Abnormal p53 High-Grade Endometrioid Endometrial Cancer: A Systematic Review and Meta-Analysis
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
- Population: Women of reproductive age diagnosed with G3 endometrioid endometrial carcinoma with known p53 status using either genetic sequencing or an immunohistochemistry surrogate. Intervention: no intervention.
- Exposure: Women with abnormal p53 status diagnosed with G3 endometrioid endometrial carcinoma.
- Comparison: Wildtype p53 G3 endometrioid endometrial carcinoma.
- Primary outcomes: OS and PFS.
- Secondary outcomes: Global prevalence and geographical differences in the prevalence of p53-mutated G3 endometrioid EC. We also determined whether the year of publication, median patient age, proportion of patients with FIGO stage III or IV, and overall risk of bias had an impact on the prevalence estimates.
2.3. Information Sources and Search Strategy
- Endometrial cancer OR endometrial carcinoma OR EC; high-grade endometrioid endometrial cancer OR G3 endometrioid endometrial cancer OR G3 endometrioid endometrial carcinoma; p53 mutant OR p53 mutation OR p53-mutated OR p53 abnormal OR p53-positive OR p53 positivity OR p53 immunohistochemistry OR TP53 mutation.
2.4. Study Selection, Data Extraction, and Data Items
2.5. Assessment of Risk of Bias
2.6. Data Synthesis and Statistical Analyses
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Risk of Bias of Included Studies
3.4. Synthesis of Results
3.4.1. Overall Survival
3.4.2. Progression-Free Survival
3.4.3. Prevalence of Abnormal p53 (Sequencing and Immunohistochemistry) and Geographical Variations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, K.H.; Broaddus, R.R. Endometrial Cancer. N. Engl. J. Med. 2020, 383, 2053–2064. [Google Scholar] [CrossRef] [PubMed]
- Bokhman, J.V. Two pathogenetic types of endometrial carcinoma. Gynecol. Oncol. 1983, 15, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Oreskovic, S.; Babic, D.; Kalafatic, D.; Barisic, D.; Beketic-Oreskovic, L. A significance of immunohistochemical determination of steroid receptors, cell proliferation factor Ki-67 and protein p53 in endometrial carcinoma. Gynecol. Oncol. 2004, 93, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Hanby, A.M.; Walker, C. Tavassoli FA, Devilee, P: Pathology and genetics: Tumours of the breast and female genital organs. WHO classification of tumours series—Volume IV. Lyon, France: IARC Press. Breast Cancer Res. 2004, 6, 133. [Google Scholar] [CrossRef]
- Bosse, T.; Nout, R.A.; McAlpine, J.N.; McConechy, M.K.; Britton, H.; Hussein, Y.R.; Gonzalez, C.; Ganesan, R.; Steele, J.C.; Harrison, B.T.; et al. Molecular classification of grade 3 endometrioid endometrial cancers identifies distinct prognostic subgroups. Am. J. Surg. Pathol. 2018, 42, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network; Kandoth, C.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef]
- Rios-Doria, E.; Momeni-Boroujeni, A.; Friedman, C.F.; Selenica, P.; Zhou, Q.; Wu, M.; Marra, A.; Leitao, M.M., Jr.; Iasonos, A.; Alektiar, K.M.; et al. Integration of clinical sequencing and immunohistochemistry for the molecular classification of endometrial carcinoma. Gynecol. Oncol. 2023, 174, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Talhouk, A.; McConechy, M.K.; Leung, S.; Yang, W.; Lum, A.; Senz, J.; Boyd, N.; Pike, J.; Anglesio, M.; Kwon, J.S.; et al. Confirmation of ProMisE: A simple, genomics-based clinical classifier for endometrial cancer. Cancer 2017, 123, 802–813. [Google Scholar] [CrossRef]
- Timmerman, S.; Van Rompuy, A.S.; Van Gorp, T.; Vanden Bempt, I.; Brems, H.; Van Nieuwenhuysen, E.; Han, S.N.; Neven, P.; Victoor, J.; Laenen, A.; et al. Analysis of 108 patients with endometrial carcinoma using the PROMISE classification and additional genetic analyses for MMR-D. Gynecol. Oncol. 2020, 157, 245–251. [Google Scholar] [CrossRef]
- Church, D.N.; Stelloo, E.; Nout, R.A.; Valtcheva, N.; Depreeuw, J.; ter Haar, N.; Noske, A.; Amant, F.; Tomlinson, I.P.; Wild, P.J.; et al. Prognostic significance of POLE proofreading mutations in endometrial cancer. J. Natl. Cancer Inst. 2015, 107, dju402. [Google Scholar] [CrossRef]
- Casanova, J.; Duarte, G.S.; da Costa, A.G.; Catarino, A.; Nave, M.; Antunes, T.; Serra, S.S.; Dias, S.S.; Abu-Rustum, N.; Lima, J. Prognosis of polymerase epsilon (POLE) mutation in high-grade endometrioid endometrial cancer: Systematic review and meta-analysis. Gynecol. Oncol. 2024, 182, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Beinse, G.; Rance, B.; Just, P.A.; Izac, B.; Letourneur, F.; Saidu, N.E.B.; Chouzenoux, S.; Nicco, C.; Goldwasser, F.; Batteux, F.; et al. Identification of TP53 mutated group using a molecular and immunohistochemical classification of endometrial carcinoma to improve prognostic evaluation for adjuvant treatments. Int. J. Gynecol. Cancer 2020, 30, 640–647. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, W.; Bi, F.; Pan, X.; Yin, L.; Zhao, C. Significance of TP53 mutational status-associated signature in the progression and prognosis of endometrial carcinoma. Oxid. Med. Cell Longev. 2022, 2022, 1817339. [Google Scholar] [CrossRef]
- Daniilidou, K.; Frangou-Plemenou, M.; Grammatikakis, J.; Grigoriou, O.; Vitoratos, N.; Kondi-Pafiti, A. Prognostic significance and diagnostic value of PTEN and p53 expression in endometrial carcinoma. A retrospective clinicopathological and immunohistochemical study. J. BUON 2013, 18, 195–201. [Google Scholar] [PubMed]
- Brett, M.A.; Atenafu, E.G.; Singh, N.; Ghatage, P.; Clarke, B.A.; Nelson, G.S.; Bernardini, M.Q.; Kobel, M. Equivalent survival of p53 mutated endometrial endometrioid carcinoma grade 3 and endometrial serous carcinoma. Int. J. Gynecol. Pathol. 2021, 40, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Joehlin-Price, A.; Van Ziffle, J.; Hills, N.K.; Ladwig, N.; Rabban, J.T.; Garg, K. Molecularly classified uterine FIGO grade 3 endometrioid carcinomas show distinctive clinical outcomes but overlapping morphologic features. Am. J. Surg. Pathol. 2021, 45, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, H.; Hirohashi, S. Frequent occurrence of p53 gene mutations in uterine cancers at advanced clinical stage and with aggressive histological phenotypes. Jpn. J. Cancer Res. 1992, 83, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- Koshiyama, M.; Konishi, I.; Wang, D.P.; Mandai, M.; Komatsu, T.; Yamamoto, S.; Nanbu, K.; Naito, M.F.; Mori, T. Immunohistochemical analysis of p53 protein over-expression in endometrial carcinomas: Inverse correlation with sex steroid receptor status. Virchows Arch. A Pathol. Anat. Histopathol. 1993, 423, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Sawairiitoh, M.; Imai, A.; Murase, T.; Niwa, K.; Itoh, N.; Mori, H.; Tamaya, T. Different patterns of p53 gene-mutations in endometrial carcinomas and endometrioid carcinomas of the ovary. Int. J. Oncol. 1994, 5, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Massenkeil, G.; Caduff, R.; Oberhuber, H.; Schwartewaldhoff, I.; Diener, P.; Bannwart, F.; Walt, H.; Schafer, R. Loss of heterozygosity on chromosome 16q, expression of her2/neu and p53 mutations in endometrial cancer. Int. J. Oncol. 1995, 6, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Kihana, T.; Hamada, K.; Inoue, Y.; Yano, N.; Iketani, H.; Murao, S.; Ukita, M.; Matsuura, S. Mutation and allelic loss of the p53 gene in endometrial carcinoma. Incidence and outcome in 92 surgical patients. Cancer 1995, 76, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, T.; Fujita, M.; Inoue, M.; Nomura, T.; Shroyer, K.R. Alteration of the p53 tumor suppressor gene and activation of c-K-ras-2 protooncogene in endometrial adenocarcinoma from Colorado. Am. J. Clin. Pathol. 1995, 103, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Riethdorf, L.; Begemann, C.; Riethdorf, S.; Milde-Langosch, K.; Loning, T. Comparison of benign and malignant endometrial lesions for their p53 state, using immunohistochemistry and temperature-gradient gel electrophoresis. Virchows Arch. 1996, 428, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, N.; Sakamoto, A.; Uozaki, H.; Iihara, K.; Machinami, R. Immunohistochemical analysis of endometrial adenocarcinoma for bcl-2 and p53 in relation to expression of sex steroid receptor and proliferative activity. Int. J. Gynecol. Pathol. 1996, 15, 202–208. [Google Scholar] [CrossRef]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
- Casanova, J.; Duarte, G.; da Costa, G.A.; Catarino, A.; Nave, M.; Antunes, T.; Silverio Serra, S.; Leitão, M., Jr.; Lima, J. “The Big Bad Wolf”: p53 Mutated High-Grade Endometrioid Endometrial Cancer: A Systematic Review and Meta-Analysis. PROSPERO 2023 CRD42023495192. Available online: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023495192 (accessed on 22 December 2024).
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Hayden, J.A.; van der Windt, D.A.; Cartwright, J.L.; Cote, P.; Bombardier, C. Assessing bias in studies of prognostic factors. Ann. Intern. Med. 2013, 158, 280–286. [Google Scholar] [CrossRef]
- Guyot, P.; Ades, A.E.; Ouwens, M.J.; Welton, N.J. Enhanced secondary analysis of survival data: Reconstructing the data from published Kaplan-Meier survival curves. BMC Med. Res. Methodol. 2012, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, T.; Miller, E.; Duska, L.; Oliva, E. Molecular profile of grade 3 endometrioid endometrial carcinoma: Is it a type I or type II endometrial carcinoma? Am. J. Surg. Pathol. 2012, 36, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Balestra, A.; Larsimont, D.; Noel, J.C. HER2 amplification in p53-mutated endometrial carcinomas. Cancers 2023, 15, 1435. [Google Scholar] [CrossRef] [PubMed]
- Betella, I.; Fumagalli, C.; Rafaniello Raviele, P.; Schivardi, G.; De Vitis, L.A.; Achilarre, M.T.; Aloisi, A.; Garbi, A.; Maruccio, M.; Zanagnolo, V.; et al. A novel algorithm to implement the molecular classification according to the new ESGO/ESTRO/ESP 2020 guidelines for endometrial cancer. Int. J. Gynecol. Cancer 2022, 32, 993–1000. [Google Scholar] [CrossRef]
- Buchynska, L.G.; Iurchenko, N.P.; Glushchenko, N.M.; Nesina, I.P. Phenotypic features of endometrial tumors in patients with family history of cancer. Exp. Oncol. 2017, 39, 312–318. [Google Scholar] [CrossRef]
- Leon-Castillo, A.; de Boer, S.M.; Powell, M.E.; Mileshkin, L.R.; Mackay, H.J.; Leary, A.; Nijman, H.W.; Singh, N.; Pollock, P.M.; Bessette, P.; et al. Molecular classification of the PORTEC-3 trial for high-risk endometrial cancer: Impact on prognosis and benefit from adjuvant therapy. J. Clin. Oncol. 2020, 38, 3388–3397. [Google Scholar] [CrossRef]
- Cuevas, D.; Valls, J.; Gatius, S.; Roman-Canal, B.; Estaran, E.; Dorca, E.; Santacana, M.; Vaquero, M.; Eritja, N.; Velasco, A.; et al. _targeted sequencing with a customized panel to assess histological typing in endometrial carcinoma. Virchows Arch. 2019, 474, 585–598. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Wang, J.; Zhao, L.; Wang, Z.; Wang, J. Tumor molecular features predict endometrial cancer patients’ survival after open or minimally invasive surgeries. Front. Oncol. 2021, 11, 634857. [Google Scholar] [CrossRef] [PubMed]
- Dankai, W.; Pongsuvareeyakul, T.; Phinyo, P.; Tejamai, C.; Teerapakpinyo, C.; Cheewakriangkrai, C.; Lekawanvijit, S.; Siriaunkgul, S.; Khunamornpong, S. Molecular-based classification of endometrial carcinoma in Northern Thailand: Impact on prognosis and potential for implementation in resource-limited settings. BMC Womens Health 2023, 23, 605. [Google Scholar] [CrossRef] [PubMed]
- Devereaux, K.A.; Weiel, J.J.; Pors, J.; Steiner, D.F.; Ho, C.; Charu, V.; Suarez, C.J.; Renz, M.; Diver, E.; Karam, A.; et al. Prospective molecular classification of endometrial carcinomas: Institutional implementation, practice, and clinical experience. Mod. Pathol. 2022, 35, 688–696. [Google Scholar] [CrossRef] [PubMed]
- Dobrzycka, B.; Terlikowska, K.M.; Kowalczuk, O.; Niklinski, J.; Kinalski, M.; Terlikowski, S.J. Prognosis of stage I endometrial cancer according to the FIGO 2023 classification taking into account molecular changes. Cancers 2024, 16, 390. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.Z.; Shiozawa, T.; Horiuchi, A.; Shih, H.C.; Miyamoto, T.; Kashima, H.; Suzuki, A.; Nikaido, T.; Konishi, I. Intratumoral heterogeneous expression of p53 correlates with p53 mutation, Ki-67, and cyclin A expression in endometrioid-type endometrial adenocarcinomas. Virchows Arch. 2005, 447, 816–822. [Google Scholar] [CrossRef]
- Hoang, L.N.; Kinloch, M.A.; Leo, J.M.; Grondin, K.; Lee, C.H.; Ewanowich, C.; Kobel, M.; Cheng, A.; Talhouk, A.; McConechy, M.; et al. Interobserver agreement in endometrial carcinoma histotype diagnosis varies depending on The Cancer Genome Atlas (TCGA)-based molecular subgroup. Am. J. Surg. Pathol. 2017, 41, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Huvila, J.; Thompson, E.F.; Vanden Broek, J.; Lum, A.; Senz, J.; Leung, S.; Gilks, C.B.; Kobel, M.; McAlpine, J.N.; Jamieson, A. Subclonal p53 immunostaining in the diagnosis of endometrial carcinoma molecular subtype. Histopathology 2023, 83, 880–890. [Google Scholar] [CrossRef] [PubMed]
- Inaba, F.; Kawamata, H.; Teramoto, T.; Fukasawa, I.; Inaba, N.; Fujimori, T. PTEN and p53 abnormalities are indicative and predictive factors for endometrial carcinoma. Oncol. Rep. 2005, 13, 17–24. [Google Scholar] [CrossRef]
- Jones, M.W.; Kounelis, S.; Hsu, C.; Papadaki, H.; Bakker, A.; Swalsky, P.A.; Finkelstein, S.D. Prognostic value of p53 and K-ras-2 topographic genotyping in endometrial carcinoma: A clinicopathologic and molecular comparison. Int. J. Gynecol. Pathol. 1997, 16, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Huvila, J.; Laajala, T.D.; Edqvist, P.H.; Mardinoglu, A.; Talve, L.; Ponten, F.; Grenman, S.; Carpen, O.; Aittokallio, T.; Auranen, A. Combined ASRGL1 and p53 immunohistochemistry as an independent predictor of survival in endometrioid endometrial carcinoma. Gynecol. Oncol. 2018, 149, 173–180. [Google Scholar] [CrossRef]
- Kang, E.Y.; Wiebe, N.J.; Aubrey, C.; Lee, C.H.; Anglesio, M.S.; Tilley, D.; Ghatage, P.; Nelson, G.S.; Lee, S.; Kobel, M. Selection of endometrial carcinomas for p53 immunohistochemistry based on nuclear features. J. Pathol. Clin. Res. 2022, 8, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.K.; Asami, Y.; Takayanagi, D.; Matsuda, M.; Shimada, Y.; Hiranuma, K.; Kuno, I.; Komatsu, M.; Hamamoto, R.; Matsumoto, K.; et al. Clinical impact of genetic alterations of CTNNB1 in patients with grade 3 endometrial endometrioid carcinoma. Cancer Sci. 2022, 113, 1712–1721. [Google Scholar] [CrossRef]
- Kitazono, I.; Akahane, T.; Yokoyama, S.; Kobayashi, Y.; Togami, S.; Yanazume, S.; Tasaki, T.; Noguchi, H.; Tabata, K.; Kobayashi, H.; et al. “Surface epithelial slackening” pattern in endometrioid carcinoma: A morphological feature for differentiating the POLE mutation-subtype from the no specific molecular profile subtype. Pathol. Res. Pract. 2023, 247, 154563. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kitazono, I.; Akahane, T.; Yanazume, S.; Kamio, M.; Togami, S.; Nohara, S.; Sakamoto, I.; Yokoyama, S.; Tabata, K.; et al. Molecular evaluation of endometrial dedifferentiated carcinoma, endometrioid carcinoma, carcinosarcoma, and serous carcinoma using a custom-made small cancer panel. Pathol. Oncol. Res. 2021, 27, 1610013. [Google Scholar] [CrossRef] [PubMed]
- Kogata, Y.; Tanaka, T.; Ono, Y.J.; Hayashi, M.; Terai, Y.; Ohmichi, M. Foretinib (GSK1363089) induces p53-dependent apoptosis in endometrial cancer. Onco_target 2018, 9, 22769–22784. [Google Scholar] [CrossRef] [PubMed]
- Lax, S.F.; Kendall, B.; Tashiro, H.; Slebos, R.J.; Hedrick, L. The frequency of p53, K-ras mutations, and microsatellite instability differs in uterine endometrioid and serous carcinoma: Evidence of distinct molecular genetic pathways. Cancer 2000, 88, 814–824. [Google Scholar] [CrossRef]
- Leon-Castillo, A.; Gilvazquez, E.; Nout, R.; Smit, V.T.; McAlpine, J.N.; McConechy, M.; Kommoss, S.; Brucker, S.Y.; Carlson, J.W.; Epstein, E.; et al. Clinicopathological and molecular characterisation of ’multiple-classifier’ endometrial carcinomas. J. Pathol. 2020, 250, 312–322. [Google Scholar] [CrossRef]
- Li, L.; Chen, F.; Liu, J.; Zhu, W.; Lin, L.; Chen, L.; Shi, Y.; Lin, A.; Chen, G. Molecular classification grade 3 endometrial endometrioid carcinoma using a next-generation sequencing-based gene panel. Front. Oncol. 2022, 12, 935694. [Google Scholar] [CrossRef] [PubMed]
- Li, S.F.; Shiozawa, T.; Nakayama, K.; Nikaido, T.; Fujii, S. Stepwise abnormality of sex steroid hormone receptors, tumor suppressor gene products (p53 and Rb), and cyclin E in uterine endometrioid carcinoma. Cancer 1996, 77, 321–329. [Google Scholar] [CrossRef]
- Maeda, K.; Tsuda, H.; Hashiguchi, Y.; Yamamoto, K.; Inoue, T.; Ishiko, O.; Ogita, S. Relationship between p53 pathway and estrogen receptor status in endometrioid-type endometrial cancer. Hum. Pathol. 2002, 33, 386–391. [Google Scholar] [CrossRef]
- Matsumoto, N.; Manrai, P.; Rottmann, D.; Wu, X.; Assem, H.; Hui, P.; Buza, N. Correlative assessment of p53 immunostaining patterns and TP53 mutation status by next-generation sequencing in high-grade endometrial carcinomas. Int. J. Gynecol. Pathol. 2023, 42, 567–575. [Google Scholar] [CrossRef]
- Mazurek, A.; Kuc, P.; Mazurek-Wadolkowska, E.; Laudanski, T. A role of thymidine phosphorylase and P53 tissue protein expression in biology of endometrial cancer. Neoplasma 2008, 55, 261–265. [Google Scholar] [PubMed]
- Moreira, I.; Ferreira, M.; Garcia, S.; Novais, P.; Gama, J.; Ferro, B.; Leite-Silva, P.; Frutuoso, C.; Pires, M.; Barbosa, A.; et al. Practical lessons learned from real-world implementation of the molecular classification for endometrial carcinoma. Gynecol. Oncol. 2023, 176, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Nostrand, K.V.; Johnson, G.; Monk, B.; Wilczynski, S.; Chapman, J.; Brightman, K.; Schell, M.; Berman, M.; Manetta, A.; Disaia, P.; et al. Genetic alterations in endometrial carcinomas. Int. J. Gynecol. Cancer 1998, 8, 415–422. [Google Scholar] [CrossRef]
- Nout, R.A.; Bosse, T.; Creutzberg, C.L.; Jurgenliemk-Schulz, I.M.; Jobsen, J.J.; Lutgens, L.C.; van der Steen-Banasik, E.M.; van Eijk, R.; Ter Haar, N.T.; Smit, V.T. Improved risk assessment of endometrial cancer by combined analysis of MSI, PI3K-AKT, Wnt/beta-catenin and P53 pathway activation. Gynecol. Oncol. 2012, 126, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Oberndorfer, F.; Moling, S.; Hagelkruys, L.A.; Grimm, C.; Polterauer, S.; Sturdza, A.; Aust, S.; Reinthaller, A.; Mullauer, L.; Schwameis, R. Risk reclassification of patients with endometrial cancer based on tumor molecular profiling: First real world data. J. Pers. Med. 2021, 11, 48. [Google Scholar] [CrossRef]
- Okamoto, A.; Sameshima, Y.; Yamada, Y.; Teshima, S.-I.; Terashima, Y.; Terada, M.; Yokota, J. Allelic loss on chromosome 17p and p53 mutations in human endometrial carcinoma of the uterus. Cancer Res. 1991, 51, 5632–5635. [Google Scholar]
- Pain, F.A.; Beinse, G.; Azais, H.; Auvray-Kuentz, M.; Garcin, L.M.; Delanoy, N.; Bentivegna, E.; Benoit, L.; Nguyen-Xuan, H.T.; Blons, H.; et al. Patterns of recurrence in surgically treated women for TP53-mutated endometrial carcinomas. Eur. J. Surg. Oncol. 2023, 49, 106954. [Google Scholar] [CrossRef]
- Da Cruz Paula, A.; DeLair, D.F.; Ferrando, L.; Fix, D.J.; Soslow, R.A.; Park, K.J.; Chiang, S.; Reis-Filho, J.S.; Zehir, A.; Donoghue, M.T.A.; et al. Genetic and molecular subtype heterogeneity in newly diagnosed early- and advanced-stage endometrial cancer. Gynecol. Oncol. 2021, 161, 535–544. [Google Scholar] [CrossRef]
- Pijnenborg, J.M.; van de Broek, L.; Dam de Veen, G.C.; Roemen, G.M.; de Haan, J.; van Engeland, M.; Voncken, J.W.; Groothuis, P.G. TP53 overexpression in recurrent endometrial carcinoma. Gynecol. Oncol. 2006, 100, 397–404. [Google Scholar] [CrossRef]
- Sakuragi, N.; Hirai, A.; Tada, M.; Yamada, H.; Yamamoto, R.; Fujimoto, S.; Moriuchi, T. Dominant-negative mutation of p53 tumor suppressor gene in endometrial carcinoma. Gynecol. Oncol. 2001, 83, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Sakuragi, N.; Watari, H.; Ebina, Y.; Yamamoto, R.; Steiner, E.; Koelbl, H.; Yano, M.; Tada, M.; Moriuchi, T. Functional analysis of p53 gene and the prognostic impact of dominant-negative p53 mutation in endometrial cancer. Int. J. Cancer 2005, 116, 514–519. [Google Scholar] [CrossRef]
- Schultheis, A.M.; Martelotto, L.G.; De Filippo, M.R.; Piscuglio, S.; Ng, C.K.; Hussein, Y.R.; Reis-Filho, J.S.; Soslow, R.A.; Weigelt, B. TP53 mutational spectrum in endometrioid and serous endometrial cancers. Int. J. Gynecol. Pathol. 2016, 35, 289–300. [Google Scholar] [CrossRef]
- Shiozawa, T.; Xin, L.; Nikaido, T.; Fujii, S. Immunohistochemical detection of cyclin A with reference to p53 expression in endometrial endometrioid carcinomas. Int. J. Gynecol. Pathol. 1997, 16, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Piskorz, A.M.; Bosse, T.; Jimenez-Linan, M.; Rous, B.; Brenton, J.D.; Gilks, C.B.; Kobel, M. p53 immunohistochemistry is an accurate surrogate for TP53 mutational analysis in endometrial carcinoma biopsies. J. Pathol. 2020, 250, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Tresa, A.; Sambasivan, S.; Rema, P.; Dinesh, D.; Sivaranjith, J.; Nair, S.P.; Mathew, A.; Ammu, J.V.; Kumar, A. Clinical profile and survival outcome of endometrial cancer with p53 mutation. Indian. J. Surg. Oncol. 2022, 13, 580–586. [Google Scholar] [CrossRef]
- Vermij, L.; Leon-Castillo, A.; Singh, N.; Powell, M.E.; Edmondson, R.J.; Genestie, C.; Khaw, P.; Pyman, J.; McLachlin, C.M.; Ghatage, P.; et al. p53 immunohistochemistry in endometrial cancer: Clinical and molecular correlates in the PORTEC-3 trial. Mod. Pathol. 2022, 35, 1475–1483. [Google Scholar] [CrossRef] [PubMed]
- Lane, D.P. Cancer. p53, guardian of the genome. Nature 1992, 358, 15–16. [Google Scholar] [CrossRef]
- Donehower, L.A.; Soussi, T.; Korkut, A.; Liu, Y.; Schultz, A.; Cardenas, M.; Li, X.; Babur, O.; Hsu, T.K.; Lichtarge, O.; et al. Integrated analysis of TP53 Gene and pathway alterations in The Cancer Genome Atlas. Cell Rep. 2019, 28, 1370–1384.e5. [Google Scholar] [CrossRef] [PubMed]
- Berek, J.S.; Matias-Guiu, X.; Creutzberg, C.; Fotopoulou, C.; Gaffney, D.; Kehoe, S.; Lindemann, K.; Mutch, D.; Concin, N.; Endometrial Cancer Staging Subcommittee, FIGO Women’s Cancer Committee. FIGO staging of endometrial cancer: 2023. Int. J. Gynaecol. Obstet. 2023, 162, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.M.; Cheung, M.K.; Osann, K.; Lee, M.M.; Gomez, S.S.; Whittemore, A.S.; Husain, A.; Teng, N.N.; Chan, J.K. Improved survival of Asians with corpus cancer compared with whites: An analysis of underlying factors. Obstet. Gynecol. 2006, 107, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Simons, E.; Blansit, K.; Tsuei, T.; Brooks, R.; Ueda, S.; Kapp, D.S.; Chan, J.K. Foreign- vs US-born Asians and the association of type I uterine cancer. Am. J. Obstet. Gynecol. 2015, 212, 43.e1–43.e6. [Google Scholar] [CrossRef]
- Johnson, C.R.; Liao, C.I.; Tian, C.; Richardson, M.T.; Duong, K.; Tran, N.; Winkler, S.S.; Kapp, D.S.; Darcy, K.; Chan, J.K. Uterine cancer among Asian Americans—Disparities & clinical characteristics. Gynecol. Oncol. 2024, 182, 24–31. [Google Scholar] [PubMed]
- Stelloo, E.; Nout, R.A.; Osse, E.M.; Jurgenliemk-Schulz, I.J.; Jobsen, J.J.; Lutgens, L.C.; van der Steen-Banasik, E.M.; Nijman, H.W.; Putter, H.; Bosse, T.; et al. Improved risk assessment by integrating molecular and clinicopathological factors in early-stage endometrial cancer-combined analysis of the PORTEC cohorts. Clin. Cancer Res. 2016, 22, 4215–4224. [Google Scholar] [CrossRef]
- Haruma, T.; Nagasaka, T.; Nakamura, K.; Haraga, J.; Nyuya, A.; Nishida, T.; Goel, A.; Masuyama, H.; Hiramatsu, Y. Clinical impact of endometrial cancer stratified by genetic mutational profiles, POLE mutation, and microsatellite instability. PLoS ONE 2018, 13, e0195655. [Google Scholar] [CrossRef] [PubMed]
- van den Heerik, A.; Horeweg, N.; Nout, R.A.; Lutgens, L.; van der Steen-Banasik, E.M.; Westerveld, G.H.; van den Berg, H.A.; Slot, A.; Koppe, F.L.A.; Kommoss, S.; et al. PORTEC-4a: International randomized trial of molecular profile-based adjuvant treatment for women with high-intermediate risk endometrial cancer. Int. J. Gynecol. Cancer 2020, 30, 2002–2007. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
Study, Year of Publication | Study Type | Country of Study | EEC Cohort Size | G3 Cohort Size | p53-Mutated G3 EEC Cohort Size | Age (y) | BMI (kg/m2) | FIGO Stage n/n(%) | Adjuvant Therapy n/n(%)/% | Method of Assessment of p53 Status | Follow-Up Duration | Has Kaplan–Meier Plot? | PFS a (HR [95% CI]) | OS a (HR [95% CI]) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alvarez et al. [31] | Retrospective cohort study | USA | 25 | 25 | 9 | 61 b (range: 37–88) | NS | I and II: 4 III–IV: 5 | NS | IHC | 6–96 mo | No | No | No |
Balestra et al. [32] | Retrospective cohort study | Belgium | 118 | 12 | 4 | NS | NS | NS | NS | IHC, NGS | NS | No | No | No |
Betella et al. [33] | Retrospective cohort study | Italy | 278 | 73 | 29 | 65.0 b (SD, 10.9) | 27.5 | I to IV | NS | IHC | NS | No | No | No |
Bosse et al. [5] | Retrospective cohort study | International | 381 | 381 | 79 | 66 c (33–96) | NS | IA: 171 (45.5%) IB: 120 (31.9%) II–IV: 85 (22.6%) | Irrespective of adjuvant therapy given | IHC, Sanger sequencing, NGS | 6.1 c (range 0.2–17) y | Yes | 1.92 (1.20 to 3.07) | 1.37 (0.90 to 2.09) |
Brett et al. [15] | Prospective cohort study | Canada | 326 | 200 | 47 | 65.07 b (SD, 12.04) | NS | I: 25 II: 4 III–IV: 18 | RT: 16 CT: 24 | IHC | 54.61 c (0.61–151.20) mo | Yes | 2.19 (1.16 to 4.12) | No |
Buchynska et al. [34] | Retrospective cohort study | Ukraine | 95 | 29 | 16 | 58.3 b (range: 36–83) | NS | I and II | NS | IHC | 100 mo | No | No | No |
Chen et al. [13] | Retrospective cohort study | China | 60 | 60 | 24 | 56.22 b (SD, 10.51) | NS | NS | NS | NGS | NS | No | No | 1.03 (1.02 to 1.04) |
Cuevas et al. [36] | Retrospective cohort study | Spain | 24 | 16 | 6 | 81.04 b (range: 59–96) | NS | IA: 4 (16.7%) IB: 14 (58.3%) II: 3 (12.5%) IIIA: 2 (8.3%) IIIB: 1 (4.2%) | NS | IHC, NGS | 76 b (range: 24–108) mo | No | No | No |
Da Cruz Paula et al. [65] | Retrospective cohort study | USA | 175 | 10 | 1 | 62 c (range: 27–93) | NS | I: 129 (73.7%) II: 6 (3.4%) III: 30 (17.1%) IV: 10 (5.7%) | NS | IHC | 32.3 c (range 1.3–94) mo | No | No | No |
Dai et al. [37] | Retrospective cohort study | China | 473 | 268 | 84 | >65 y: 65.5% | ≥28: 72.3% | III or IV: 41.1% | RT: 47.6% CT: 57.0% | NGS | 30.6 c mo | Yes | 1.80 (1.28 to 2.54) | 1.76 (1.31 to 2.36) |
Daniilidou et al. [14] | Retrospective cohort study | Greece | 61 | 4 | 1 | 62.5 b (range: 39–75) | NS | NS | NS | IHC | 5 y | No | No | No |
Dankai et al. [38] | Retrospective cohort study | Thailand | 138 | 39 | 7 | 57.2 b (range: 25–81) | NS | NS | NS | IHC | >60 mo | Yes | 1.31 (1.09 to 1.58) | 1.37 (1.12 to 1.67) |
Devereaux et al. [39] | Prospective cohort study | USA | 310 | 32 | 9 | 69 c (range: 34–87) | NS | I-IV | NS | IHC | 20 mo | No | No | No |
Dobrzycka et al. [40] | Prospective cohort study | Poland | 139 | 40 | 23 | <60 y: 58 d (41.7%) >60 y: 81 d (58.3%) | NS | IA: 9 (6.5%) IB: 58 (41.7%) IC: 72 (51.8%) | None | IHC, PCR | 60 mo | Yes | No | No |
Enomoto et al. [22] | Retrospective cohort study | Japan | 38 | 7 | 3 | NS | NS | NS | NS | DNA sequencing | NS | No | No | No |
Feng et al. [41] | Retrospective cohort study | Japan | 54 | 17 | 8 | Range: 30–76 | NS | p53-mutated: I + II: 15 III + IV: 8 | NS | IHC, PCR | NS | No | No | No |
Hoang et al. [42] | Retrospective cohort study | USA | 115 | 27 | 4 | NS | NS | NA | NS | IHC | NS | No | No | No |
Huvila et al. [46] | Retrospective cohort study | Finland | 306 | 53 | 10 | 66 c (range: 59–73) | NS | I: 247 (80.7%) II: 9 (2.9%) III: 42 (13.7%) IV: 8 (2.6%) | NS | Tissue microarrays, IHC | 12 y | Yes | No | No |
Huvila et al. [43] | Retrospective cohort study | Finland | 957 | 78 | 16 | ≤60 y: 31.7% >60 y: 68.3% | NS | NS | NS | IHC, NGS | >5 y | Yes | No | No |
Inaba et al. [44] | Retrospective cohort study | Japan | 92 | 14 | 5 | <60: 61 d; ≥60: 31 d | NS | NS | NS | IHC | 10 y (3500 days after surgery) | Yes | No | No |
Jones et al. [45] | Retrospective cohort study | USA | 21 | 3 | 1 | Group A (aggressive disease): 67 b,c (range: 53–81) y Group B (indolent disease) 64.5 b (range: 39–84) y | NS | G3 p53-mutated: IV: 1 (100%) | NS | IHC | 4.7 b (3–9) y | No | No | No |
Kang et al. [47] | Retrospective cohort study | Canada | 289 | 26 | 7 | 64.9 b (range: 35–90) | NS | IA: 152 (69.7%) IB: 38 (17.4%) II: 5 (2.3%) IIIA: 6 (2.8%) IIIC1: 12 (5.5%) IIIC2: 4 (1.8%) IVB: 1 (0.5%) | NS | IHC | >120 mo | Yes | No | No |
Kato et al. [48] | Retrospective cohort study | Japan | 74 | 74 | 18 | 57 c (range: 37–80) | NS | I: 44 (59.5%) II: 5 (6.8%) III: 18 (24.3%) IV: 7 (9.5%) | Early-stage patients: 0 Advanced-stage patients: Platinum-containing regimens e: 20 RT: 2 Refused adjuvant therapy: 3 | IHC, PCR | >60 mo | Yes | No | No |
Kihana et al. [21] | Retrospective cohort study | Japan | 92 | 12 | 6 | NS | NS | I-IV | NS | DNA sequencing | 175 mo | Yes | No | No |
Kitazono et al. [49] | Retrospective cohort study | Japan | 82 | 6 | 2 | Range: 34–88 | NS | IA, IB | CT; RT | IHC | 2–37 mo | No | No | No |
Kobayashi et al. [50] | Retrospective cohort study | Japan | 36 | 3 | 1 | Range: 51–80 | NS | NS | NS | IHC, NGS | NS | No | No | No |
Kogata et al. [51] | Clinical Trial | Japan | 344 | 45 | 12 | 58.0 b (SD, 11.0) | 24.1 +/− 4.5 | I-IV | NS | IHC, DNA sequencing | NS | No | No | No |
Koshiyama et al. [18] | Retrospective cohort study | Japan | 30 | 4 | 1 | Range: 39–71 | NS | IA | NS | IHC | NS | No | No | No |
Lax et al. [52] | Retrospective cohort study | Austria | 58 | 14 | 6 | NS | NS | I: 39 II: 6 III: 7 IV: 2 Unknown: 4 | NS | Sequencing | NS | No | No | No |
Leon-Castillo et al. [53] | Retrospective cohort study | Netherlands | 107 | 82 | 48 | 61.6 b (range: 35–87) | NS | IA: 41 (38.3%) IB: 41 (38.3%) II: 3 (2.8%) III: 16 (15%) IV: 6 (5.6%) | NS | IHC, NGS, Sanger sequencing | >5 y | Yes | No | No |
Leon-Castillo et al. [35] | Retrospective cohort study | Netherlands | 410 | 113 | 21 | 61.2 b (range: 26.7–80.5) | NS | IA: 54 (13.2%) IB: 73 (17.8%) II: 105 (25.6%) IIIA: 46 (11.2%) IIIB: 29 (7.1%) IIIC: 103 (25.1%) | RT: 200 (48.8%) CT + RT: 210 (51.2%) | IHC, NGS | 6.1 c (range: 0.52–11.03) y | Yes | 1.63 (1.33 to 1.99) | 1.23 (1.09 to 1.39) |
Li et al. [55] | Retrospective cohort study | Japan | 56 | 5 | 3 | p53-mutated: 55 c (range: 37–79) (n = 17) | NS | I: 40 (71.4%) II: 8 (14.3%) III: 8 (14.3%) | NS | IHC | NS | No | No | No |
Li et al. [54] | Retrospective cohort study | China | 70 | 70 | 10 | <60 y: 60 d (85.71%) ≥60 y: 10 d (14.29%) 54.5 b | NS | I/II: 43 (61.43%) III/IV: 27 (38.57%) | RT: 41 CT: 18 Adjuvant local RT: 3 Without therapy: 8 | IHC, NGS, MLH1 promotor methylation testing | NS | No | No | No |
Maeda et al. [56] | Retrospective cohort study | Japan | 64 | 9 | 5 | NS | NS | NS | NS | MSP, PCR, IHC | NS | No | No | No |
Massenkeil et al. [20] | Prospective cohort study | Switzerland | 23 | 8 | 3 | Range: 55–82 | NS | I: 4 II: 3 IV: 1 | NS | DNA sequencing | NS | No | No | No |
Matsumoto et al. [57] | Retrospective cohort study | USA | 43 | 10 | 2 | NS | NS | NS | NS | IHC, DNA sequencing | NS | No | No | No |
Mazurek et al. [58] | Retrospective cohort study | Poland | 55 | 12 | 6 | Range: 52–74 | NS | I-IV | NS | IHC | NS | No | No | No |
Moreira et al. [59] | Retrospective cohort study | Portugal | 230 | 36 | 10 | NS | 28.7 | I-IV | NS | IHC | 36 mo | Yes | 1.97 (1.24 to 3.13) | No |
Nostrand et al. [60] | Retrospective cohort study | USA | 49 | 16 | 3 | 66 b | NS | I to IV | NS | DNA sequencing | 5 y | No | No | No |
Nout et al. [61] | Retrospective cohort study | Netherlands | 65 | 16 | 2 | 67.9 b (range: 51.6–84.6) | NS | I: 65 (100%) | EBRT: 31 VBT: 34 | IHC, sequencing | 7.3 c y | Yes | No | No |
Oberndorfer et al. [62] | Retrospective cohort study | Austria | 40 | 12 | 2 | 62.1 c (range: 29.9–83.6) | 28.5 (range: 18.3–46.0) | IA: 18 (45%) IB: 12 (30%) II: 7 (17.5%) IIIC1: 2 (5.9%) IIIC2: 1 (2.5%) | NS | IHC, microsatellite instability testing | 10 y (when necessary) | No | No | No |
Okamoto et al. [63] | Retrospective cohort study | Japan | 24 | 5 | 3 | NS | NS | IA, IA, IB | NS | DNA sequencing | NS | No | No | No |
Pain et al. [64] | Retrospective cohort study | Poland | 291 | 100 | 10 | TP53 not mutated: 67.2 b (SD, 11.8) TP53-mutated: 71.0 b (SD, 10.3) | TP53 not mutated: 28.5 TP53 mutated: 25.2 | I: 174 (59.8%) II: 30 (10.3%) III: 69 (23.7%) IV: 17 (5.8%) | IVBT; EBRT; CT | IHC, NGS | >72 mo | Yes | 1.66 (1.24 to 2.23) | 1.29 (1.14 to 1.63) |
Pijnenborg et al. [66] | Case–control study | Holand | 88 | 17 | 3 | 70.0 c (range: 51–93) | NS | I (100%) | RT | IHC, sequencing | 9–141 mo | No | No | No |
Riethdorf et al. [23] | Retrospective cohort study | Germany | 120 | 35 | 24 | 65.0 c (range: 33–99) | NS | I–IV | NS | IHC | NS | No | No | No |
Rios-Doria et al. [7] | Retrospective cohort study | USA | 976 | 87 | 16 | Comparison <60; ≥60 y | NS | NS | RT + CT | IHC, sequencing | 22.3 c mo (range: 0.5–214) | Yes | 2.04 (0.48 to 8.70) | No |
Sakuragi et al. [67] | Retrospective cohort study | Japan | 23 | 3 | 1 | 59.4 b (range: 32–76) | NS | NS | NS | Yeast p53 functional assay, IHC | NS | No | No | No |
Sakuragi et al. [68] | Retrospective cohort study | Japan | 92 | 25 | 6 | <60 y: 39 d ≥60 y: 53 d | NS | I/II: 65 (70.6%) III/IV: 27 (29.4%) | RT: 49 CT: 43 | IHC, PCR | 58.5 c mo (n = 49) 41.0 c mo (n = 43) | Yes | No | No |
Sawairiitoh et al. [19] | Retrospective cohort study | Japan | 49 | 6 | 5 | NS | NS | I to IV | NS | DNA sequencing | NS | No | No | No |
Schultheis et al. [69] | Retrospective cohort study | USA | 228 | 88 | 17 | NS | NS | NS | No adjuvant therapy was used | IHC, PCR | NS | No | No | No |
Shiozawa et al. [70] | Retrospective cohort study | Japan | 62 | 9 | 6 | NS | NS | NS | NA | IHC | NS | No | No | No |
Singh et al. [71] | Retrospective cohort study | Internacional | 164 | 32 | 7 | NS | NS | NS | NS | IHC, DNA sequencing | NS | No | No | No |
Timmerman et al. [9] | Prospective cohort study | Belgium | 108 | 12 | 0 | 68.5 b | Mean: 29.2 | NS | Yes: 37 No: 71 | IHC, Sanger sequencing, PCR | NS | No | No | No |
Tresa et al. [72] | Retrospective cohort study | India | 63 | 26 | 12 | 59.4 b | NS | I: 31 (49.2%) II: 11 (17.5%) III: 19 (30.2%) IV: 2 (3.1%) | None: 11 (17.4%) RT: 24 (38.1%) CT only: 4 (6.3%) CT + RT: 24 (38.1%) | IHC | 30.8 mo | Yes | No | No |
Tsuda and Hirohashi [17] | Retrospective cohort study | Japan | 52 | 5 | 3 | NS | NS | I/II: (66.7%) III/IV: (33.3%) | NS | IHC, sequencing | NS | No | No | No |
Vermij et al. [73] | Retrospective cohort study | Netherlands | 408 | 112 | 19 | 61.2 b (range: 26.7–80.5) | NS | IA: 54 (13.2%) IB: 73 (17.9%) II: 105 (25.7%) III: 176 (43.1%) | Half: CT + RT/RT | IHC, NGS | >5 y | Yes | No | No |
Yamauchi et al. [24] | Retrospective cohort study | Japan | 35 | 5 | 3 | 54.5 b (range: 30- 74) | NS | NS | NS | IHC | NS | No | No | No |
Study | Study Participation | Study Attrition | Prognostic Factor Measurement | Outcome Measurement | Study Confounding | Study Analysis and Reporting | Overall |
---|---|---|---|---|---|---|---|
Alvarez et al. [31] | Low | Low | Low | Low | Low | Low | Low |
Balestra et al. [32] | Low | Low | High | Low | Low | Low | High |
Betella et al. [33] | Low | Low | Low | Low | Low | Low | Low |
Bosse et al. [5] | Low | Low | Low | Low | Low | Low | Low |
Brett et al. [15] | Low | Low | Low | Low | Low | Low | Low |
Buchynska et al. [34] | Low | Low | Low | Low | Low | Low | Low |
Chen et al. [13] | Low | Low | Low | Low | Low | Low | Low |
Cuevas et al. [36] | Low | Low | Low | Low | Low | Low | Low |
Da Cruz Paula et al. [65] | Low | Low | Low | Low | Low | Low | Low |
Dai et al. [37] | Low | Low | Low | Low | Low | Low | Low |
Daniilidou et al. [14] | Low | Low | Moderate | Low | Low | Low | Low |
Dankai et al. [38] | Low | Low | Moderate | Low | Low | Low | Low |
Devereaux et al. [39] | Low | Low | Moderate | Low | Low | Low | Low |
Dobrzycka et al. [40] | Low | Low | Low | Low | Low | Low | Low |
Enomoto et al. [22] | Low | Low | High | Low | Low | Low | High |
Feng et al. [41] | Low | Low | High | Low | Low | Low | High |
Hoang et al. [42] | Low | Low | Low | Low | Low | Low | Low |
Huvila et al. [46] | Low | Low | Low | Low | Low | Low | Low |
Huvila et al. [43] | Low | Low | Low | Low | Low | Low | Low |
Inaba et al. [44] | Low | Low | Low | Low | Low | Low | Low |
Jones et al. [45] | Low | Low | Low | Low | Low | Low | Low |
Kang et al. [47] | Low | Low | Low | Low | Low | Low | Low |
Kato et al. [48] | Low | Low | Low | Low | Low | Low | Low |
Kihana et al. [21] | Low | Low | High | Low | Low | Low | High |
Kitazono et al. [49] | Low | Low | Low | Low | Low | Low | Low |
Kobayashi et al. [50] | Low | Low | High | Low | Low | Low | Low |
Kogata et al. [51] | Low | Low | Low | Low | Low | Low | Low |
Koshiyama et al. [18] | Low | Low | Low | Low | Low | Low | Low |
Lax et al. [52] | Low | Low | Moderate | Low | Low | Low | Low |
Leon-Castillo et al. [53] | Low | Low | Low | Low | Low | Low | Low |
Leon-Castillo et al. [35] | Low | Low | Low | Low | Low | Low | Low |
Li et al. [55] | Low | Low | Low | Low | Low | Low | Low |
Li et al. [54] | Low | Low | Low | Low | Low | Low | Low |
Maeda et al. [56] | Low | Low | High | Low | Low | Low | High |
Massenkeil et al. [20] | Low | Low | High | Low | Low | Low | High |
Matsumoto et al. [57] | Low | Low | Low | Low | Low | Low | Low |
Mazurek et al. [58] | Low | Low | Moderate | Low | Low | Low | Low |
Moreira et al. [59] | Low | Low | Moderate | Low | Low | Low | Low |
Nostrand et al. [60] | Low | Low | Low | Low | Low | Low | Low |
Nout et al. [61] | Low | Low | Low | Low | Low | Low | Low |
Oberndorfer et al. [62] | Low | Low | Low | Low | Low | Low | Low |
Okamoto et al. [63] | Low | Low | Low | Low | Low | Low | Low |
Pain et al. [64] | Low | Low | Low | Low | Low | Low | Low |
Pijnenborg et al. [66] | Low | Low | Low | Low | Low | Low | Low |
Riethdorf et al. [23] | Low | Low | Low | Low | Low | Low | Low |
Rios-Doria et al. [7] | Low | Low | High | Low | Low | Low | High |
Sakuragi et al. [67] | Low | Low | Moderate | Low | Low | Low | Low |
Sakuragi et al. [68] | Low | Low | Low | Low | Low | Low | Low |
Sawairiitoh et al. [19] | Low | Low | Low | Low | Low | Low | Low |
Schultheis et al. [69] | Low | Low | High | Low | Low | Low | High |
Shiozawa et al. [70] | Low | Low | High | Low | Low | Low | High |
Singh et al. [71] | Low | Low | High | Low | Low | Low | High |
Timmerman et al. [9] | Low | Low | High | Low | Low | Low | High |
Tresa et al. [72] | Low | Low | Low | Low | Low | Low | Low |
Tsuda and Hirohashi [17] | Low | Low | Low | Low | Low | Low | Low |
Vermij et al. [73] | Low | Low | Low | Low | Low | Low | Low |
Yamauchi et al. [24] | Low | Low | High | Low | Low | Low | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casanova, J.; Babiciu, A.; Duarte, G.S.; da Costa, A.G.; Serra, S.S.; Costa, T.; Catarino, A.; Leitão, M.M., Jr.; Lima, J. Abnormal p53 High-Grade Endometrioid Endometrial Cancer: A Systematic Review and Meta-Analysis. Cancers 2025, 17, 38. https://doi.org/10.3390/cancers17010038
Casanova J, Babiciu A, Duarte GS, da Costa AG, Serra SS, Costa T, Catarino A, Leitão MM Jr., Lima J. Abnormal p53 High-Grade Endometrioid Endometrial Cancer: A Systematic Review and Meta-Analysis. Cancers. 2025; 17(1):38. https://doi.org/10.3390/cancers17010038
Chicago/Turabian StyleCasanova, João, Alexandru Babiciu, Gonçalo S. Duarte, Ana Gomes da Costa, Sofia Silvério Serra, Teresa Costa, Ana Catarino, Mário M. Leitão, Jr., and Jorge Lima. 2025. "Abnormal p53 High-Grade Endometrioid Endometrial Cancer: A Systematic Review and Meta-Analysis" Cancers 17, no. 1: 38. https://doi.org/10.3390/cancers17010038
APA StyleCasanova, J., Babiciu, A., Duarte, G. S., da Costa, A. G., Serra, S. S., Costa, T., Catarino, A., Leitão, M. M., Jr., & Lima, J. (2025). Abnormal p53 High-Grade Endometrioid Endometrial Cancer: A Systematic Review and Meta-Analysis. Cancers, 17(1), 38. https://doi.org/10.3390/cancers17010038