Predicting Postoperative Lung Cancer Recurrence and Survival Using Cox Proportional Hazards Regression and Machine Learning
Simple Summary
Abstract
1. Introduction
2. Methods and Materials
2.1. Study Cohort
2.2. Algorithm Overview
2.3. Multi-Level Radiomic Features
2.3.1. Body Composition
2.3.2. Lung Characteristics
2.3.3. Tumor Characteristics
2.4. Univariate Cox Proportional Hazards Analysis
2.5. Postoperative Recurrence and Survival Prediction Modeling
2.6. Performance Validation
3. Results
3.1. Overall Postoperative Recurrence-Free Survival (RFS) and Overall Survival (OS) Analyses
3.2. Univariate Analyses of Local, Regional, and Distant RFS
3.3. Multivariate RFS Analyses and Machine Learning Prediction Modeling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cancer Facts & Figures. 2021. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html (accessed on 5 May 2022).
- Gridelli, C.; Rossi, A.; Carbone, D.P.; Guarize, J.; Karachaliou, N.; Mok, T.; Petrella, F.; Spaggiari, L.; Rosell, R. Non-small-cell lung cancer. Nat. Rev. Dis. Primers 2015, 1, 15009. [Google Scholar] [CrossRef]
- Surgery for Non-Small Cell Lung Cancer. Available online: https://www.cancer.org/cancer/lung-cancer/treating-non-small-cell/surgery.html (accessed on 13 March 2021).
- Baldvinsson, K.; Oskarsdottir, G.N.; Orrason, A.W.; Halldorsson, H.; Thorsteinsson, H.; Sigurdsson, M.I.; Jonsson, S.; Gudbjartsson, T. Resection rate and operability of elderly patients with non-small cell lung cancer: Nationwide study from 1991 to 2014. Interact. Cardiovasc. Thorac. Surg. 2017, 24, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Morgensztern, D.; Ng, S.H.; Gao, F.; Govindan, R. Trends in stage distribution for patients with non-small cell lung cancer: A National Cancer Database survey. J. Thorac. Oncol. 2010, 5, 29–33. [Google Scholar] [CrossRef]
- Valo, J.K.; Kyto, V.; Sipila, J.; Rautava, P.; Sihvo, E.; Gunn, J. Thoracoscopic surgery for lung cancer is associated with improved survival and shortened admission length: A nationwide propensity-matched study. Eur. J. Cardiothorac. Surg. 2020, 57, 100–106. [Google Scholar] [CrossRef]
- Thorsteinsson, H.; Alexandersson, A.; Oskarsdottir, G.N.; Skuladottir, R.; Isaksson, H.J.; Jonsson, S.; Gudbjartsson, T. Resection rate and outcome of pulmonary resections for non-small-cell lung cancer: A nationwide study from Iceland. J. Thorac. Oncol. 2012, 7, 1164–1169. [Google Scholar] [CrossRef]
- Dransfield, M.T.; Lock, B.J.; Garver, R.I., Jr. Improving the lung cancer resection rate in the US Department of Veterans Affairs Health System. Clin. Lung Cancer 2006, 7, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Yano, T.; Okamoto, T.; Fukuyama, S.; Maehara, Y. Therapeutic strategy for postoperative recurrence in patients with non-small cell lung cancer. World J. Clin. Oncol. 2014, 5, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Demicheli, R.; Fornili, M.; Ambrogi, F.; Higgins, K.; Boyd, J.A.; Biganzoli, E.; Kelsey, C.R. Recurrence dynamics for non-small-cell lung cancer: Effect of surgery on the development of metastases. J. Thorac. Oncol. 2012, 7, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Uramoto, H.; Tanaka, F. Recurrence after surgery in patients with NSCLC. Transl. Lung Cancer Res. 2014, 3, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, M.; Uramoto, H.; Oka, S.; Chikaishi, Y.; Iwanami, T.; Shimokawa, H.; So, T.; Hanagiri, T.; Tanaka, F. Clinical significance of IGF1R expression in non-small-cell lung cancer. Clin. Lung Cancer 2012, 13, 136–142. [Google Scholar] [CrossRef]
- Hjelde, H.; Sundstrom, S.; Odegard, A.; Hatlinghus, S.; Abusland, A.B.; Haaverstad, R. Recurrence and survival after surgical treatment of lung cancer. Tidsskr. Nor. Laegeforen 2010, 130, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Hung, J.J.; Hsu, W.H.; Hsieh, C.C.; Huang, B.S.; Huang, M.H.; Liu, J.S.; Wu, Y.C. Post-recurrence survival in completely resected stage I non-small cell lung cancer with local recurrence. Thorax 2009, 64, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Hamamoto, Y.; Kataoka, M.; Nogami, N.; Kozuki, T.; Kato, Y.; Shinohara, S.; Shinkai, T. Factors affecting survival time after recurrence of non-small-cell lung cancer treated with concurrent chemoradiotherapy. Jpn. J. Radiol. 2012, 30, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Westeel, V.; Choma, D.; Clement, F.; Woronoff-Lemsi, M.C.; Pugin, J.F.; Dubiez, A.; Depierre, A. Relevance of an intensive postoperative follow-up after surgery for non-small cell lung cancer. Ann. Thorac. Surg. 2000, 70, 1185–1190. [Google Scholar] [CrossRef] [PubMed]
- Sekihara, K.; Hishida, T.; Yoshida, J.; Oki, T.; Omori, T.; Katsumata, S.; Ueda, T.; Miyoshi, T.; Goto, M.; Nakasone, S.; et al. Long-term survival outcome after postoperative recurrence of non-small-cell lung cancer: Who is ’cured’ from postoperative recurrence? Eur. J. Cardiothorac. Surg. 2017, 52, 522–528. [Google Scholar] [CrossRef]
- Al-Alao, B.S.; Gately, K.; Nicholson, S.; McGovern, E.; Young, V.K.; O’Byrne, K.J. Prognostic impact of vascular and lymphovascular invasion in early lung cancer. Asian Cardiovasc. Thorac. Ann. 2014, 22, 55–64. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Huang, T.W.; Tsai, W.C.; Lin, L.F.; Cheng, J.B.; Chang, H.; Lee, S.C. Risk factors of postoperative recurrences in patients with clinical stage I NSCLC. World J. Surg. Oncol. 2014, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Shibutani, M.; Maeda, K.; Nagahara, H.; Ohtani, H.; Iseki, Y.; Ikeya, T.; Sugano, K.; Hirakawa, K. The prognostic significance of a postoperative systemic inflammatory response in patients with colorectal cancer. World J. Surg. Oncol. 2015, 13, 194. [Google Scholar] [CrossRef]
- Kinoshita, T.; Goto, T. Links between Inflammation and Postoperative Cancer Recurrence. J. Clin. Med. 2021, 10, 228. [Google Scholar] [CrossRef] [PubMed]
- Frank, S.M.; Higgins, M.S.; Breslow, M.J.; Fleisher, L.A.; Gorman, R.B.; Sitzmann, J.V.; Raff, H.; Beattie, C. The catecholamine, cortisol, and hemodynamic responses to mild perioperative hypothermia. A randomized clinical trial. Anesthesiology 1995, 82, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Kurz, A.; Sessler, D.I.; Lenhardt, R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N. Engl. J. Med. 1996, 334, 1209–1215. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Park, I.K.; Park, M.S.; Choi, H.J.; Cho, B.C.; Chung, K.Y.; Kim, S.K.; Chang, J.; Moon, J.W.; Kim, H.; et al. Activating mutations within the EGFR kinase domain: A molecular predictor of disease-free survival in resected pulmonary adenocarcinoma. J. Cancer Res. Clin. Oncol. 2009, 135, 1647–1654. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Oyama, T.; Osaki, T.; Li, J.; Takenoyama, M.; Izumi, H.; Sugio, K.; Kohno, K.; Yasumoto, K. Low expression of polypeptide GalNAc N-acetylgalactosaminyl transferase-3 in lung adenocarcinoma: Impact on poor prognosis and early recurrence. Br. J. Cancer 2004, 90, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Janowczyk, A.; Zhou, Y.; Thawani, R.; Fu, P.; Schalper, K.; Velcheti, V.; Madabhushi, A. Prediction of recurrence in early stage non-small cell lung cancer using computer extracted nuclear features from digital H&E images. Sci. Rep. 2017, 7, 13543. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, L.; Li, C.; Cai, Y.; Liang, Y.; Mo, X.; Lu, Q.; Dong, L.; Liu, Y. DeepLRHE: A Deep Convolutional Neural Network Framework to Evaluate the Risk of Lung Cancer Recurrence and Metastasis From Histopathology Images. Front. Genet. 2020, 11, 768. [Google Scholar] [CrossRef] [PubMed]
- Piche, M.E.; Poirier, P.; Lemieux, I.; Despres, J.P. Overview of Epidemiology and Contribution of Obesity and Body Fat Distribution to Cardiovascular Disease: An Update. Prog. Cardiovasc. Dis. 2018, 61, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Al-Sofiani, M.E.; Ganji, S.S.; Kalyani, R.R. Body composition changes in diabetes and aging. J. Diabetes Complicat. 2019, 33, 451–459. [Google Scholar] [CrossRef]
- Liu, B.; Giffney, H.E.; Arthur, R.S.; Rohan, T.E.; Dannenberg, A.J. Cancer Risk in Normal Weight Individuals with Metabolic Obesity: A Narrative Review. Cancer Prev. Res. 2021, 14, 509–520. [Google Scholar] [CrossRef]
- Rosen, C.J.; Klibanski, A. Bone, fat, and body composition: Evolving concepts in the pathogenesis of osteoporosis. Am. J. Med. 2009, 122, 409–414. [Google Scholar] [CrossRef]
- Brown, J.C.; Meyerhardt, J.A. Obesity and Energy Balance in GI Cancer. J. Clin. Oncol. 2016, 34, 4217–4224. [Google Scholar] [CrossRef] [PubMed]
- Caan, B.J.; Cespedes Feliciano, E.M.; Kroenke, C.H. The Importance of Body Composition in Explaining the Overweight Paradox in Cancer-Counterpoint. Cancer Res. 2018, 78, 1906–1912. [Google Scholar] [CrossRef]
- Jung, A.R.; Roh, J.L.; Kim, J.S.; Kim, S.B.; Choi, S.H.; Nam, S.Y.; Kim, S.Y. Prognostic value of body composition on recurrence and survival of advanced-stage head and neck cancer. Eur. J. Cancer 2019, 116, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Cespedes Feliciano, E.M.; Caan, B.J. The evolution of body composition in oncology-epidemiology, clinical trials, and the future of patient care: Facts and numbers. J. Cachexia Sarcopenia Muscle 2018, 9, 1200–1208. [Google Scholar] [CrossRef]
- Lemos, T.; Gallagher, D. Current body composition measurement techniques. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Borga, M.; West, J.; Bell, J.D.; Harvey, N.C.; Romu, T.; Heymsfield, S.B.; Dahlqvist Leinhard, O. Advanced body composition assessment: From body mass index to body composition profiling. J. Investig. Med. 2018, 66, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pu, L.; Gezer, N.S.; Ashraf, S.F.; Ocak, I.; Dresser, D.E.; Dhupar, R. Automated segmentation of five different body tissues on computed tomography using deep learning. Med. Phys. 2022, 50, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Leader, J.K.; Sechrist, J.; Beeche, C.A.; Singh, J.P.; Ocak, I.K.; Risbano, M.G. Automated identification of pulmonary arteries and veins depicted in non-contrast chest CT scans. Med. Image Anal. 2022, 77, 102367. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Zheng, B.; Leader, J.K.; Fuhrman, C.; Knollmann, F.; Klym, A.; Gur, D. Pulmonary lobe segmentation in CT examinations using implicit surface fitting. IEEE Trans. Med. Imaging 2009, 28, 1986–1996. [Google Scholar] [CrossRef]
- Pu, J.; Roos, J.; Yi, C.A.; Napel, S.; Rubin, G.D.; Paik, D.S. Adaptive border marching algorithm: Automatic lung segmentation on chest CT images. Comput. Med. Imaging Graph. 2008, 32, 452–462. [Google Scholar] [CrossRef]
- Pu, J.; Paik, D.S.; Meng, X.; Roos, J.E.; Rubin, G.D. Shape “break-and-repair” strategy and its application to automated medical image segmentation. IEEE Trans. Vis. Comput. Graph. 2011, 17, 115–124. [Google Scholar] [CrossRef]
- Pu, J.; Fuhrman, C.; Good, W.F.; Sciurba, F.C.; Gur, D. A differential geometric approach to automated segmentation of human airway tree. IEEE Trans. Med. Imaging 2011, 30, 266–278. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Z.; Gu, S.; Leader, J.K.; Kundu, S.; Tedrow, J.R.; Sciurba, F.C.; Gur, D.; Siegfried, J.M.; Pu, J. Optimal threshold in CT quantification of emphysema. Eur. Radiol. 2013, 23, 975–984. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ashraf, S.F.; Yin, K.; Meng, C.X.; Wang, Q.; Wang, Q.; Pu, J.; Dhupar, R. Predicting benign, preinvasive, and invasive lung nodules on computed tomography scans using machine learning. J. Thorac. Cardiovasc. Surg. 2021, 163, 1496–1505. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Leader, J.K.; Zheng, B.; Knollmann, F.; Fuhrman, C.; Sciurba, F.C.; Gur, D. A Computational geometry approach to automated pulmonary fissure segmentation in CT examinations. IEEE Trans. Med. Imaging 2009, 28, 710–719. [Google Scholar] [CrossRef]
- Cox, D.R. Regression Models and Life-Tables. In Breakthroughs in Statistics: Methodology and Distribution; Kotz, S., Johnson, N.L., Eds.; Springer: New York, NY, USA, 1992; pp. 527–541. [Google Scholar]
- Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification; Technical Report for Department of Computer Science; National Taiwan University: Taipei, Taiwan, 2016. [Google Scholar]
- Tin Kam, H. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef] [PubMed]
No Recurrence (n = 90) | Local/Regional Recurrence (n = 44) | Distant Recurrence (n = 175) | ||||||
---|---|---|---|---|---|---|---|---|
Characteristic | Alive (n = 10) | Expired (n = 80) | Brain (n = 46) | Abdominal (n = 30) | Bone (n = 22) | Multisite (n = 77) | ||
Age, mean | 70 ± 9.3 | 71 ± 9.8 | 65 ± 10.3 | 65 ± 10.3 | 68 ± 9.1 | 68 ± 8.6 | 67 ± 9.9 | |
Height (cm) | 167 ± 10.9 | 167 ± 9.9 | 170 ± 10.5 | 169 ± 11.0 | 167 ± 9.9 | 171 ± 10.9 | 169 ± 9.4 | |
Weight (kg) | 77 ± 20.4 | 77 ± 18.7 | 83 ± 20.4 | 79 ± 20.2 | 74 ± 15.4 | 83 ± 16.6 | 77 ± 19.2 | |
BMI | 27 ± 4.5 | 27 ± 6.11 | 29 ± 5.8 | 27 ± 6.1 | 26 ± 5.3 | 28 ± 4.9 | 27 ± 5.8 | |
Sex | ||||||||
Female | 7 (70.0) | 47 (58.8) | 22 (50.0) | 24 (52.2) | 15 (50) | 11 (50.0) | 38 (49.4) | |
Male | 3 (30.0) | 33 (41.2) | 22 (50.0) | 22 (47.8) | 15 (50) | 11 (50.0) | 39 (50.6) | |
Race | ||||||||
White | 8 (80.0) | 74 (92.5) | 37 (84.1) | 43 (93.5) | 29 (96.7) | 20 (90.9) | 68 (88.3) | |
Black | 1 (10.0) | 6 (7.5) | 7 (15.9) | 2 (4.4) | 1 (3.3) | 2 (9.1) | 8 (10.4) | |
Asian | 1 (10.0) | 0 (0.0) | 0 (0.0) | 1 (2.2) | 0 (0.0) | 0 (0.0) | 1 (1.3) | |
Smoking status | ||||||||
Non-smoker | 1 (10.0) | 2 (2.5) | 5 (11.4) | 3 (6.5) | 5 (16.7) | 2 (9.1) | 10 (13.0) | |
Smoker | 9 (90.0) | 78 (97.5) | 39 (88.6) | 43 (93.5) | 25 (83.3) | 20 (90.9) | 67 (87.0) | |
Surgical procedure | ||||||||
Lobectomy | 10 (100.0) | 63 (78.8) | 28 (63.6) | 36 (78.3) | 23 (79.3) | 17 (77.3) | 62 (80.5) | |
Segmentectomy | 0 (0.0) | 16 (20.0) | 10 (22.7) | 5 (10.9) | 4 (13.8) | 3 (13.6) | 11 (14.3) | |
Lobectomy & Segmentectomy | 0 (0.0) | 0 (0.0) | 3 (6.8) | 1 (2.2) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Bilobectomy | 0 (0.0) | 1 (1.2) | 3 (6.8) | 2 (4.4) | 0 (0.0) | 0 (0.0) | 1 (1.3) | |
Pneumonectomy | 0 (0.0) | 0 (0.0) | 0 (0.0) | 2 (4.4) | 3 (10) | 2 (9.1) | 3 (3.9) | |
Tumor location | ||||||||
RUL | 4 (40.0) | 39 (48.7) | 17 (38.6) | 21 (45.7) | 13 (44.8) | 11 (50.0) | 25 (32.5) | |
RML | 0 (0.0) | 5 (6.3) | 4 (9.1) | 5 (10.9) | 1 (3.5) | 2 (9.1) | 3 (3.9) | |
RLL | 1 (10.0) | 10 (12.5) | 6 (13.6) | 6 (13.0) | 4 (13.8) | 1 (4.6) | 14 (18.2) | |
LUL | 2 (20.0) | 16 (20.0) | 9 (20.5) | 8 (17.4) | 6 (20.7) | 5 (22.7) | 24 (31.1) | |
LLL | 5 (50.0) | 10 (12.5) | 8 (18.2) | 6 (13.0) | 5 (17.2) | 3 (13.6) | 11 (14.3) | |
Lung cancer stage | ||||||||
0- | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
IA-IB | 9 (90.0) | 58 (72.5) | 23 (52.3) | 12 (26.1) | 8 (27.6) | 11 (50.0) | 37 (48.0) | |
IIA-IIB | 1 (10.0) | 15 (18.7) | 14 (31.8) | 18 (39.1) | 9 (31.0) | 5 (22.7) | 19 (24.7) | |
IIIA-IIIB | 0 (0.0) | 7 (8.8) | 7 (15.9) | 16 (34.8) | 12 (41.4) | 6 (27.3) | 21 (27.3) | |
Nodal involvement | ||||||||
N0 | 10 (100.0) | 69 (85.2) | 27 (61.4) | 26 (56.5) | 14 (46.7) | 14 (63.6) | 53 (68.8) | |
N1 | 0 (0.0) | 11 (14.8) | 17 (38.6) | 20 (43.5) | 16 (53.3) | 8 (36.4) | 24 (31.2) | |
N2 | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Variables | RFS | Local/Regional RFS | Distant RFS | |||
---|---|---|---|---|---|---|
p Value | Hazard Ratio * (95% CI) | p Value | Hazard Ratio * (95% CI) | p Value | Hazard Ratio * (95% CI) | |
Age | <0.001 | 0.98 (0.97–0.99) | 0.435 | 0.99 (0.95–1.02) | 0.114 | 0.99 (0.97–1.00) |
Gender | ||||||
Female | 0.051 | 1.31 (1.00–1.72) | 0.737 | 0.89 (0.45–1.75) | 0.722 | 0.91 (0.54–1.53) |
Male | reference | reference | reference | |||
Race | ||||||
White | reference | reference | reference | |||
Others (Black/Asian) | 0.688 | 1.10 (0.69–1.75) | 0.794 | 1.15 (0.40–3.35) | 0.722 | 0.91 (0.54–1.53) |
Current/former smoker | ||||||
Yes | reference | reference | reference | |||
No | 0.232 | 0.76 (0.49–1.19) | 0.213 | 0.51 (0.18–1.47) | 0.021 | 0.57 (0.36–0.92) |
BMI | 0.296 | 0.99 (0.96–1.01) | 0.022 | 1.06 (1.01–1.12) | 0.371 | 0.99 (0.96–1.01) |
Tumor site | ||||||
RUL | reference | reference | reference | |||
RML | 0.685 | 1.12 (0.65–1.94) | 0.987 | 0.99 (0.22–4.49) | 1.000 | 1.00 (0.55–1.81) |
RLL | 0.552 | 1.13 (0.99–1.98) | 0.751 | 1.18 (0.43–3.21) | 0.416 | 0.83 (0.53–1.31) |
LUL | 0.059 | 1.40 (0.99–1.98) | 0.069 | 1.68 (1.11–6.48) | 0.070 | 1.43 (0.97–2.09) |
LLL | 0.644 | 1.10 (0.74–1.64) | 0.384 | 1.57 (0.57–4.30) | 0.932 | 0.98 (0.63–1.53) |
Surgical procedure | ||||||
Lobectomy | reference | reference | reference | |||
Segmentectomy | 0.808 | 0.95 (0.65–1.39) | <0.001 | 3.65 (1.70–7.84) | 0.180 | 0.73 (0.46–1.16) |
Lobectomy & Segmentectomy | 0.036 | 2.91 (1.07–7.87) | <0.001 | 18.7 (5.12–68.5) | 0.421 | 0.45 (0.06–3.19) |
Bisegmentectomy | 0.438 | 1.35 (0.63–2.88) | 0.993 | 0.99 (0.19–5.09) | 0.200 | 0.55 (0.22–1.37) |
Pneumonectomy | <0.001 | 7.18 (3.57–14.4) | 0.042 | 9.06 (1.08–75.8) | <0.001 | 4.23 (2.03–8.84) |
Variables | RFS | Local/Regional RFS | Distant RFS | |||
---|---|---|---|---|---|---|
p Value | Hazard Ratio * (95% CI) | p Value | Hazard Ratio * (95% CI) | p Value | Hazard Ratio * (95% CI) | |
Cancer stage | ||||||
I | <0.001 | 0.29 (0.21–0.41) | 0.129 | 0.48 (0.19–1.24) | <0.001 | 0.27 (0.19–0.38) |
II | 0.004 | 0.60 (0.42–0.85) | 0.749 | 0.85 (0.3–2.35) | 0.004 | 0.57 (0.39–0.83) |
III | reference | reference | reference | |||
Nodal involvement | ||||||
N0 | <0.001 | 0.44 (0.33–0.58) | 0.002 | 0.34 (0.17–0.67) | <0.001 | 0.46 (0.34–0.63) |
N1/N2 | reference | reference | reference | |||
Histological subtype | ||||||
Adenocarcinoma | 0.001 | 0.58 (0.42–0.81) | 0.044 | 0.39 (0.15–0.98) | <0.001 | 0.42 (0.29–0.61) |
Squamous cell carcinoma | <0.001 | 0.38 (0.24–0.59) | 0.837 | 1.12 (0.37–3.40) | 0.078 | 0.63 (0.38–1.05) |
Others | reference | reference | reference |
Variables | RFS | Local/Regional RFS | Distant RFS | |||
---|---|---|---|---|---|---|
p Value | Hazard Ratio * (95% CI) | p Value | Hazard Ratio * (95% CI) | p Value | Hazard Ratio * (95% CI) | |
VAT volume (L) | 0.356 | 0.95 (0.84–1.07) | 0.209 | 1.17 (0.92–1.48) | 0.118 | 0.90 (0.78–1.03) |
VAT density (HU) | 0.146 | 1.01 (1.00–1.03) | 0.450 | 0.98 (0.93–1.03) | 0.056 | 1.02 (1.00–1.04) |
SAT volume (L) | 0.117 | 0.96 (0.90–1.01) | 0.012 | 1.14 (1.03–1.25) | 0.004 | 0.91 (0.85–0.97) |
SAT density (HU) | 0.017 | 1.11 (1.03–1.22) | 0.409 | 0.99 (0.95–1.02) | 0.003 | 1.12 (1.01–1.13) |
IMAT volume (L) | 0.320 | 0.77 (0.47–1.28) | 0.084 | 2.54 (0.88–7.31) | 0.102 | 2.68 (1.00–3.10) |
IMAT density (HU) | 0.022 | 1.42 (1.11–1.64) | 0.968 | 1.00 (0.97–1.04) | 0.013 | 1.23 (1.01–1.35) |
SM volume (L) | 0.125 | 1.07 (0.98–1.16) | 0.192 | 1.14 (0.94–1.39) | 0.271 | 1.05 (0.96–1.16) |
SM density (HU) | 0.017 | 1.33 (1.31–1.34) | 0.782 | 1.01 (0.97–1.04) | <0.001 | 1.03 (1.02–1.05) |
Bone volume (L) | 0.189 | 1.19 (0.92–1.53) | 0.345 | 1.33 (0.74–2.40) | 0.310 | 1.16 (0.87–1.53) |
Bone density (HU) | 0.136 | 1.00 (1.00–1.00) | 0.870 | 1.00 (0.99–1.01) | 0.120 | 1.00 (1.00–1.01) |
Variables | RFS | Local/regional RFS | Distant RFS | |||
---|---|---|---|---|---|---|
p Value | Hazard Ratio * (95% CI) | p Value | Hazard Ratio * (95% CI) | p Value | Hazard Ratio * (95% CI) | |
Tumor volume (ML) | <0.001 | 1.17 (1.11–1.24) | 0.499 | 0.92 (0.72–1.18) | <0.001 | 1.19 (1.13–1.26) |
Tumor ground glass opacity | 0.002 | 0.04 (0.01–0.86) | 0.669 | 0.26 (0.00–1.21) | 0.002 | 0.003 (0–0.111) |
Tumor irregularity | 0.006 | 2.29 (1.27–4.12) | 0.902 | 0.02 (0.00–0.90) | 0.002 | 2.73 (1.43–5.19) |
Pleural area (cm2) | <0.001 | 1.04 (1.02–1.06) | 0.726 | 1.01 (0.95–1.08) | <0.001 | 1.04 (1.03–1.06) |
Pulmonary artery vol. (L) | 0.003 | 1.41 (1.14–1.76) | 0.688 | 0.15 (0.00–1.72) | 0.001 | 1.42 (1.27–1.85) |
Pulmonary vein vol. (L) | 0.003 | 2.46 (1.53–3.42) | 0.817 | 0.35 (0.00–1.34) | 0.002 | 1.16 (1.04–1.58) |
Variables | OS | Local/Regional OS | Distant OS | |||
---|---|---|---|---|---|---|
p Value | Hazard Ratio * (95% CI) | p Value | Hazard Ratio * (95% CI) | p Value | Hazard Ratio * (95% CI) | |
Age | 0.203 | 0.99 (0.98–1.01) | 0.279 | 1.02 (0.98–1.06) | 0.754 | 1.00 (0.99–1.02) |
Gender | ||||||
Female | 0.373 | 0.89 (0.71–1.11) | 0.685 | 1.15 (0.58–2.31) | 0.093 | 1.29 (0.96–1.72) |
Male | reference | reference | reference | |||
Race | ||||||
White | reference | reference | reference | |||
Others (Black and Asian) | 0.682 | 0.91 (0.57–1.44) | 0.872 | 1.09 (0.38–3.12) | 0.530 | 0.85 (0.51–1.42) |
Current/former smoker | ||||||
Yes | reference | reference | reference | |||
No | 0.284 | 1.26 (0.89–1.78) | 0.217 | 1.98 (0.67–5.88) | 0.133 | 1.44 (0.89–2.33) |
BMI | 0.085 | 0.99 (095–1.01) | 0.082 | 1.06 (0.99–1.12) | 0.018 | 0.97 (0.94–0.99) |
Tumor site | ||||||
RUL | reference | reference | reference | |||
RML | 0.861 | 1.05 (0.61–1.82) | 0.397 | 1.96 (0.41–9.30) | 0.350 | 1.33 (0.73–2.41) |
RLL | 0.613 | 1.11 (0.74–1.67) | 0.321 | 1.68 (0.61–4.64) | 0.637 | 0.90 (0.56–1.42) |
LUL | 0.522 | 1.12 (0.79–1.58) | 0.076 | 1.53 (1.44–8.68) | 0.056 | 1.45 (0.99–2.13) |
LLL | 0.937 | 0.98 (0.66–1.48) | 0.197 | 1.95 (0.71–5.37) | 0.969 | 1.01 (0.65–1.57) |
Surgical Procedure | ||||||
Lobectomy | reference | reference | reference | |||
Segmentectomy | 0.725 | 0.93 (0.64–1.37) | 0.060 | 2.75 (1.28–5.92) | 0.155 | 0.72 (0.45–1.13) |
Lobectomy & Segmentectomy | 0.935 | 0.96 (0.35–2.68) | 0.049 | 3.54 (1.01–12.4) | 0.113 | 0.20 (0.03–1.46) |
Bisegmentectomy | 0.594 | 1.23 (0.58–2.62) | 0.290 | 2.21 (051–9.60) | 0.473 | 0.72 (0.30–1.76) |
Pneumonectomy | 0.012 | 2.38 (1.21–4.66) | 0.565 | 1.81 (0.24–13.8) | 0.024 | 2.28 (1.11–4.66) |
Variables | OS | Local/Regional OS | Distant OS | |||
---|---|---|---|---|---|---|
p Value | Hazard Ratio * (95% CI) | p Value | Hazard Ratio * (95% CI) | p Value | Hazard Ratio * (95% CI) | |
Cancer stage | ||||||
I | <0.001 | 0.47 (0.34–0.65) | 0.286 | 1.66 (0.66–4.21) | <0.001 | 0.41 (0.29–0.58) |
II | 0.277 | 0.82 (0.58–1.17) | 0.365 | 1.60 (0.58–4.40) | 0.167 | 0.77 (0.53–1.12) |
III | reference | reference | reference | |||
Nodal involvement | ||||||
N0 | <0.001 | 0.58 (0.44–0.76) | 0.698 | 0.87 (0.44–1.74) | <0.001 | 0.58 (0.43–0.78) |
N1/N2 | reference | reference | reference | |||
Histological subtype | ||||||
Adenocarcinoma | 0.597 | 0.92 (0.66–1.27) | 0.664 | 0.82 (0.33–2.03) | 0.023 | 0.66 (0.46–0.94) |
Squamous cell carcinoma | 0.041 | 0.62 (0.39–0.98) | 0.497 | 1.16 (0.49–4.37) | 0.332 | 0.78 (0.47–1.29) |
Others | reference | reference | reference |
Variables | OS | Local/Regional OS | Distant OS | |||
---|---|---|---|---|---|---|
p Value | Hazard Ratio * (95% CI) | p Value | Hazard Ratio * (95% CI) | p Value | Hazard Ratio * (95% CI) | |
VAT volume (L) | 0.278 | 0.94 (0.84–1.05) | 0.367 | 1.09 (0.90–1.31) | 0.138 | 0.90 (0.79–1.03) |
VAT density (HU) | 0.033 | 1.02 (1.00–1.04) | 0.438 | 0.98 (0.93–1.03) | 0.091 | 1.02 (1.00–1.04) |
SAT volume (L) | 0.018 | 0.93 (0.88–0.99) | 0.095 | 1.07 (0.99–1.17) | <0.001 | 0.88 (0.82–0.95) |
SAT density (HU) | <0.001 | 1.02 (1.01–1.03) | 0.845 | 0.97 (0.96–1.03) | <0.001 | 1.02 (1.01–1.04) |
IMAT volume (L) | 0.230 | 0.74 (0.45–1.21) | 0.188 | 1.73 (0.77–3.91) | 0.143 | 0.67 (0.40–1.14) |
IMAT density (HU) | 0.002 | 1.03 (1.01–1.05) | 0.637 | 1.01 (0.96–1.07) | 0.002 | 1.03 (1.01–1.06) |
SM volume (L) | 0.397 | 1.04 (0.96–1.12) | 0.842 | 1.01 (0.85–1.22) | 0.322 | 0.96 (0.87–1.05) |
SM density (HU) | 0.002 | 1.02 (1.01–1.03) | 0.310 | 0.98 (0.95–1.02) | 0.001 | 1.02 (1.01–1.04) |
Bone volume (L) | 0.176 | 1.18 (0.93–1.51) | 0.746 | 1.10 (0.62–1.94) | 0.626 | 0.94 (0.72–1.22) |
Bone density (HU) | 0.348 | 1.00 (1.00–1.00) | 0.483 | 1.00 (0.99–1.01) | 0.747 | 1.00 (1.00–1.00) |
Variables | OS | Local/Regional OS | Distant OS | |||
---|---|---|---|---|---|---|
p Value | Hazard Ratio * (95% CI) | p Value | Hazard Ratio * (95% CI) | p Value | Hazard Ratio * (95% CI) | |
Tumor volume (ML) | 0.023 | 1.09 (1.04–1.16) | 0.086 | 0.99 (0.97–1.00) | <0.001 | 1.12 (1.06–1.19) |
Tumor ground glass opacity | 0.039 | 0.04 (0.00–0.86) | 0.347 | 1.52 (0.10–2.74) | 0.018 | 0.02 (0.00–0.48) |
Tumor irregularity | 0.029 | 2.01 (1.07–3.63) | 0.491 | 0.55 (0.10–3.01) | 0.010 | 2.38 (1.23–4.62) |
Pleural area | 0.211 | 1.01 (0.99–1.03) | 0.170 | 0.96 (0.90–1.02) | 0.044 | 1.02 (1.00–1.03) |
Pulmonary artery vol. (L) | 0.009 | 1.83 (1.41–2.34) | 0.197 | 0.01 (0.00–1.11) | 0.001 | 2.42 (1.67–2.96) |
Pulmonary vein vol. (L) | 0.040 | 1.62 (1.21–1.82) | 0.301 | 0.01 (0.00–1.17) | 0.016 | 1.97 (1.72–2.16) |
Variables | RFS | Local/Regional RFS | Distant RFS | ||||
---|---|---|---|---|---|---|---|
p Value | Hazard Ratio (95% CI) | p Value | Hazard Ratio (95% CI) | p Value | Hazard Ratio (95% CI) | ||
Surgical procedure | |||||||
Lobectomy | reference | reference | reference | ||||
Pneumonectomy | <0.001 | 4.20 (1.96–8.99) | <0.001 | 6.09 (2.90–12.80) | <0.001 | 3.93 (1.84–8.38) | |
Cancer stage | |||||||
I | <0.001 | 0.33 (0.23–0.48) | - | - | <0.001 | 0.32 (0.22–0.48) | |
II | 0.013 | 0.62 (0.43–0.91) | - | - | 0.002 | 0.54 (0.36–0.80) | |
III | reference | reference | reference | ||||
Nodal involvement | |||||||
N0 | <0.001 | 0.51 (0.38–0.69) | - | - | - | - | |
N1/N2 | reference | reference | reference | ||||
SM density (HU) | 0.002 | 1.02 (1.01–1.04) | - | - | 0.020 | 1.02 (1.00–1.04) | |
Pulmonary artery vol. (L) | 0.004 | 2.69 (1.16–3.36) | |||||
Pulmonary vein vol. (L) | 0.025 | 1.12 (1.06–1.34) | - | - | - | - |
Variables | OS | Local/Regional OS | Distant OS | ||||
---|---|---|---|---|---|---|---|
p value | Hazard Ratio (95% CI) | p value | Hazard Ratio (95% CI) | p value | Hazard Ratio (95% CI) | ||
Cancer stage | |||||||
I | - | - | - | - | <0.001 | 0.49 (0.34–0.71) | |
II | - | - | - | - | - | - | |
III | reference | reference | reference | ||||
Nodal involvement | |||||||
N0 | <0.001 | 0.58 (0.44–0.78) | |||||
N1/N2 | reference | reference | reference | ||||
SAT density (HU) | <0.001 | 1.02 (1.01–1.04) | - | - | <0.001 | 1.02 (1.01-1.04) | |
Pulmonary artery vol. (L) | 0.028 | 2.32 (1.52–2.70) | - | - | 0.011 | 1.23 (1.01–1.36) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, L.; Dhupar, R.; Meng, X. Predicting Postoperative Lung Cancer Recurrence and Survival Using Cox Proportional Hazards Regression and Machine Learning. Cancers 2025, 17, 33. https://doi.org/10.3390/cancers17010033
Pu L, Dhupar R, Meng X. Predicting Postoperative Lung Cancer Recurrence and Survival Using Cox Proportional Hazards Regression and Machine Learning. Cancers. 2025; 17(1):33. https://doi.org/10.3390/cancers17010033
Chicago/Turabian StylePu, Lucy, Rajeev Dhupar, and Xin Meng. 2025. "Predicting Postoperative Lung Cancer Recurrence and Survival Using Cox Proportional Hazards Regression and Machine Learning" Cancers 17, no. 1: 33. https://doi.org/10.3390/cancers17010033
APA StylePu, L., Dhupar, R., & Meng, X. (2025). Predicting Postoperative Lung Cancer Recurrence and Survival Using Cox Proportional Hazards Regression and Machine Learning. Cancers, 17(1), 33. https://doi.org/10.3390/cancers17010033