrossRef] [PubMed]
- Bener, A.; Khattab, A.O.; Al-Dabbagh, M.M. Is high prevalence of vitamin D deficiency evidence for autism disorder? In a highly endogamous population. J. Pediatr. Neurosci. 2014, 9, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Humble, M.B.; Gustafsson, S.; Bejerot, S. Low serum levels of 25-hydroxyvitamin D (25-OHD) among psychiatric out-patients in Sweden: Relations with season, age, ethnic origin and psychiatric diagnosis. J. Steroid Biochem. Mol. Biol. 2010, 121, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Waldron, J.L.; Ashby, H.L.; Cornes, M.P.; Bechervaise, J.; Razavi, C.; Thomas, O.L.; Chugh, S.; Deshpande, S.; Ford, C.; Gama, R. Vitamin D: A negative acute phase reactant. J. Clin. Pathol. 2013, 66, 620–622. [Google Scholar] [CrossRef] [PubMed]
- Hummel, D.M.; Fetahu, I.S.; Gröschel, C.; Manhardt, T.; Kállay, E. Role of proinflammatory cytokines on expression of vitamin D metabolism and _target genes in colon cancer cells. J. Steroid Biochem. Mol. Biol. 2014, 144, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, B.; Doneray, H.; Karacan, M.; Vançelik, S.; Yildirim, Z.K.; Ozkan, A.; Kosan, C.; Aydin, K. Prevalence of vitamin D deficiency rickets in the eastern part of Turkey. Eur. J. Pediatr. 2009, 168, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Khayyat, Y.; Attar, S. Vitamin D deficiency in patients with irritable bowel syndrome: Does it exist? Oman Med. J. 2015, 30, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.J.; George, B.; Pulimood, A.B.; Seshadri, M.S.; Chacko, A. 25 (OH) vitamin D level in crohn’s disease: Association with sun exposure & disease activity. Indian J. Med. Res. 2009, 130, 133–137. [Google Scholar] [PubMed]
- Menon, B.; Harinarayan, C.V. The effect of anti epileptic drug therapy on serum 25-hydroxyvitamin D and parameters of calcium and bone metabolism—A longitudinal study. Seizure 2010, 19, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Stewart, P.A.; Hyman, S.L.; Schmidt, B.L.; Macklin, E.A.; Reynolds, A.; Johnson, C.R.; James, S.J.; Manning-Courtney, P. Dietary supplementation in children with Autism Spectrum Disorders: Common, insufficient, and excessive. J. Acad. Nutr. Diet. 2015, 115, 1237–1248. [Google Scholar] [CrossRef] [PubMed]
- Must, A.; Phillips, S.M.; Curtin, C.; Anderson, S.E.; Maslin, M.; Lividini, K.; Bandini, L.G. Comparison of sedentary behaviors between children with Autism Spectrum Disorders and typically developing children. Autism 2013. [Google Scholar] [CrossRef] [PubMed]
- Emond, A.; Emmett, P.; Steer, C.; Golding, J. Feeding symptoms, dietary patterns, and growth in young children with Autism Spectrum Disorders. Pediatrics 2010, 126, e337–e342. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, M.; Hart, L.; Manning-Courtney, P.; Murray, D.; Bing, N.; Summer, S. Food variety as a predictor of nutritional status among children with autism. J. Autism Dev. Disord. 2012, 42, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Bandini, L.G.; Anderson, S.E.; Curtin, C.; Cermak, S.; Evans, E.W.; Scampini, R.; Maslin, M.; Must, A. Food selectivity in children with Autism Spectrum Disorders and typically developing children. J. Pediatr. 2010, 157, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Marí-Bauset, S.; Llopis-González, A.; Zazpe-García, I.; Marí-Sanchis, A.; Morales-Suárez-Varela, M. Nutritional status of children with Autism Spectrum Disorders (ASDs): A case—Control study. J. Autism Dev. Disord. 2015, 45, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Hyman, S.L.; Stewart, P.A.; Schmidt, B.; Cain, U.; Lemcke, N.; Foley, J.T.; Peck, R.; Clemons, T.; Reynolds, A.; Johnson, C.; et al. Nutrient intake from food in children with autism. Pediatrics 2012, 130 (Suppl. S2), S145–S153. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.; Crook, T.; James, J.; Gonzales, D.; Hakkak, R. Nutrient intake among children with autism. J. Nutr. Disord. Ther. 2012. [Google Scholar] [CrossRef]
- Cornish, E. A balanced approach towards healthy eating in autism. J. Hum. Nutr. Diet. 1998, 11, 501–509. [Google Scholar] [CrossRef]
- Lindsay, R.L.; Eugene Arnold, L.; Aman, M.G.; Vitiello, B.; Posey, D.J.; McDougle, C.J.; Scahill, L.; Pachler, M.; McCracken, J.T.; Tierney, E.; et al. Dietary status and impact of risperidone on nutritional balance in children with autism: A pilot study. J. Intellect. Dev. Disabil. 2006, 31, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Williams-Hooker, R.; George, E.O.; Levy, M.; Morgan, C.; Smith, T.L.; Bittle, J.B. Calcium and vitamin D intake of boys who have autism. Infant Child Adolesc. Nutr. 2013, 5, 113–117. [Google Scholar] [CrossRef]
- Graf-Myles, J.; Farmer, C.; Thurm, A.; Royster, C.; Kahn, P.; Soskey, L.; Rothschild, L.; Swedo, S. Dietary adequacy of children with autism compared with controls and the impact of restricted diet. J. Dev. Behav. Pediatr. 2013, 34, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Herndon, A.; DiGuiseppi, C.; Johnson, S.; Leiferman, J.; Reynolds, A. Does nutritional intake differ between children with Autism Spectrum Disorders and children with typical development? J. Autism Dev. Disord. 2009, 39, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.; Wang, B.; Shan, L.; Xu, Z.; Staal, W.G.; Du, L. Core symptoms of autism improved after vitamin D supplementation. Pediatrics 2015, 135, e196–e198. [Google Scholar] [CrossRef] [PubMed]
- Azzam, H.M.E.; Sayyah, H.; Youssef, S.; Lotfy, H.; Abdelhamid, I.A.; Abd Elhamed, H.A.; Maher, S. Autism and vitamin D: An intervention study. Middle East Curr. Psychiatry 2015, 22, 9–14. [Google Scholar] [CrossRef]
- Ucuz, İ.İ.; Dursun, O.B.; Esin, İ.S.; Özgeriş, F.B.; Kurt, N.; Kiziltunç, A.; Orbak, Z. The relationship between vitamin D, autistic spectrum disorders, and cognitive development: Do glial cell line-derived neurotrophic factor and nerve growth factor play a role in this relationship? Int. J. Dev. Disabil. 2015, 61, 222–230. [Google Scholar] [CrossRef]
- Corrigan, N.M.; Shaw, D.W.; Estes, A.M.; Richards, T.L.; Munson, J.; Friedman, S.D.; Dawson, G.; Artru, A.A.; Dager, S.R. Atypical developmental patterns of brain chemistry in children with Autism Spectrum Disorder. JAMA Psychiatry 2013, 70, 964–974. [Google Scholar] [CrossRef] [PubMed]
- Cass, W.A.; Smith, M.P.; Peters, L.E. Calcitriol protects against the dopamine- and serotonin-depleting effects of neurotoxic doses of methamphetamine. Ann. N. Y. Acad. Sci. 2006, 1074, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Eyles, D.W.; Smith, S.; Kinobe, R.; Hewison, M.; McGrath, J.J. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J. Chem. Neuroanat. 2005, 29, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Pelekanos, M.; Liu, P.Y.; Burne, T.H.J.; McGrath, J.J.; Eyles, D.W. The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ontogenesis in rat midbrain. Neuroscience 2013, 236, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Frazier, T.W.; Thompson, L.; Youngstrom, E.A.; Law, P.; Hardan, A.Y.; Eng, C.; Morris, N. A twin study of heritable and shared environmental contributions to autism. J. Autism Dev. Disord. 2014, 44, 2013–2025. [Google Scholar] [CrossRef] [PubMed]
- Sandin, S.; Lichtenstein, P.; Kuja-Halkola, R.; Larsson, H.; Hultman, C.M.; Reichenberg, A. The familial risk of autism. JAMA 2014, 311, 1770–1777. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.J.; Hansen, R.L.; Hartiala, J.; Allayee, H.; Sconberg, J.L.; Schmidt, L.C.; Volk, H.E.; Tassone, F. Selected vitamin D metabolic gene variants and risk for Autism Spectrum Disorder in the charge study. Early Hum. Dev. 2015, 91, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Nair-Shalliker, V.; Armstrong, B.K.; Fenech, M. Does vitamin D protect against DNA damage? Mutat. Res-Fund. Mol. Mech. Mut. 2012, 733, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Fedirko, V.; Bostick, R.M.; Long, Q.; Flanders, W.D.; McCullough, M.L.; Sidelnikov, E.; Daniel, C.R.; Rutherford, R.E.; Shaukat, A. Effects of supplemental vitamin D and calcium on oxidative DNA damage marker in normal colorectal mucosa: A randomized clinical trial. Cancer Epidemiol. Biomark. Prev. 2010, 19, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Mabley, J.G.; Wallace, R.; Pacher, P.; Murphy, K.; SzabÓ, C. Inhibition of poly(adenosine diphosphate-ribose) polymerase by the active form of vitamin D. Int. J. Mol. Med. 2007, 19, 947–952. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, M. Vitamin D and genomic stability. Mutat. Res-Fund. Mol. Mech. Mut. 2001, 475, 69–87. [Google Scholar] [CrossRef]
- James, S.J.; Cutler, P.; Melnyk, S.; Jernigan, S.; Janak, L.; Gaylor, D.W.; Neubrander, J.A. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am. J. Clin. Nutr. 2004, 80, 1611–1617. [Google Scholar] [PubMed]
- Alvarez, J.A.; Chowdhury, R.; Jones, D.P.; Martin, G.S.; Brigham, K.L.; Binongo, J.N.; Ziegler, T.R.; Tangpricha, V. Vitamin D status is independently associated with plasma glutathione and cysteine thiol/disulphide redox status in adults. Clin. Endocrinol. 2014, 81, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Codoner-Franch, P.; Tavarez-Alonso, S.; Simo-Jorda, R.; Laporta-Martin, P.; Carratala-Calvo, A.; Alonso-Iglesias, E. Vitamin D status is linked to biomarkers of oxidative stress, inflammation, and endothelial activation in obese children. J. Pediatr. 2012, 161, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Alfawaz, H.; Bhat, R.; Al-Ayadhi, L.; El-Ansary, A. Protective and restorative potency of vitamin D on persistent biochemical autistic features induced in propionic acid-intoxicated rat pups. BMC Complement. Altern. Med. 2014, 14, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Alabdali, A.; Al-Ayadhi, L.; El-Ansary, A. A key role for an impaired detoxification mechanism in the etiology and severity of Autism Spectrum Disorders. Behav. Brain Func. 2014, 10, 14. [Google Scholar] [CrossRef] [PubMed]
- Shinpo, K.; Kikuchi, S.; Sasaki, H.; Moriwaka, F.; Tashiro, K. Effect of 1,25-dihydroxyvitamin D3 on cultured mesencephalic dopaminergic neurons to the combined toxicity caused by l-buthionine sulfoximine and 1-methyl-4-phenylpyridine. J. Neurosci. Res. 2000, 62, 374–382. [Google Scholar] [CrossRef]
- Garcion, E.; Sindji, L.; Leblondel, G.; Brachet, P.; Darcy, F. 1,25-dihydroxyvitamin D3 regulates the synthesis of γ-glutamyl transpeptidase and glutathione levels in rat primary astrocytes. J. Neurochem. 1999, 73, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.T.; Chana, G.; Pardo, C.A.; Achim, C.; Semendeferi, K.; Buckwalter, J.; Courchesne, E.; Everall, I.P. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol. Psychiatry 2010, 68, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Vargas, D.L.; Nascimbene, C.; Krishnan, C.; Zimmerman, A.W.; Pardo, C.A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 2005, 57, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Almerighi, C.; Sinistro, A.; Cavazza, A.; Ciaprini, C.; Rocchi, G.; Bergamini, A. 1α,25-dihydroxyvitamin D3 inhibits CD40l-induced pro-inflammatory and immunomodulatory activity in human monocytes. Cytokine 2009, 45, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Heine, G.; Niesner, U.; Chang, H.-D.; Steinmeyer, A.; Zügel, U.; Zuberbier, T.; Radbruch, A.; Worm, M. 1,25-dihydroxyvitamin D3 promotes IL-10 production in human b cells. Eur. J. Immunol. 2008, 38, 2210–2218. [Google Scholar] [CrossRef] [PubMed]
- Széles, L.; Keresztes, G.; Töröcsik, D.; Balajthy, Z.; Krenács, L.; Póliska, S.; Steinmeyer, A.; Zuegel, U.; Pruenster, M.; Rot, A.; et al. 1,25-dihydroxyvitamin D3 is an autonomous regulator of the transcriptional changes leading to a tolerogenic dendritic cell phenotype. J. Immunol. 2009, 182, 2074–2083. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, G.A.; Al-ayadhi, L.Y. Increased serum levels of anti-ganglioside m1 auto-antibodies in autistic children: Relation to the disease severity. J. Neuroinflamm. 2011, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, G.A.; Kitchener, N. Serum anti-nuclear antibodies as a marker of autoimmunity in egyptian autistic children. Pediatr. Neurol. 2009, 40, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, G.A.; Al-Ayadhi, L.Y. The relationship between the increased frequency of serum antineuronal antibodies and the severity of autism in children. Eur. J. Paediatr. Neurol. 2012, 16, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, G.A.; El-Sayed, Z.A.; El-Aziz, M.M.; El-Sayed, M.F. Serum anti-myelin-associated glycoprotein antibodies in egyptian autistic children. J. Child Neurol. 2008, 23, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.Y.; Kohane, I.S.; Wall, D.P. Identification of autoimmune gene signatures in autism. Transl. Psychiatry 2011, 1, e63. [Google Scholar] [CrossRef] [PubMed]
- Zikopoulos, B.; Barbas, H. Changes in prefrontal axons may disrupt the network in autism. J. Neurosci. 2010, 30, 14595–14609. [Google Scholar] [CrossRef] [PubMed]
- Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015, 15, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Ritterhouse, L.L.; Crowe, S.R.; Niewold, T.B.; Kamen, D.L.; Macwana, S.R.; Roberts, V.C.; Dedeke, A.B.; Harley, J.B.; Scofield, R.H.; Guthridge, J.M.; et al. Vitamin D deficiency is associated with an increased autoimmune response in healthy individuals and in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 2011, 70, 1569–1574. [Google Scholar] [CrossRef] [PubMed]
- Chabas, J.-F.; Stephan, D.; Marqueste, T.; Garcia, S.; Lavaut, M.-N.; Nguyen, C.; Legre, R.; Khrestchatisky, M.; Decherchi, P.; Feron, F. Cholecalciferol (vitamin D3) improves myelination and recovery after nerve injury. PLoS ONE 2013, 8, e65034. [Google Scholar] [CrossRef] [PubMed]
- Mokry, L.E.; Ross, S.; Ahmad, O.S.; Forgetta, V.; Smith, G.D.; Leong, A.; Greenwood, C.M.; Thanassoulis, G.; Richards, J.B. Vitamin D and risk of multiple sclerosis: A mendelian randomization study. PLoS Med. 2015, 12, e1001866. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, H.; Yu, T.; Cui, G.; Jiao, A.; Liang, H. Increased serum levels of brain-derived neurotrophic factor in Autism Spectrum Disorder. Neuroreport 2015, 26, 638–641. [Google Scholar] [CrossRef] [PubMed]
- Dincel, N.; Unalp, A.; Kutlu, A.; Ozturk, A.; Uran, N.; Ulusoy, S. Serum nerve growth factor levels in autistic children in turkish population: A preliminary study. Indian J. Med. Res. 2013, 138, 900–903. [Google Scholar] [PubMed]
- Neveu, I.; Naveilhan, P.; Jehan, F.D.R.; Baudet, C.; Wion, D.; De Luca, H.F.; Brachet, P. 1,25-dihydroxyvitamin D3 regulates the synthesis of nerve growth factor in primary cultures of glial cells. Mol. Brain Res. 1994, 24, 70–76. [Google Scholar] [CrossRef]
- Brown, J.; Bianco, J.I.; McGrath, J.J.; Eyles, D.W. 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci. Lett. 2003, 343, 139–143. [Google Scholar] [CrossRef]
- Pozzi, F.; Aloe, L.; Frajese, G.V.; Frajese, G. Vitamin D (Calcifediol) supplementation modulates NGF and BDNF and improves memory function in postmenopausal women: A pilot study. Res. Endocrinol. 2013, 2013. [Google Scholar] [CrossRef]
- Crockett, M.J.; Clark, L.; Tabibnia, G.; Lieberman, M.D.; Robbins, T.W. Serotonin modulates behavioral reactions to unfairness. Science 2008, 320, 1739. [Google Scholar] [CrossRef] [PubMed]
- Anagnostou, E.; Soorya, L.; Chaplin, W.; Bartz, J.; Halpern, D.; Wasserman, S.; Wang, A.T.; Pepa, L.; Tanel, N.; Kushki, A.; et al. Intranasal oxytocin versus placebo in the treatment of adults with Autism Spectrum Disorders: A randomized controlled trial. Mol. Autism 2012, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Naranjo, C.A.; Tremblay, L.K.; Busto, U.E. The role of the brain reward system in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2001, 25, 781–823. [Google Scholar] [CrossRef]
- Staal, W.; de Krom, M.; de Jonge, M. Brief report: The dopamine-3-receptor gene (DRD3) is associated with specific repetitive behavior in Autism Spectrum Disorder (ASD). J. Autism Dev. Disord. 2012, 42, 885–888. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Sekine, Y.; Ouchi, Y.; Tsujii, M.; Yoshikawa, E.; Futatsubashi, M.; Tsuchiya, K.J.; Sugihara, G.; Iwata, Y.; Suzuki, K.; et al. Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Arch. Gen. Psychiatry 2010, 67, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Modahl, C.; Green, L.; Fein, D.; Morris, M.; Waterhouse, L.; Feinstein, C.; Levin, H. Plasma oxytocin levels in autistic children. Biol. Psychiatry 1998, 43, 270–277. [Google Scholar] [CrossRef]
- Chugani, D.C.; Muzik, O.; Behen, M.; Rothermel, R.; Janisse, J.J.; Lee, J.; Chugani, H.T. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann. Neurol. 1999, 45, 287–295. [Google Scholar] [CrossRef]
- Mulder, E.J.; Anderson, G.M.; Kema, I.P.; de Bildt, A.; van Lang, N.D.; den Boer, J.A.; Minderaa, R.B. Platelet serotonin levels in Pervasive Developmental Disorders and mental retardation: Diagnostic group differences, within-group distribution, and behavioral correlates. J. Am. Acad. Child Adolesc. Psychiatry 2004, 43, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Cartier, E.; Hamilton, P.J.; Belovich, A.N.; Shekar, A.; Campbell, N.G.; Saunders, C.; Andreassen, T.F.; Gether, U.; Veenstra-Vanderweele, J.; Sutcliffe, J.S.; et al. Rare autism-associated variants implicate syntaxin 1 (STX1 R26Q) phosphorylation and the dopamine transporter (HDAT R51W) in dopamine neurotransmission and behaviors. EBioMedicine 2015, 2, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Patrick, R.P.; Ames, B.N. Vitamin D hormone regulates serotonin synthesis. Part 1: Relevance for autism. FASEB J. 2014, 28, 2398–2413. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.E. Metabolic and mitochondrial disorders associated with epilepsy in children with Autism Spectrum Disorder. Epilepsy Behav. 2015, 47, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Yasuhara, A. Correlation between eeg abnormalities and symptoms of Autism Spectrum Disorder (ASD). Brain Dev. 2010, 32, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Hara, H. Autism and epilepsy: A retrospective follow-up study. Brain Dev. 2007, 29, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Bromley, R.L.; Mawer, G.; Clayton-Smith, J.; Baker, G.A. Autism Spectrum Disorders following in utero exposure to antiepileptic drugs. Neurology 2008, 71, 1923–1924. [Google Scholar] [CrossRef] [PubMed]
- Kalueff, A.V.; Minasyan, A.; Tuohimaa, P. Anticonvulsant effects of 1,25-dihydroxyvitamin D in chemically induced seizures in mice. Brain Res. Bull. 2005, 67, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Borowicz, K.K.; Morawska, M.; Furmanek-Karwowska, K.; Luszczki, J.J.; Czuczwar, S.J. Cholecalciferol enhances the anticonvulsant effect of conventional antiepileptic drugs in the mouse model of maximal electroshock. Eur. J. Pharmacol. 2007, 573, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Siegel, A.; Malkowitz, L.; Moskovits, M.J.; Christakos, S. Administration of 1,25-dihydroxyvitamin D3 results in the elevation of hippocampal seizure threshold levels in rats. Brain Res. 1984, 298, 125–129. [Google Scholar] [CrossRef]
- Holló, A.; Clemens, Z.; Kamondi, A.; Lakatos, P.; Szűcs, A. Correction of vitamin D deficiency improves seizure control in epilepsy: A pilot study. Epilepsy Behav. 2012, 24, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, C.; Rødbro, P.; Sjö, O. “Anticonvulsant action” of vitamin D in epileptic patients? A controlled pilot study. Br. Med. J. 1974, 2, 258–259. [Google Scholar] [CrossRef] [PubMed]
- Kalueff, A.V.; Eremin, K.O.; Tuohimaa, P. Mechanisms of neuroprotective action of vitamin D3. Biochemistry 2004, 69, 738–741. [Google Scholar] [CrossRef] [PubMed]
Reference | Country, Area | Latitude | Age | Diagnosis | Prevalence/10,000 | CI |
---|---|---|---|---|---|---|
Risk of Autistic Disorder (AD) in relation to latitude | ||||||
[36] | China, Tianjin | 39.13°N | 8 | DSM-IV/CABS-CV, CARS-CV | 10.9 | 3.4–25.4 |
[37] | UK, South East Thames | 51.24°N | 7 | ICD-10/CHAT, CR, PDD-Q | 30.8 | 22.9–40.6 |
[38] | UK, Staffordshire and Cannock | 52.80°N | 4–6 | ICD-10, DSM-IV/multidisciplinary screening ADI-R | 18.9 | 14.1–25.0 |
[17] | UK, Staffordshire | 52.80°N | 2.5–6.5 | DSM-IV/Clinical evaluation, ADI-R | 16.8 | 11.0–24.6 |
[39] | Sweden, Goteborg | 57.70°N | 3–6 | ICD-10/Clinical evaluation, ADI-R | 46.4 | 16.1–76.6 |
[40] | Sweden, Karlstad | 59.37°N | 7 | ICD-10/ASSQ (cut off teachers only: 17), Clinical evaluation, ADI-R | 60.0 | 19.0–141.0 |
[41] | Finland, Northern Ostrobothnia | 63.91°N | 8 | DSM-IV-TR, DSM-5/ASSQ (cut off: 30 parents and teacher combined), ADI-R, ADOS-3 | 41.0 | 26.0–64.0 |
Risk of Pervasive Developmental Disorder (PDD) in relation to latitude | ||||||
[42] | UAE, 3 regions | 24.46°N | 3 | DSM-IV/ASC (cut off: 15), Clinical evaluation | 29.0 | 0–79.0 |
[43] | Iran, Country wide | 32.00°N | 5 | DSM-IV/National screening, SCQ, ADI-R | 6.3 | 5.8–6.7 |
[44] | Argentina, San Isidro | 34.28°S | 0–5 | DSM-IV/PRUNAPE, BDI, VABS, multi-disciplinary evaluation | 13.1 | - |
[45] | Japan, Toyota | 35.08°N | 5–8 | DSM-IV/Integral screening system, Direct clinical evaluation | 181.1 | - |
[37] | UK, South East Thames | 51.24°N | 7 | ICD-10/CHAT, CR, PDD-Q | 57.9 | 46.8–70.9 |
[38] | UK, Staffordshire and Cannock | 52.80°N | 4–6 | ICD-10, DSM-IV/multidisciplinary screening, ADI-R | 58.7 | 45.2–74.9 |
[17] | UK, Staffordshire | 52.80°N | 2.5–6.5 | DSM-IV/Clinical evaluation, ADI-R | 61.9 | 50.2–75.6 |
Reference | Reference Country/Year | Cohort | Age (Year) | Cases Number | Cases Ascertainment | Mother’s Country of Birth/Ethnicity | Odds Ratio (95% CI) | Covariates |
---|---|---|---|---|---|---|---|---|
[64] | Sweden 2002 | 1987–1994 | <10 | 408 | AD/ICD 9 | Europe and North America | 1.1 (0.5–2.5) | Maternal age, parity, smoking during pregnancy, hypertensive disease, diabetes, pregnancy bleeding, mode of delivery, season of birth, gestational age, birth weight, Apgar score, congenital malformation |
Outside Europe and North America | 3.0 (1.7–5.2) | |||||||
[68] | US/California 2002 | 1989–1994 | - | 4381 | AD/DSM-III-R or DSM-IV | Other US states | 0.9 (0.8–1.0) | Gender, birth weight, plurality, birth order, maternal age, maternal race, maternal education RR |
Mexico | 0.6 (0.5–0.7) | |||||||
Other | 1.1 (1.0–1.2) | |||||||
[65] | Denmark 2005 | 1984–1998 | <10 | 818 | AD, atypical autism/medical record registry/ICD-10 | Scandinavia and Europe | 1.0 (0.8–1.4) | Age, sex, interaction between age and sex, calendar year, history of autism or broader autism in siblings psychiatric disorders RR |
Outside Europe | 1.4 (1.1–1.8) | |||||||
[62] | Denmark 2006 | 1990–1999 | <10 | 473 | AD/ICD-8 and 10 | Foreign Citizenship (not mentioned) | 1.7 (1.3–2.4) | Maternal and parental age, maternal citizenship, birth weight, gestational age, Apgar score, irregular foetal position, congenital malformation, psychoactive medicine use in pregnancy |
[66] | Australia 2008 | 1990–1996 | <5 | 368 | ASD/Surveillance/DSM-IV | Outside Australia | 1.4 (1.0–1.9) | Gender, maternal age ≥35, gestational age <37 |
[67] | Sweden 2010 | 1980–2005 | <25 | 250 | AD and AS/DSM-IV or DSM-III or ICD-10/ADOS-G and ADI-R | Outside Nordic countries: | Year of birth, maternal age ≥40, gestational age <37, gestational age-adjusted birth weight | |
AD | 2.2 (1.6–3.1) | |||||||
AS | 0.6 (0.3–1.0) | |||||||
Sub-Saharan Africa | 5.6 (2.9–10.6) | |||||||
South or Central America | 3.1 (1.3–7.1) | |||||||
East Asia | 2.9 (1.4- 6.1) | |||||||
Western Europe/USA | 2.8 (1.2–6.5) | |||||||
Previous Eastern Europe | 2.1 (1.3–3.3) | |||||||
Middle East/North Africa | 2.0 (1.2–3.2) | |||||||
[63] | UK 2010 | 1999–2005 | <18 | 428 (267, Wandsworth and 161 in Lambeth) | ASD/2 boroughs/Multidisciplinary team assessment/ICD-10 using ADI-R, DISCO, ADOS | Other European | Family size RR | |
L | 1.3 (0.6–2.8) | |||||||
W | 1.2 (0.8–1.9) | |||||||
African | ||||||||
L | 7.9 (5.4–11.6) | |||||||
W | 3.3 (2.4–4.5) | |||||||
Caribbean | ||||||||
L | 10.0 (5.5–18.1) | |||||||
W | 8.9 (5.9–15.5) | |||||||
Asian | ||||||||
L | 4.0 (2.0–7.8) | |||||||
W | 2.1 (1.3–3.3) | |||||||
[61] | Sweden 2012 | 2001–2007 | 0–17 | 3918 | ASD/Medical registry/Multidisciplinary teams/DSM-IV | African, American, Asian and European | Maternal and parental age, family disposable income, for subsample, birth weight, gestational age, Apgar score at 5 min after birth | |
Low functioning | 1.2 (1.0–1.4) | |||||||
High functioning | 0.5 (0.4–0.6) | |||||||
[70] | Netherlands 2013 | 1998–2007 | - | 518 | ASD/Psychiatric case registry/DSM-IV | Developing countries | Gender and paternal age RR | |
ASD | 0.6 (0.5–0.9) | |||||||
AD | 1.4 (0.9–2.4) | |||||||
AS and PDD-NOS | 0.4 (0.3–0.6) | |||||||
Developed countries | ||||||||
ASD | 0.9 (0.6–1.3) | |||||||
AD | 1.6 (0.8–3.5) | |||||||
AS and PDD-NOS | 0.6 (0.4–1.1) | |||||||
[69] | US/Los Angeles 2014 | 1995–2006 | - | 7540 | AD/DSM-III-R/ICD-9-CM/ADOS | White foreign | 1.0 (0.9–1.2) | Maternal age, gender, birth year, birth type, parity, gestational age, birth weight, pregnancy complications, trimester pregnancy care began, maternal education, insurance and diagnostic variability (regional centres) RR |
Black foreign | 1.8 (1.4–2.2) | |||||||
Mexico | 1.1 (1.0–1.2) | |||||||
Central/South America | 1.3 (0.9–1.1) | |||||||
China | 0.7 (0.6–0.8) | |||||||
Japan | 0.7 (0.5–1.0) | |||||||
Korea | 1.0 (0.8–1.2) | |||||||
Philippines | 1.3 (1.1–1.4) | |||||||
Vietnam | 1.4 (1.2–1.7) |
Reference | Country/Year | Diagnosis | Case-Control Numbers | Case—Control Characteristics | Confounders/Covariates | Excess Conception | Excess Birth |
---|---|---|---|---|---|---|---|
[92] | Canada 1986 | DSM-III | 179-NR | Low functioning (IQ < 50) and high functioning (IQ > 50) autism, non-verbal and verbal autism from medical records from two different centres-live births | March vs. Sep-Feb | ||
Spring-early summer vs. winter and autumn (Aggregated sample) | |||||||
Spring vs. winter and autumn (Low functioning, nonverbal, male) | |||||||
[91] | Japan 1988 | DSM-III | 80–71,013 | Native infantile autism <8 years from clinic outpatients-children <8 years from annual reports | Second quarter of the year (corresponding to spring) vs. first and third quarter* | ||
[90] | Sweden 1990 | DSM-III-R | 100-NR | Cryptogenic autism-populations born in Sweden (Central Bureau of statistics) | Cases with medical conditions and of mothers immigrated to Sweden from non-European countries were excluded | March | |
[89] | UK 1992 | ICD-9, DSM-III | 1435–196–121–24,957,169 | National autistic sample-clinic sample-sibling controls-live births | Significantly deviated from the general populations’ expected moth of birth (national sample) | ||
December, January, June, July and October | |||||||
[88] | Denmark 1994 | ICD-9 | 328-NR | Infantile autism-autism like disorder-borderline psychosis from clinic outpatients-live births | March and April vs. November December | ||
[87] | Israel 1995 | DSM-III-R | 188–1,992,410 | Infantile autism-live births | March and August | ||
[86] | International 1999 | DSM-IV, ICD-10 | 620–284 | Cases with autism from international multisite field trial for DSM-IV-Individuals with mental retardation from patients of a clinic | No association | ||
[84] | Netherlands 2000 | ICD-9 | 1031-NR | National registry of mentally retarded patients with AD and PDD-NOS (IQ < 35)-general population birth data | No association (month and season) (Aggregated sample) | ||
Second quarter of the year (Low functioning) | |||||||
[85] | US 2000 | DSM-III-R | 175–123 | High and low functioning autism (verbal IQ cut off of 65) recruited for a research project-full siblings and half siblings | Arbitrary assignations of month to season | No association (aggregated sample) | |
March (more low functioning and socially passive autism) (Boston subset) | |||||||
[64] | Sweden 2002 | ICD-9 | 408–2040 | Infantile autism <10 years from medical birth register-birth register | Maternal age, parity, smoking, mother’s country of birth, hypertensive disease, diabetes, pregnancy bleeding, mode of delivery, gestational age, birth weight, Apgar score, congenital malformation | No association | |
[83] | Israel 2006 | ICD-10 | 211–311,169 | ASD adolescents (age of 17) from military medical registry-live births | Year of birth, socioeconomic status | No association | |
[77] | Denmark 2007 | ICD-10 | 1860–407,117 | ASD and ASD subcategories from psychiatric registry-live births | General trend for increase in incidence over time, follow up time, length of gestation | No association | No association |
[82] | US 2008 | DSM-IV | 1051–1,458,011 | ASD singletons and multiple births from medical records-statistics data for singleton and multiple live births | Number of births and gender | Spring (April), summer (late July) and autumn (October) vs. winter (December and January) (Singletons and multiple births) | |
[80] | Denmark 2010 | ICD-10 | 317–733,826 | Infantile autism from medical birth register-live births | Gender, maternal smoking status, irregular fetal presentation, birth weight, gestational age, Apgar score, parental age, maternal citizenship, congenital malformation | Winter (October to March) vs. Summer (April to September), 2.21 (1.24–3.94) vs. 1.02 (0.41–2.50) | |
[81] | Egypt2010 | DSM-IV | 70–40 | ASD (recruited for the purpose of the study)-non ASD healthy controls | No significant difference | ||
June (26.7%) followed by March and April (11.4%,) | |||||||
[76] | UK 2010 | ICD-10 | 86–13,892 | ASD from medical and educational records-live births | Summer vs. winter 2.08 (1.18-3.70) | Spring vs. autumn (reference), 1.86 (1.01-3.37) | |
[75] | US 2011 | ICD-9 | 19,328–6,585,737 | Full syndrome autism <6 years and live births <6 years from dataset | Gender, race/ethnicity, Preterm birth, maternal age, maternal education, maternal place of residence at childbirth and maternal year of conception | Winter (January, February and March) vs. Summer, 1.06 (1.02–1.10) | November vs. April (reference), 1.12 (1.05–1.20) |
[74] | US 2012 | DSM-IV | 8,074–3,888,495 | AD not comorbid with mental retardation-live births | Gender, parental age and education, race and ethnicity, insurance status, preterm birth and low birth weight | Winter (the last 3 weeks of November and first week of December), 2.11, 1.72 and 1.53 in 1994, 1995 and 1996, respectively | |
[79] | Turkey 2014 | DSM-IV | 54–54 | ASD (recruited for the purpose of the study)-non ASD healthy controls | No association | ||
[78] | Sweden 2015 | DSM-IV-TR | 58–58 | ASD (recruited for the purpose of the study)-non ASD siblings | No association in children of Middle Eastern/African ethnicity | ||
Spring vs. Summer, 38% vs. 10% in ASD and 18% vs. 35% in non ASD in children of Sweden and European ethnicity |
Reference | Country/Year | Study Design/Country | Population Characteristics | Intervention | Baseline 25(OH)D (nmol/L) | Follow up 25(OH)D (nmol/L) | Outcome Measure |
---|---|---|---|---|---|---|---|
Vitamin D intervention to prevent ASD | |||||||
[106] | US 2016 | Prospective open label intervention trial | Pregnant mothers of autistic children | Daily 5000 IU during pregnancy and 7000 IU during breastfeeding | All but two >50 | 70–198 | Recurrence rate of autism in new born siblings was 5% which was lower than that reported in the literature (20%) |
Daily 1000 IU during the first three years of life if child was not breastfed | |||||||
Vitamin D intervention to treat ASD | |||||||
[119] | Sweden 2010 | Clinical quality assurance project | Autism and other psychiatric disorders (mean age of 43.7 years) | Daily 1600–4000 IU vitamin D3 or 35,000–70,000 IU vitamin D2 once weekly | 31.5 (23–39) in autistic patients and 45 (31–60) in all patients * | - | Improvement in psychosis or depression |
[139] | China 2015 | Case study | A 32-month old male toddler | Monthly 150 000 | 31.3 ** | 203 | ABC 1 (from 80 to 39) |
IU IM and | CARS (from 35 to 28) | ||||||
daily 400 IU orally | Severity of Illness of Clinical Global Impression (from 6 to 4). | ||||||
for two months | |||||||
[111] | Egypt 2015 | Open label intervention trial | 106 autistic children with 25(OH)D <75 nmol/L | Daily 300 IU vitamin D3/Kg not exceeding 5000 IU/day for three months | <75 | - | ABC2: Improvements in irritability (0.02), hyperactivity (0.03), social withdrawal (0.01) and stereotypic behaviour (0.04) |
No improvements in inappropriate speech | |||||||
CARS: Improvements in total (p < 0.001), relating to people (p < 0.001), imitation (p < 0.001), body use (p = 0.01), object use (p = 0.01), adaptation to change (p = 0.004), listening response (p = 0.01), visual response (p = 0.003) and general impression (p < 0.001) | |||||||
No improvements in fear, verbal communication, activity level, nonverbal communication and intellectual response | |||||||
The improvement was more pronounced in those with final 25(OH)D >100 nmol/L | |||||||
[140] 1 | Egypt 2015 | Randomised controlled trial | 21 autistic children assigned to vitamin D or no treatment groups | - | - | - | CARS, social IQ and ATEC: Improved in both groups |
Improvement was not significantly different across groups | |||||||
[141] 2 | Turkey 2015 | Open label intervention trial | Toddlers with developmental delay without and with ASD 2 (2–5 years old), and 25(OH)D <50 nmol/L (n = 11, cases) and ≥50 nmol/L (n = 10, controls) | Baseline 25(OH)D <37.5 nmol/L: daily 5000IU for one month and then daily 400IU for two months if 25(OH)D is between 37.5 and 50 nmol/L after one month | - | - | ABC 1 and Denver II: Significant improvement in both groups (ABC, from 90 ± 19 to 59 ± 15 in cases and from 77 ± 22 to 64 ± 29 in controls; Denver II, from 64 ± 13 to 72 ± 17 in cases and from 73 ± 11 to 80 ± 12 in controls). |
Baseline 25(OH)D between 37.5 and 50 nmol/L: daily 400 IU for one to three months depending on the level at one month | |||||||
Neither baseline nor endpoint scores were significantly different across groups, but improvement was more pronounced in cases | |||||||
[117] | China 2016 | Open label intervention trial | 37 autistic children with 25(OH)D <75 nmol/L | Monthly 150,000 IU IM and daily 400 IU orally for three months | - | - | CARS: Improvement in total scores |
ABC 1: Improvement in total and social skills, body and object use, language, and social and self-help | |||||||
Improvement was more pronounced in younger children (≤3 vs. >3 years old). |
Reference | Country/Year | Case-Control Characteristics | Assessment Tools | Covariates/Confounders | Boys: Girls | p-Value | 25(OH)D Concentration (nmol/L )* | |
---|---|---|---|---|---|---|---|---|
Cases | Controls | |||||||
[81] | Egypt 2010 | 70 children with autism (mean age of 5.3 ± 2.8) | DSM-IV | Season of birth | - | <0.001 | 71.3 ± 41.0 ** | 100.3 ± 29.5 |
40 age matched healthy controls of the same socioeconomic status controls (thoroughly examined) | ||||||||
[113] | US 2011 | 71 Caucasian males with ASD (4–8 years old) | DSM-IV/ADOS | Covariates: age, BMI, use of supplement, antiepileptic medication, season of enrolment | Only male | n.s. | 49.8 (range, 27.0–77.5) ** | 42.5 (range, 19.5–70.8) |
(CFD) | ||||||||
n.s | 49.0 (range, 22.3–76.8) | |||||||
69 age matched typically developing controls | (NCFD) | |||||||
[116] | US 2011 | 55 children with ASD (aged 5–16 years old) | Diagnostic confirmation from pediatrician or other professionals/PDD-BI (autism composite), ATEC, SAS | 49: 6 | n.s. | 74.6 ± 21.0 ** | 71.5 ± 21.0 | |
44 age, sex and geographically similar distribution | ||||||||
[110] | Brazil 2012 | 24 children with ASD (mean age of 7.4 ± 2.7 years) | DSM-IV | 18:6 | <0.001 | 66.2 ± 8.7 ** | 101.3 ± 7.8 | |
24 age and sex matched healthy controls | ||||||||
[109] | Saudi Arabia 2012 | 50 children with ASD (5–12 years) | DSM-IV/CARS (severity) | All blood samples drawn in summer | 39:11 | <0.001 | 46.3 (IQR, 35.0) ** | 82.5 (IQR, 27.5) |
30 age and sex matched healthy controls | ||||||||
[114] | US 2012 | 18 boys with ASD (mean age of 10.6 ± 0.4 years) | DSM-IV/ADOS | Season of blood collection, bone age | NA | 0.06 | 66.8 ± 4.8 ** | 79.3 ± 4.0 |
19 boys without ASD | ||||||||
[112] | China 2013 | 48 children with ASD (mean age of 3.7 ± 1.2 years) | DSM-IV, CARS (all cases) | Season of blood sampling, all study population belonged to Chinese Han population | 40:8 | 0.002 | 49.8 ± 9.5 ** | 56.5 ± 11.3 |
48 age and sex matched healthy controls (all examined thoroughly by paediatircian for any possible autistic features) | ||||||||
[118] | Qatar 2014 | 254 children with ASD (mean age of 5.5± 1.6 years) | ADOS | 165:89 | 0.004 | 46.0 ± 20.5 ** | 54.0 ± 21.0 | |
254 age, sex and ethnicity matched controls | ||||||||
[79] | Turkey 2014 | 54 children with ASD (mean age of 59.6 ± 15.0 months) | DSM-IV/ABC-T, ABC21 CARS, ADSI, Stanford-Binet or WISC-R | Season of enrolment | 47:7 | 0.069 | 62.8 ± 28.3 ** | 52.8 ± 24.3 |
54 age, sex, season of enrolment and societal status matched healthy controls | ||||||||
[108] | Faroe Island 2014 | 40 individuals with ASD (white European origin of different age) 62 typically developing sibling 77 parents 40 healthy age, sex and season of birth matched controls | ICD-10, DSM-IV/ADOS, DISCO, WISC-III, WAIS-R | Adjustment for month of blood collection | 31:9 | 0.002 | 24.8 (IQR, 27.5) | 37.6 (IQR, 32.3) (controls) |
<0.001 | 46.1 (IQR, 28.3) (siblings) | |||||||
<0.001 | 46.7 (IQR, 36.2) (parents) | |||||||
[111] | Egypt 2015 | 122 children with ASD (mean age of 5.1 ± 1.4 years) | DSM-IV/CARS, ABC 2 | Blood samples collected during two months | 75% male in control group | <0.0001 | 45.1 ± 21.9 ** | 106.3 ± 23.7 |
100 age, sex and societal status matched healthy controls (all screened for any mental and autistic manifestations) | ||||||||
[115] | Iran 2015 | 13 children with ASD (3–12 years) | DSM-IV/CARS | 11:2 | 0.35 | 13.0 (IQR, 9.6–19.5) | 12.0 (IQR, 4.9–13.2) | |
14 age and sex matched controls | ||||||||
[78] | Sweden 2015 | 58 multi-ethnic children with ASD diagnosed at the age of 4 or older | Multi-professional expert team | 51:6 | 0.01 | 24.0 ± 19.6 | 31.9 ± 27.7 | |
59 healthy siblings | ||||||||
[117] | China 2016 | 215 children with ASD (mean age of 4.8 ± 1.0 years) | DSM-IV/ADOS | Blood samples collected during six months | 173:42 | 0.02 | - | - |
285 age and sex matched healthy controls (mean age of 5.1 ± 1.1 years) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazahery, H.; Camargo, C.A.; Conlon, C.; Beck, K.L.; Kruger, M.C.; Von Hurst, P.R. Vitamin D and Autism Spectrum Disorder: A Literature Review. Nutrients 2016, 8, 236. https://doi.org/10.3390/nu8040236
Mazahery H, Camargo CA, Conlon C, Beck KL, Kruger MC, Von Hurst PR. Vitamin D and Autism Spectrum Disorder: A Literature Review. Nutrients. 2016; 8(4):236. https://doi.org/10.3390/nu8040236
Chicago/Turabian StyleMazahery, Hajar, Carlos A. Camargo, Cathryn Conlon, Kathryn L. Beck, Marlena C. Kruger, and Pamela R. Von Hurst. 2016. "Vitamin D and Autism Spectrum Disorder: A Literature Review" Nutrients 8, no. 4: 236. https://doi.org/10.3390/nu8040236
APA StyleMazahery, H., Camargo, C. A., Conlon, C., Beck, K. L., Kruger, M. C., & Von Hurst, P. R. (2016). Vitamin D and Autism Spectrum Disorder: A Literature Review. Nutrients, 8(4), 236. https://doi.org/10.3390/nu8040236