miRNAs Dysregulated in Human Papillomavirus-Associated Benign Prostatic Lesions and Prostate Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Samples
2.2. Ethical Approval and Compliance
2.3. Histopathological Analyses and DNA Extraction
2.4. HPV Detection by Multiplex PCR
2.5. In Situ PCR
2.6. HPV Sequence Detection of In Situ PCR Products
2.7. Digital Analysis and Relative Semi-Quantification of In Situ-Positive Signal
2.8. Interactomic Network and Functional Enrichment Analysis of miRNAs in PCa
2.9. RT-qPCR for miRNAs
2.10. _target Gene Prediction for miRNAs in PCa
2.11. Statistical Analysis
3. Results
3.1. Histopathological Analysis of Benign Lesions and PCa
3.2. Histological Identification of Koilocytes and In Situ Molecular Detection of HPV Sequences
3.3. Multiplex HPV Amplification
3.4. miRNAs Associated with PCa
3.5. Expression Levels of miRNAs in BPH, BPH/Prostatitis and PCa Samples
3.6. Identification of Gene _targets and Key Cellular Processes Regulated by miRNAs Associated with Cancer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pelucchi, C.; Talamini, R.; Negri, E.; Franceschi, S.; La Vecchia, C. Genital and Urinary Tract Diseases and Prostate Cancer Risk. Eur. J. Cancer Prev. Off. J. Eur. Cancer Prev. Organ. ECP 2006, 15, 254–257. [Google Scholar] [CrossRef]
- Oseni, S.O.; Naar, C.; Pavlović, M.; Asghar, W.; Hartmann, J.X.; Fields, G.B.; Esiobu, N.; Kumi-Diaka, J. The Molecular Basis and Clinical Consequences of Chronic Inflammation in Prostatic Diseases: Prostatitis, Benign Prostatic Hyperplasia, and Prostate Cancer. Cancers 2023, 15, 3110. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Fang, X.; Ma, Y.; Xianyu, J. Benign Prostatic Hyperplasia and the Risk of Prostate Cancer and Bladder Cancer: A Meta-Analysis of Observational Studies. Medicine 2016, 95, e3493. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.; Sun, G.; Zhao, P.; Dai, J.; Zhang, X.; Zhao, J.; Zhu, S.; Chen, J.; Tao, R.; Yang, J.; et al. MicroRNA-106a Suppresses Prostate Cancer Proliferation, Migration and Invasion by _targeting Tumor-Derived IL-8. Transl. Cancer Res. 2020, 9, 3507–3517. [Google Scholar] [CrossRef]
- Shiau, M.-Y.; Fan, L.-C.; Yang, S.-C.; Tsao, C.-H.; Lee, H.; Cheng, Y.-W.; Lai, L.-C.; Chang, Y.-H. Human Papillomavirus Up-Regulates MMP-2 and MMP-9 Expression and Activity by Inducing Interleukin-8 in Lung Adenocarcinomas. PLoS ONE 2013, 8, e54423. [Google Scholar] [CrossRef]
- Johann, D.J.; Shin, I.J.; Roberge, A.; Laun, S.; Peterson, E.A.; Liu, M.; Steliga, M.A.; Muesse, J.; Emmert-Buck, M.R.; Tangrea, M.A. Effect of Antigen Retrieval on Genomic DNA from Immunodissected Samples. J. Histochem. Cytochem. 2022, 70, 643–658. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Qin, Z.; Gao, X.; Xing, Q.; Li, R.; Wang, W.; Song, N.; Zhang, W. Correlation between Prostatitis, Benign Prostatic Hyperplasia and Prostate Cancer: A Systematic Review and Meta-Analysis. J. Cancer 2020, 11, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.B. Epidemiology of Clinical Benign Prostatic Hyperplasia. Asian J. Urol. 2017, 4, 148–151. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Cancer Today. 2020. Available online: https://gco.iarc.who.int/today/ (accessed on 17 December 2024).
- Preti, M.; Boldorini, R.; Gallio, N.; Cavagnetto, C.; Borella, F.; Pisapia, E.; Ribaldone, R.; Bovio, E.; Bertero, L.; Airoldi, C.; et al. Human Papillomavirus Genotyping in High-Grade Vaginal Intraepithelial Neoplasia: A Multicentric Italian Study. J. Med. Virol. 2024, 96, e29474. [Google Scholar] [CrossRef] [PubMed]
- Preti, M.; Rotondo, J.C.; Holzinger, D.; Micheletti, L.; Gallio, N.; McKay-Chopin, S.; Carreira, C.; Privitera, S.S.; Watanabe, R.; Ridder, R.; et al. Role of Human Papillomavirus Infection in the Etiology of Vulvar Cancer in Italian Women. Infect. Agent. Cancer 2020, 15, 20. [Google Scholar] [CrossRef]
- Bergh, J.; Marklund, I.; Gustavsson, C.; Wiklund, F.; Grönberg, H.; Allard, A.; Alexeyev, O.; Elgh, F. No Link between Viral Findings in the Prostate and Subsequent Cancer Development. Br. J. Cancer 2007, 96, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Adami, H.-O.; Kuper, H.; Andersson, S.-O.; Bergström, R.; Dillner, J. Prostate Cancer Risk and Serologic Evidence of Human Papilloma Virus Infection: A Population-Based Case-Control Study. Cancer Epidemiol. Biomark. Prev. 2003, 12, 872–875. [Google Scholar]
- Effert, P.J.; Frye, R.A.; Neubauer, A.; Liu, E.T.; Walther, P.J. Human Papillomavirus Types 16 and 18 Are Not Involved in Human Prostate Carcinogenesis: Analysis of Archival Human Prostate Cancer Specimens by Differential Polymerase Chain Reaction. J. Urol. 1992, 147, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Hussain, S.; Kakkar, N.; Singh, S.K.; Sobti, R.C.; Bharadwaj, M. Implication of High Risk Human Papillomavirus HR-HPV Infection in Prostate Cancer in Indian Population- A Pioneering Case-Control Analysis. Sci. Rep. 2015, 5, 7822. [Google Scholar] [CrossRef]
- Nickel, J.C.; True, L.D.; Krieger, J.N.; Berger, R.E.; Boag, A.H.; Young, I.D.; participating members of the North American Chronic Prostatitis Collaborative Research Network and the International Prostatitis Collaborative Network (see). Consensus Development of a Histopathological Classification System for Chronic Prostatic Inflammation. BJU Int. 2001, 87, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, S.; Diamond, E.J.; Mamkine, B.; Droller, M.J.; Stone, N.N.; Stock, R.G. C-Reactive Protein Is Significantly Associated with Prostate-Specific Antigen and Metastatic Disease in Prostate Cancer. BJU Int. 2005, 95, 961–962. [Google Scholar] [CrossRef]
- Yli-Hemminki, T.H.; Laurila, M.; Auvinen, A.; Määttänen, L.; Huhtala, H.; Tammela, T.L.J.; Kujala, P.M. Histological Inflammation and Risk of Subsequent Prostate Cancer among Men with Initially Elevated Serum Prostate-Specific Antigen (PSA) Concentration in the Finnish Prostate Cancer Screening Trial. BJU Int. 2013, 112, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.Y.; Salman, N.A.; Sandhu, S.; Cakir, M.O.; Seddon, A.M.; Kuehne, C.; Ashrafi, G.H. Detection of High-Risk Human Papillomavirus in Prostate Cancer from a UK Based Population. Sci. Rep. 2023, 13, 7633. [Google Scholar] [CrossRef]
- Russo, G.I.; Calogero, A.E.; Condorelli, R.A.; Scalia, G.; Morgia, G.; La Vignera, S. Human Papillomavirus and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. Aging Male 2020, 23, 132–138. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and Cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Naiyila, X.; Li, J.; Huang, Y.; Chen, B.; Zhu, M.; Li, J.; Chen, Z.; Yang, L.; Ai, J.; Wei, Q.; et al. A Novel Insight into the Immune-Related Interaction of Inflammatory Cytokines in Benign Prostatic Hyperplasia. J. Clin. Med. 2023, 12, 1821. [Google Scholar] [CrossRef]
- Ullah, A.; Chen, Y.; Singla, R.K.; Cao, D.; Shen, B. Pro-Inflammatory Cytokines and CXC Chemokines as Game-Changer in Age-Associated Prostate Cancer and Ovarian Cancer: Insights from Preclinical and Clinical Studies’ Outcomes. Pharmacol. Res. 2024, 204, 107213. [Google Scholar] [CrossRef]
- Hatano, K.; Fujita, K.; Nonomura, N. Application of Anti-Inflammatory Agents in Prostate Cancer. J. Clin. Med. 2020, 9, 2680. [Google Scholar] [CrossRef] [PubMed]
- Coradduzza, D.; Solinas, T.; Balzano, F.; Culeddu, N.; Rossi, N.; Cruciani, S.; Azara, E.; Maioli, M.; Zinellu, A.; De Miglio, M.R.; et al. miRNAs as Molecular Biomarkers for Prostate Cancer. J. Mol. Diagn. 2022, 24, 1171–1180. [Google Scholar] [CrossRef] [PubMed]
- Smolarz, B.; Durczyński, A.; Romanowicz, H.; Szyłło, K.; Hogendorf, P. miRNAs in Cancer (Review of Literature). Int. J. Mol. Sci. 2022, 23, 2805. [Google Scholar] [CrossRef]
- Pekarek, L.; Torres-Carranza, D.; Fraile-Martinez, O.; García-Montero, C.; Pekarek, T.; Saez, M.A.; Rueda-Correa, F.; Pimentel-Martinez, C.; Guijarro, L.G.; Diaz-Pedrero, R.; et al. An Overview of the Role of MicroRNAs on Carcinogenesis: A Focus on Cell Cycle, Angiogenesis and Metastasis. Int. J. Mol. Sci. 2023, 24, 7268. [Google Scholar] [CrossRef] [PubMed]
- Vanacore, D.; Boccellino, M.; Rossetti, S.; Cavaliere, C.; D’Aniello, C.; Di Franco, R.; Romano, F.J.; Montanari, M.; La Mantia, E.; Piscitelli, R.; et al. Micrornas in Prostate Cancer: An Overview. Onco_target 2017, 8, 50240–50251. [Google Scholar] [CrossRef] [PubMed]
- Schitcu, V.H.; Raduly, L.; Nutu, A.; Zanoaga, O.; Ciocan, C.; Munteanu, V.C.; Cojocneanu, R.; Petrut, B.; Coman, I.; Braicu, C.; et al. MicroRNA Dysregulation in Prostate Cancer. Pharmacogenom. Pers. Med. 2022, 15, 177–193. [Google Scholar] [CrossRef]
- Abudoubari, S.; Bu, K.; Mei, Y.; Maimaitiyiming, A.; An, H.; Tao, N. Preliminary Study on miRNA in Prostate Cancer. World J. Surg. Oncol. 2023, 21, 270. [Google Scholar] [CrossRef]
- Tomaić, V. Functional Roles of E6 and E7 Oncoproteins in HPV-Induced Malignancies at Diverse Anatomical Sites. Cancers 2016, 8, 95. [Google Scholar] [CrossRef]
- Mir, B.A.; Ahmad, A.; Farooq, N.; Priya, M.V.; Siddiqui, A.H.; Asif, M.; Manzoor, R.; Ishqi, H.M.; Alomar, S.Y.; Rahaman, P.F. Increased Expression of HPV-E7 Oncoprotein Correlates with a Reduced Level of pRb Proteins via High Viral Load in Cervical Cancer. Sci. Rep. 2023, 13, 15075. [Google Scholar] [CrossRef] [PubMed]
- Rashid, N.N.; Yusof, R.; Watson, R.J. Disruption of Pocket Protein Dream Complexes by E7 Proteins of Different Types of Human Papillomaviruses. Acta Virol. 2013, 57, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Janiszewska, J.; Kostrzewska-Poczekaj, M.; Wierzbicka, M.; Brenner, J.C.; Giefing, M. HPV-Driven Oncogenesis-Much More than the E6 and E7 Oncoproteins. J. Appl. Genet. 2024. [Google Scholar] [CrossRef]
- Zheng, Z.-M.; Wang, X. Regulation of Cellular miRNA Expression by Human Papillomaviruses. Biochim. Biophys. Acta BBA-Gene Regul. Mech. 2011, 1809, 668–677. [Google Scholar] [CrossRef]
- Yim, E.-K.; Park, J.-S. The Role of HPV E6 and E7 Oncoproteins in HPV-Associated Cervical Carcinogenesis. Cancer Res. Treat. 2005, 37, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Chiantore, M.V.; Mangino, G.; Iuliano, M.; Zangrillo, M.S.; De Lillis, I.; Vaccari, G.; Accardi, R.; Tommasino, M.; Columba Cabezas, S.; Federico, M.; et al. Human Papillomavirus E6 and E7 Oncoproteins Affect the Expression of Cancer-Related microRNAs: Additional Evidence in HPV-Induced Tumorigenesis. J. Cancer Res. Clin. Oncol. 2016, 142, 1751–1763. [Google Scholar] [CrossRef]
- Ali Syeda, Z.; Langden, S.S.S.; Munkhzul, C.; Lee, M.; Song, S.J. Regulatory Mechanism of MicroRNA Expression in Cancer. Int. J. Mol. Sci. 2020, 21, 1723. [Google Scholar] [CrossRef]
- Pérez-Mora, S.; Ocampo-López, J.; Gómez-García, M.D.C.; Pérez-Ishiwara, D.G. BFNB Enhances Hair Growth in C57BL/6 Mice through the Induction of EGF and FGF7 Factors and the PI3K-AKT-β-Catenin Pathway. Int. J. Mol. Sci. 2023, 24, 12110. [Google Scholar] [CrossRef]
- Martínez-Cuazitl, A.; Gómez-García, M.D.C.; Pérez-Mora, S.; Rojas-López, M.; Delgado-Macuil, R.J.; Ocampo-López, J.; Vázquez-Zapién, G.J.; Mata-Miranda, M.M.; Pérez-Ishiwara, D.G. Polyphenolic Compounds Nanostructurated with Gold Nanoparticles Enhance Wound Repair. Int. J. Mol. Sci. 2023, 24, 17138. [Google Scholar] [CrossRef] [PubMed]
- Zandnia, F.; Doosti, A.; Mokhtari-Farsani, A.; Kardi, M.T.; Movafagh, A. Application of Multiplex PCR for Rapid and Sensitive Detection of Human Papillomaviruses in Cervical Cancer. Pak. J. Med. Sci. 2016, 32, 444–447. [Google Scholar] [CrossRef] [PubMed]
- Williamson, A.; Rybicki, E.P. Detection of Genital Human Papillomaviruses by Polymerase Chain Reaction Amplification with Degenerate Nested Primers. J. Med. Virol. 1991, 33, 165–171. [Google Scholar] [CrossRef]
- Evans, M.F.; Adamson, C.S.; Simmons-Arnold, L.; Cooper, K. Touchdown General Primer (GP5+/GP6+) PCR and Optimized Sample DNA Concentration Support the Sensitive Detection of Human Papillomavirus. BMC Clin. Pathol. 2005, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Ocadiz-Delgado, R.; Castañeda-Saucedo, E.; Indra, A.K.; Hernandez-Pando, R.; Flores-Guizar, P.; Cruz-Colin, J.L.; Recillas-Targa, F.; Perez-Ishiwara, G.; Covarrubias, L.; Gariglio, P. RXRα Deletion and E6E7 Oncogene Expression Are Sufficient to Induce Cervical Malignant Lesions in Vivo. Cancer Lett. 2012, 317, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Fujinaga, Y.; Shimada, M.; Okazawa, K.; Fukushima, M.; Kato, I.; Fujinaga, K. Simultaneous detection and typing of genital human papillomavirus DNA using the polymerase chain reaction. J. Gen. Virol. 1991, 72, 1039–1044. [Google Scholar] [CrossRef]
- Ocadiz-Delgado, R.; Lizcano-Meneses, S.; Trejo-Vazquez, J.; Conde-Perezprina, J.; Garrido-Palmas, F.; Alvarez-Rios, E.; García-Villa, E.; Ruiz, G.; Illades-Aguiar, B.; Leyva-Vázquez, M.A.; et al. Circulating miR-15b, miR-34a and miR-218 as Promising Novel Early Low-invasive Biomarkers of Cervical Carcinogenesis. APMIS 2021, 129, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Jackson, B.L.; Grabowska, A.; Ratan, H.L. MicroRNA in Prostate Cancer: Functional Importance and Potential as Circulating Biomarkers. BMC Cancer 2014, 14, 930. [Google Scholar] [CrossRef]
- Lo, U.-G.; Yang, D.; Hsieh, J.-T. The Role of microRNAs in Prostate Cancer Progression. Transl. Androl. Urol. 2013, 2, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Nadiminty, N.; Tummala, R.; Lou, W.; Zhu, Y.; Zhang, J.; Chen, X.; eVere White, R.W.; Kung, H.-J.; Evans, C.P.; Gao, A.C. MicroRNA Let-7c Suppresses Androgen Receptor Expression and Activity via Regulation of Myc Expression in Prostate Cancer Cells. J. Biol. Chem. 2012, 287, 1527–1537. [Google Scholar] [CrossRef] [PubMed]
- Mulholland, E.J.; Green, W.P.; Buckley, N.E.; McCarthy, H.O. Exploring the Potential of MicroRNA Let-7c as a Therapeutic for Prostate Cancer. Mol. Ther. Nucleic Acids 2019, 18, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Reis, S.T.; Timoszczuk, L.S.; Pontes-Junior, J.; Viana, N.; Silva, I.A.; Dip, N.; Srougi, M.; Leite, K.R.M. The Role of Micro RNAs Let7c, 100 and 218 Expression and Their _target RAS, C-MYC, BUB1, RB, SMARCA5, LAMB3 and Ki-67 in Prostate Cancer. Clin. Sao Paulo Braz. 2013, 68, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Abdelaal, A.M.; Sohal, I.S.; Iyer, S.G.; Sudarshan, K.; Orellana, E.A.; Ozcan, K.E.; dos Santos, A.P.; Low, P.S.; Kasinski, A.L. Selective _targeting of Chemically Modified miR-34a to Prostate Cancer Using a Small Molecule Ligand and an Endosomal Escape Agent. Mol. Ther. Nucleic Acids 2024, 35, 102193. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, X.; Dougherty, E.M.; Tang, D.G. MicroRNA-34a, Prostate Cancer Stem Cells, and Therapeutic Development. Cancers 2022, 14, 4538. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Kelnar, K.; Liu, B.; Chen, X.; Calhoun-Davis, T.; Li, H.; Patrawala, L.; Yan, H.; Jeter, C.; Honorio, S.; et al. Identification of miR-34a as a Potent Inhibitor of Prostate Cancer Progenitor Cells and Metastasis by Directly Repressing CD44. Nat. Med. 2011, 17, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Rajak, N.; Singh, Y.; Singh, A.K.; Giri, R.; Garg, N. Role of MicroRNA-21 in Prostate Cancer Progression and Metastasis: Molecular Mechanisms to Therapeutic _targets. Ann. Surg. Oncol. 2024, 31, 4795–4808. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, R.; Astuti, I.; Danarto, H.R. miRNA-21 as High Potential Prostate Cancer Biomarker in Prostate Cancer Patients in Indonesia. Asian Pac. J. Cancer Prev. 2023, 24, 1095–1099. [Google Scholar] [CrossRef]
- Hua, Y.; Liang, C.; Miao, C.; Wang, S.; Su, S.; Shao, P.; Liu, B.; Bao, M.; Zhu, J.; Xu, A.; et al. MicroRNA-126 Inhibits Proliferation and Metastasis in Prostate Cancer via Regulation of ADAM9. Oncol. Lett. 2018, 15, 9051–9060. [Google Scholar] [CrossRef] [PubMed]
- Jalil, A.T.; Abdulhadi, M.A.; Al-Ameer, L.R.; Abbas, H.A.; Merza, M.S.; Zabibah, R.S.; Fadhil, A.A. The Emerging Role of microRNA-126 as a Potential Therapeutic _target in Cancer: A Comprehensive Review. Pathol. Res. Pract. 2023, 248, 154631. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Z.; Yang, Z.; Xiao, L.; Wang, F.; He, Y.; Su, P.; Wang, J.; Jing, B. Association of microRNA-126 Expression with Clinicopathological Features and the Risk of Biochemical Recurrence in Prostate Cancer Patients Undergoing Radical Prostatectomy. Diagn. Pathol. 2013, 8, 208. [Google Scholar] [CrossRef]
- Hsu, T.-I.; Hsu, C.-H.; Lee, K.-H.; Lin, J.-T.; Chen, C.-S.; Chang, K.-C.; Su, C.-Y.; Hsiao, M.; Lu, P.-J. MicroRNA-18a Is Elevated in Prostate Cancer and Promotes Tumorigenesis through Suppressing STK4 in Vitro and in Vivo. Oncogenesis 2014, 3, e99. [Google Scholar] [CrossRef]
- Santos, S.A.A.; Portela, L.M.F.; Camargo, A.C.L.; Constantino, F.B.; Colombelli, K.T.; Fioretto, M.N.; Mattos, R.; de Almeida Fantinatti, B.E.; Denti, M.A.; Piazza, S.; et al. miR-18a-5p Is Involved in the Developmental Origin of Prostate Cancer in Maternally Malnourished Offspring Rats: A DOHaD Approach. Int. J. Mol. Sci. 2022, 23, 14855. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.; Cao, Z.; Zhu, R.; You, L.; Zhang, T. The Dual Functional Role of MicroRNA-18a (miR-18a) in Cancer Development. Clin. Transl. Med. 2019, 8, e32. [Google Scholar] [CrossRef] [PubMed]
- Kiener, M.; Chen, L.; Krebs, M.; Grosjean, J.; Klima, I.; Kalogirou, C.; Riedmiller, H.; Kneitz, B.; Thalmann, G.N.; Snaar-Jagalska, E.; et al. miR-221-5p Regulates Proliferation and Migration in Human Prostate Cancer Cells and Reduces Tumor Growth in Vivo. BMC Cancer 2019, 19, 627. [Google Scholar] [CrossRef] [PubMed]
- Baruah, M.M.; Sharma, N. miR-221 Regulates Proliferation, Invasion, Apoptosis and Progression of Prostate Cancer Cells by Modulating E-Cadherin/Wnt/β Catenin Axis. Adv. Cancer Biol.-Metastasis 2021, 2, 100005. [Google Scholar] [CrossRef]
- Goto, Y.; Kojima, S.; Nishikawa, R.; Kurozumi, A.; Kato, M.; Enokida, H.; Matsushita, R.; Yamazaki, K.; Ishida, Y.; Nakagawa, M.; et al. MicroRNA Expression Signature of Castration-Resistant Prostate Cancer: The microRNA-221/222 Cluster Functions as a Tumour Suppressor and Disease Progression Marker. Br. J. Cancer 2015, 113, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.-X.; Liu, Z.; Deng, F.; Wang, D.-D.; Li, X.-W.; Tian, T.; Zhang, J.; Tang, J.-H. MiR-145: A Potential Biomarker of Cancer Migration and Invasion. Am. J. Transl. Res. 2019, 11, 6739–6753. [Google Scholar] [PubMed]
- Manvati, S.; Mangalhara, K.C.; Kalaiarasan, P.; Chopra, R.; Agarwal, G.; Kumar, R.; Saini, S.K.; Kaushik, M.; Arora, A.; Kumari, U.; et al. miR-145 Supports Cancer Cell Survival and Shows Association with DDR Genes, Methylation Pattern, and Epithelial to Mesenchymal Transition. Cancer Cell Int. 2019, 19, 230. [Google Scholar] [CrossRef] [PubMed]
- Zeinali, T.; Mansoori, B.; Mohammadi, A.; Baradaran, B. Regulatory Mechanisms of miR-145 Expression and the Importance of Its Function in Cancer Metastasis. Biomed. Pharmacother. 2019, 109, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Mu, X.; Yin, Q.; Hu, K. miR-106a Contributes to Prostate Carcinoma Progression through PTEN. Oncol. Lett. 2019, 17, 1327–1332. [Google Scholar] [CrossRef]
- Coman, R.; Schitcu, V.; Budisan, L.; Raduly, L.; Braicu, C.; Petrut, B.; Coman, I.; Berindan-Neagoe, I.; Al Hajjar, N. Evaluation of miR-148a-3p and miR-106a-5p as Biomarkers for Prostate Cancer: Pilot Study. Genes 2024, 15, 584. [Google Scholar] [CrossRef]
- Garofalo, M.; Quintavalle, C.; Romano, G.; Croce, C.M.; Condorelli, G. miR221/222 in Cancer: Their Role in Tumor Progression and Response to Therapy. Curr. Mol. Med. 2012, 12, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; An, Q.; Niu, B.; Lu, X.; Zhang, N.; Cao, X. Role of miR-221/222 in Tumor Development and the Underlying Mechanism. J. Oncol. 2019, 2019, 7252013. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Sang, Y.; Sun, T.; Kong, P.; Zhang, L.; Dai, Y.; Cao, Y.; Tao, Z.; Liu, W. Emerging Roles and Mechanisms of microRNA-222-3p in Human Cancer (Review). Int. J. Oncol. 2021, 58, 20. [Google Scholar] [CrossRef]
- Boulet, G.; Horvath, C.; Broeck, D.V.; Sahebali, S.; Bogers, J. Human Papillomavirus: E6 and E7 Oncogenes. Int. J. Biochem. Cell Biol. 2007, 39, 2006–2011. [Google Scholar] [CrossRef]
- Swan, D.C.; Tucker, R.A.; Tortolero-Luna, G.; Mitchell, M.F.; Wideroff, L.; Unger, E.R.; Nisenbaum, R.A.; Reeves, W.C.; Icenogle, J.P. Human Papillomavirus (HPV) DNA Copy Number Is Dependent on Grade of Cervical Disease and HPV Type. J. Clin. Microbiol. 1999, 37, 1030–1034. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.E.; Becker, G.L.; Jackson, J.B.; Rysavy, M.B. Human Papillomavirus and Associated Cancers: A Review. Viruses 2024, 16, 680. [Google Scholar] [CrossRef] [PubMed]
- Senapati, R.; Nayak, B.; Kar, S.K.; Dwibedi, B. HPV Genotypes Co-Infections Associated with Cervical Carcinoma: Special Focus on Phylogenetically Related and Non-Vaccine _targeted Genotypes. PLoS ONE 2017, 12, e0187844. [Google Scholar] [CrossRef]
- Okadome, M.; Saito, T.; Tanaka, H.; Nogawa, T.; Furuta, R.; Watanabe, K.; Kita, T.; Yamamoto, K.; Mikami, M.; Takizawa, K.; et al. Potential Impact of Combined High- and Low-risk Human Papillomavirus Infection on the Progression of Cervical Intraepithelial Neoplasia 2. J. Obstet. Gynaecol. Res. 2014, 40, 561–569. [Google Scholar] [CrossRef]
- Campos, R.G.; Malacara Rosas, A.; Gutiérrez Santillán, E.; Delgado Gutiérrez, M.; Torres Orozco, R.E.; García Martínez, E.D.; Torres Bernal, L.F.; Rosas Cabral, A. Unusual Prevalence of High-Risk Genotypes of Human Papillomavirus in a Group of Women with Neoplastic Lesions and Cervical Cancer from Central Mexico. PLoS ONE 2019, 14, e0215222. [Google Scholar] [CrossRef] [PubMed]
- De Brot, L.; Pellegrini, B.; Moretti, S.T.; Carraro, D.M.; Soares, F.A.; Rocha, R.M.; Baiocchi, G.; Da Cunha, I.W.; De Andrade, V.P. Infections with Multiple High-risk HPV Types Are Associated with High-grade and Persistent Low-grade Intraepithelial Lesions of the Cervix. Cancer Cytopathol. 2017, 125, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Zeng, X.; Luo, H.; Pan, L.; Huang, Y.; Zhang, H.; Han, N. Epidemiologic Characteristics of High-Risk HPV and the Correlation between Multiple Infections and Cervical Lesions. BMC Infect. Dis. 2023, 23, 667. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Godoy, A.; Azzouni, F.; Wilton, J.H.; Ip, C.; Mohler, J.L. Prostate Cancer Cells Differ in Testosterone Accumulation, Dihydrotestosterone Conversion, and Androgen Receptor Signaling Response to Steroid 5α-Reductase Inhibitors. The Prostate 2013, 73, 1470–1482. [Google Scholar] [CrossRef]
- García Lozano, T.; García García, E.; González Monsalve, J.A.; Illueca Ballester, C.; Aznar Oroval, E.; San Juan Gadea, M.C.; Navarro Gallego, M.T.; Almenar Medina, S. Análisis de las coinfecciones mixtas por el virus del papiloma humano (VPH) de alto y bajo riesgo en lesiones de significado incierto. Clínica E Investig. En Ginecol. Obstet. 2015, 42, 18–24. [Google Scholar] [CrossRef]
- Mekhail, S.M.; Yousef, P.G.; Jackinsky, S.W.; Pasic, M.; Yousef, G.M. miRNA in Prostate Cancer: New Prospects for Old Challenges. EJIFCC 2014, 25, 79–98. [Google Scholar]
- Zhang, R.; Su, J.; Xue, S.-L.; Yang, H.; Ju, L.-L.; Ji, Y.; Wu, K.-H.; Zhang, Y.-W.; Zhang, Y.-X.; Hu, J.-F.; et al. HPV E6/P53 Mediated down-Regulation of miR-34a Inhibits Warburg Effect through _targeting LDHA in Cervical Cancer. Am. J. Cancer Res. 2016, 6, 312–320. [Google Scholar]
- Khatami, A.; Nahand, J.S.; Kiani, S.J.; Khoshmirsafa, M.; Moghoofei, M.; Khanaliha, K.; Tavakoli, A.; Emtiazi, N.; Bokharaei-Salim, F. Human Papilloma Virus (HPV) and Prostate Cancer (PCa): The Potential Role of HPV Gene Expression and Selected Cellular MiRNAs in PCa Development. Microb. Pathog. 2022, 166, 105503. [Google Scholar] [CrossRef] [PubMed]
- Lajer, C.B.; Garnæs, E.; Friis-Hansen, L.; Norrild, B.; Therkildsen, M.H.; Glud, M.; Rossing, M.; Lajer, H.; Svane, D.; Skotte, L.; et al. The Role of miRNAs in Human Papilloma Virus (HPV)-Associated Cancers: Bridging between HPV-Related Head and Neck Cancer and Cervical Cancer. Br. J. Cancer 2012, 106, 1526–1534. [Google Scholar] [CrossRef]
- Wagner, S.; Ngezahayo, A.; Murua Escobar, H.; Nolte, I. Role of miRNA Let-7 and Its Major _targets in Prostate Cancer. BioMed Res. Int. 2014, 2014, 376326. [Google Scholar] [CrossRef]
- Ma, Y.; Shen, N.; Wicha, M.S.; Luo, M. The Roles of the Let-7 Family of MicroRNAs in the Regulation of Cancer Stemness. Cells 2021, 10, 2415. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-T.; Zhang, G.-X.; Gao, S.-S. The Potential Diagnostic Accuracy of Let-7 Family for Cancer: A Meta-Analysis. Technol. Cancer Res. Treat. 2021, 20, 15330338211033061. [Google Scholar] [CrossRef]
- Dong, Q.; Meng, P.; Wang, T.; Qin, W.; Qin, W.; Wang, F.; Yuan, J.; Chen, Z.; Yang, A.; Wang, H. MicroRNA Let-7a Inhibits Proliferation of Human Prostate Cancer Cells In Vitro and In Vivo by _targeting E2F2 and CCND2. PLoS ONE 2010, 5, e10147. [Google Scholar] [CrossRef]
- Alwhaibi, A.; Parvathagiri, V.; Verma, A.; Artham, S.; Adil, M.S.; Somanath, P.R. Regulation of Let-7a-5p and miR-199a-5p Expression by Akt1 Modulates Prostate Cancer Epithelial-to-Mesenchymal Transition via the Transforming Growth Factor-β Pathway. Cancers 2022, 14, 1625. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Guo, X.; Li, N.; Chen, Q.; Shen, J.; Huang, X.; Huang, G.; Wang, F. WNT1, a _target of miR-34a, Promotes Cervical Squamous Cell Carcinoma Proliferation and Invasion by Induction of an E-P Cadherin Switch via the WNT/β-Catenin Pathway. Cell. Oncol. Dordr. 2020, 43, 489–503. [Google Scholar] [CrossRef]
- Feng, Y.-H.; Tsao, C.-J. Emerging Role of microRNA-21 in Cancer. Biomed. Rep. 2016, 5, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Stafford, M.Y.C.; Willoughby, C.E.; Walsh, C.P.; McKenna, D.J. Prognostic Value of miR-21 for Prostate Cancer: A Systematic Review and Meta-Analysis. Biosci. Rep. 2022, 42, BSR20211972. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, S.; Zhao, J.; Zhou, Y.; Xu, L. MicroRNA-126: A New and Promising Player in Lung Cancer. Oncol. Lett. 2021, 21, 35. [Google Scholar] [CrossRef]
- Zhou, Y.; Feng, X.; Liu, Y.; Ye, S.; Wang, H.; Tan, W.; Tian, T.; Qiu, Y.; Luo, H. Down-Regulation of miR-126 Is Associated with Colorectal Cancer Cells Proliferation, Migration and Invasion by _targeting IRS-1 via the AKT and ERK1/2 Signaling Pathways. PLoS ONE 2013, 8, e81203. [Google Scholar] [CrossRef]
- Miao, Y.; Lu, J.; Fan, B.; Sun, L. MicroRNA-126-5p Inhibits the Migration of Breast Cancer Cells by Directly _targeting CNOT7. Technol. Cancer Res. Treat. 2020, 19, 153303382097754. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Gu, X. MicroRNA-221 Inhibits Human Papillomavirus 16 E1-E2 Mediated DNA Replication through Activating SOCS1/Type I IFN Signaling Pathway. Int. J. Clin. Exp. Pathol. 1019, 12, 1518. [Google Scholar]
- Di Martino, M.T.; Arbitrio, M.; Caracciolo, D.; Cordua, A.; Cuomo, O.; Grillone, K.; Riillo, C.; Caridà, G.; Scionti, F.; Labanca, C.; et al. miR-221/222 as Biomarkers and _targets for Therapeutic Intervention on Cancer and Other Diseases: A Systematic Review. Mol. Ther. Nucleic Acids 2022, 27, 1191–1224. [Google Scholar] [CrossRef] [PubMed]
- Ye, T.; Zhong, L.; Ye, X.; Liu, J.; Li, L.; Yi, H. miR-221-3p and miR-222-3p Regulate the SOCS3/STAT3 Signaling Pathway to Downregulate the Expression of NIS and Reduce Radiosensitivity in Thyroid Cancer. Exp. Ther. Med. 2021, 21, 652. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Deng, J.J.; Gowda, P.S.; Rao, M.K.; Lin, C.-L.; Chen, C.L.; Huang, T.; Sun, L.-Z. Androgen Receptor and MicroRNA-21 Axis down-Regulates Transforming Growth Factor Beta Receptor II (TGFBR2) Expression in Prostate Cancer. Oncogene 2014, 33, 4097–4106. [Google Scholar] [CrossRef]
- Kneitz, B.; Krebs, M.; Kalogirou, C.; Schubert, M.; Joniau, S.; Van Poppel, H.; Lerut, E.; Kneitz, S.; Scholz, C.J.; Ströbel, P.; et al. Survival in Patients with High-Risk Prostate Cancer Is Predicted by miR-221, Which Regulates Proliferation, Apoptosis, and Invasion of Prostate Cancer Cells by Inhibiting IRF2 and SOCS3. Cancer Res. 2014, 74, 2591–2603. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.-Y.; Wang, R.; Chen, L.-B. MicroRNA-145: A Potent Tumour Suppressor That Regulates Multiple Cellular Pathways. J. Cell. Mol. Med. 2014, 18, 1913–1926. [Google Scholar] [CrossRef]
- Hart, M.; Wach, S.; Nolte, E.; Szczyrba, J.; Menon, R.; Taubert, H.; Hartmann, A.; Stoehr, R.; Wieland, W.; Grässer, F.A.; et al. The Proto-oncogene ERG Is a _target of Micro RNA miR-145 in Prostate Cancer. FEBS J. 2013, 280, 2105–2116. [Google Scholar] [CrossRef] [PubMed]
- Tahamtan, A.; Teymoori-Rad, M.; Nakstad, B.; Salimi, V. Anti-Inflammatory MicroRNAs and Their Potential for Inflammatory Diseases Treatment. Front. Immunol. 2018, 9, 1377. [Google Scholar] [CrossRef] [PubMed]
- Gunasekharan, V.; Laimins, L.A. Human Papillomaviruses Modulate MicroRNA 145 Expression to Directly Control Genome Amplification. J. Virol. 2013, 87, 6037–6043. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.L.; Davis, J.W.; Taylor, K.H.; Johnson, J.; Shi, Z.; Williams, R.; Atasoy, U.; Lewis, J.S.; Stack, M.S. Identification of a Human Papillomavirus–Associated Oncogenic miRNA Panel in Human Oropharyngeal Squamous Cell Carcinoma Validated by Bioinformatics Analysis of The Cancer Genome Atlas. Am. J. Pathol. 2015, 185, 679–692. [Google Scholar] [CrossRef] [PubMed]
HPV Genotypes in Benign Lesions Group | |||
---|---|---|---|
Type of Injury | HPV Positivity Frequency (%) | Predominant HPV Genotypes | Coinfection [1] |
BPH | LR: 62.5 | 6, 11 | ND |
IR: 25.0 | 52, 58 | 6, 11 | |
HR: 12.5 | 16, 18 | 6, 11, 33 | |
BPH/Prostatitis | LR:74 | 6, 11 | ND |
IR: 21.7 | 52, 58 | 6, 11 | |
HR: 4.3 | 16, 18 | 6, 11, 33 | |
HPV Genotypes in PCa Group | |||
HPV Genotypes Depending on PCa Gleason Stratification | |||
Type of Injury | HPV Positivity Frequency (%) | Predominant HPV Genotypes | Coinfection [1] |
Low-grade Gleason (score ≤ 6) | LR-HPV: 55.5 | 6, 11 | 58, 52 [1] |
IR-HPV: 11.1 | 52 | 16 | |
HR-HPV: 33.3 | 16 | ND | |
High-grade Gleason (8–10) | LR-HPV: 10.6 | 6, 11, 31 | 31, 52 |
IR-HPV: 47.3 | 33, 31, 52 | 18 | |
HR-HPV: 42.10 | 16, 18 | 6 |
miRNAs | Biological Function | Molecular Pathways Involved | References |
---|---|---|---|
let-7c | Promotes cell cycle progression, proliferation, survival, cancer growth, metastasis, and stemness, while reducing therapy resistance. | Regulates Ras, NFκB, and Myc signaling pathways. | Nadiminty et al. [50], Mulholland et al. [51], Reis et al. [52]. |
miR-34a | Drives proliferation, invasiveness, stemness, and survival. Suppresses apoptosis and accelerates tumor progression. | Modulates p53, c-Myc, and androgen receptor. | Abdelaal et al. [53], Li et al. [54], Liu et al. [55]. |
mir-21 | Enhances cell survival, proliferation, invasiveness, and chemoresistance. | Controls PTEN, PDCD4, and TIMP3 pathways. | Singh et al. [56], Gunawan et al. [57]. |
mir-126 | Modulates angiogenesis, limits tumor growth, and prevents metastasis. | Modulates VEGF, PI3K/Akt, and EGFL7 pathways. | Hua et al. [58], Jalil et al. [59], Sun et al. [60]. |
mir-18a | Supports proliferation, survival, angiogenesis, invasion, and metastasis, while inhibiting apoptosis in cancer. | Influences Myc, HIF-1α, and p53 pathways. | Hsu et al. [61], Santos et al. [62], Shen et al. [63]. |
mir-221 | Regulates proliferation, survival, migration, invasion, angiogenesis, chemoresistance, and tumor progression. | Modulates p27, p57, and Bim pathways. | Kiener et al. [64], Baruah et al. [65], Goto et al. [66]. |
mir-145 | Acts as a tumor suppressor in cancer. It inhibits proliferation, migration, invasion, angiogenesis, and stemness, while promoting apoptosis. | _targets c-Myc, KRAS, and SOX2 pathways. | Wu et al. [67], Manvati et al. [68], Zeinali et al. [69]. |
mir-106a | Drives proliferation, survival, migration, invasion, and chemoresistance. | Modulates p21, PTEN, and Bim pathways. | Shen et al. [4], Lu et al. [70], Coman et al. [71]. |
mir-222 | Enhances proliferation, survival, migration, invasion, angiogenesis, and chemoresistance. | Regulates p27, p57, and Bim pathways. | Garofalo et al. [72], Song et al. [73], Wang et al. [74]. |
miRNAs | _target Genes | Cellular Processe |
---|---|---|
miR-34a | UHRF2 | Proliferation, regulation of DNA methylation, genomic stability, and response to DNA damage. |
MDM4 | Regulates TP53, inhibits cell cycle arrest and apoptosis mediated by p53/TP53 and TP73/p73, and inhibits the degradation of MDM2. | |
MET | Growth, survival, cell migration, invasion, cancer progression, and malignancy. | |
miR-145 | SOX 11 | Regulates cell proliferation, differentiation, and migration. |
ERG | Proliferation, differentiation, and apoptosis. | |
MYO6 | Cell migration and invasion. | |
GMFB | Proliferation, migration, inflammation, and apoptosis. | |
BCR | Cell signaling, proliferation, differentiation, survival, migration, invasion, and apoptosis. | |
miR-221 | FOXS1 | Proliferation, migration, invasion, and resistance to apoptosis. |
KIT | Cell survival and proliferation. | |
DMTF1 | Senescence, apoptosis, cell cycle regulation, and DNA damage response. | |
SORCS1 | Cell proliferation, migration and invasion, and resistance to apoptosis. | |
CCND1 | Cell cycle during the G1/S transition, proliferation, evasion of apoptosis, therapy resistance, and invasion. | |
miR-21 | STAT3 | Proliferation, invasion, metastasis, angiogenesis, evasion of apoptosis, and therapy resistance. |
SKP2 | Cell cycle progression through negative regulation of p27, resistance to apoptosis, invasion, and migration. | |
CREBRF | Proliferation, survival, and resistance to apoptosis. | |
MALT1 | Proliferation, survival, resistance to apoptosis, and inflammatory response. | |
miR-106a | TP53 | Apoptosis, cell cycle regulation, DNA damage response, oxidative stress control, inhibition of invasion and metastasis. |
RB1 | Cell cycle, proliferation, senescence, apoptosis, maintenance of genomic stability, invasion, and metastasis. | |
E2F1 | Cellular proliferation, cell cycle regulation, apoptosis, differentiation, DNA damage response, invasion, and metastasis. | |
BCL2L11 (Bim) | Apoptosis, cell cycle, cellular stress response and sensitivity to therapies. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgado-Hernández, S.V.; Martínez-Retamoza, L.; Ocadiz-Delgado, R.; Pérez-Mora, S.; Cedeño-Arboleda, G.E.; Gómez-García, M.d.C.; Gariglio, P.; Pérez-Ishiwara, D.G. miRNAs Dysregulated in Human Papillomavirus-Associated Benign Prostatic Lesions and Prostate Cancer. Cancers 2025, 17, 26. https://doi.org/10.3390/cancers17010026
Salgado-Hernández SV, Martínez-Retamoza L, Ocadiz-Delgado R, Pérez-Mora S, Cedeño-Arboleda GE, Gómez-García MdC, Gariglio P, Pérez-Ishiwara DG. miRNAs Dysregulated in Human Papillomavirus-Associated Benign Prostatic Lesions and Prostate Cancer. Cancers. 2025; 17(1):26. https://doi.org/10.3390/cancers17010026
Chicago/Turabian StyleSalgado-Hernández, Sandra Viridiana, Lucero Martínez-Retamoza, Rodolfo Ocadiz-Delgado, Salvador Pérez-Mora, Gladys Edith Cedeño-Arboleda, María del Consuelo Gómez-García, Patricio Gariglio, and David Guillermo Pérez-Ishiwara. 2025. "miRNAs Dysregulated in Human Papillomavirus-Associated Benign Prostatic Lesions and Prostate Cancer" Cancers 17, no. 1: 26. https://doi.org/10.3390/cancers17010026
APA StyleSalgado-Hernández, S. V., Martínez-Retamoza, L., Ocadiz-Delgado, R., Pérez-Mora, S., Cedeño-Arboleda, G. E., Gómez-García, M. d. C., Gariglio, P., & Pérez-Ishiwara, D. G. (2025). miRNAs Dysregulated in Human Papillomavirus-Associated Benign Prostatic Lesions and Prostate Cancer. Cancers, 17(1), 26. https://doi.org/10.3390/cancers17010026